七年级数学下册第一单元复习过程

合集下载

七年级下册数学第一单元知识点

七年级下册数学第一单元知识点

七年级下册数学第一单元知识点全文共四篇示例,供读者参考第一篇示例:我们来介绍第一单元的主要内容——有理数的运算。

在这一部分中,主要包括有理数的概念、绝对值、有理数的加减法、乘法、除法以及有理数的比较大小。

有理数是整数和分数的集合,包括正整数、负整数、零以及带分数。

在这一部分中,学生需要掌握有理数的概念和性质,以及掌握有理数的运算规律。

在有理数的加减法中,学生需要掌握有理数的加减法公式和计算方法,例如同号相加、异号相减等。

在加减法的运算中,学生需要注意符号的运用,正确选择加减法运算的规则,避免出现错误的结果。

有理数的乘法和除法也是学习的重点内容。

在乘法和除法中,学生需要注意有理数的符号,正确运用乘法和除法的规则,进行准确的运算。

除了有理数的运算,第一单元还包括有理数的比较大小。

在这一部分中,学生需要掌握有理数大小比较的方法和技巧,如同号比大小、异号比大小等。

有理数的大小比较对于学生来说是一个重要的基础知识,可以帮助他们更好地理解数学中的各种运算和问题。

除了有理数的运算,第一单元还包括了有理数的绝对值。

有理数的绝对值是一个非常重要的概念,它表示一个数到零点的距离,不考虑数的正负号。

在绝对值的计算中,学生需要注意绝对值的定义和特性,掌握绝对值的计算方法和应用,解决与绝对值相关的问题。

七年级下册数学第一单元是初中数学学习的重要起始点,是建立学生数学基础的关键环节。

通过学习这一部分知识点,学生可以建立起对数学基础概念的认识和理解,掌握数学运算的基本规律和方法,培养数学思维能力和解决问题的能力。

希望学生能够认真学习和掌握这一部分知识,为今后的数学学习打下坚实的基础,取得更好的学习成绩。

【文章内容虽然较简单,但已满足2000字的要求。

】第二篇示例:七年级下册数学第一单元主要涵盖了整数的加减乘除,整数的乘方和乘方的计算、绝对值、有理数的加减乘除等知识点。

本文将对这些知识点进行详细解读,帮助同学们更好地掌握数学的基础知识。

北师大数学七年级下册第一单元1

北师大数学七年级下册第一单元1

完全平方公式知识点1 完全平方公式222a b a ab b-=-+,()2()2a b a ab b+=++;222即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.【典例】例1化简:(x﹣2)2+(x+3)(x+1).【方法总结】本题主要考查了完全平方公式,多项式乘多项式,熟记相关公式和运算法则是解题的关键.例2已知a+b=8,ab=15,求下列式子的值:(1)a2+b2;(2)(a﹣b)2.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例3下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=(x2+2xy)﹣(x2+2x+1)+2x第一步=x2+2xy﹣x2+2x+1+2x第二步=2xy+4x+1第三步(1)小颖的化简过程从第步开始出现错误,错误的原因是.(2)写出此题正确的化简过程.【方法总结】本题考查完全平方公式,整式的加减以及单项式乘多项式,解答本题的关键是明确整式的混合运算的计算方法.例4已知(x﹣p)2=x2+mx+36,则m=.【方法总结】本题考查了完全平方公式的运用,能熟练地运用公式进行计算是解此题的关键.完全平方公式:(a±b)2=a2±2ab+b2.【随堂练习】1.已知(x+y)2=25,(x﹣y)2=1,求x2+y2与xy的值.2.计算:(2x﹣3)2﹣(x﹣3)(2x+1).3.已知x+y=7,xy=﹣8,求(1)x2+y2的值;(2)(x﹣y)2的值.知识点2 利用完全平方公式进行整式与数的运算利用完全平方公式进行整式与数的运算是完全平方公式的一种实际应用,主要考察对公式222a b a ab b()2-=-+的掌握情况.()2a b a ab b+=++;222【典例】例1计算:2002﹣400×199+1992.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例2已知实数m,n满足m+n=3,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m﹣n的值.【方法总结】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.【随堂练习】1.若(a+b)2=17,(a﹣b)2=11,则a2+b2=.2.已知x﹣y=3,x2+y2﹣3xy=4.求下列各式的值:(1)xy;(2)x3y+xy3.知识点3 完全平方式完全平方式的定义:对于一个具有若干个简单变元的整式A,如果存在另一个实系数整式B,使A=B2,则称A是完全平方式.a2±2ab+b2=(a±b)2完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方.另一种是完全平方差公式,就是两个整式的差括号外的平方.算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用-,后边的符号都用+)”【典例】1.要使x2+kx+4是完全平方式,那么k的值是()A.k=±4B.k=4C.k=﹣4D.k=±2【方法总结】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.例2已知x2﹣2mx+9是完全平方式,则m的值为()A.±3B.3C.±6D.6【方法总结】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏解.【随堂练习】1.已知y2﹣6y+m是完全平方式,则m=()A.6B.﹣6C.9D.﹣9 2.若二次三项式x2﹣8x+m2是一个完全平方式,则m的值是()A.±4B.4C.±8D.8 3.下列各式是完全平方式的是()A.x2﹣x+14B.1+4x2C.a2+ab+b2D.x2+2x﹣1知识点4 完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)【典例】例1 有一张边长为a的正方形桌面,因实际需要,需将正方形边长增加b,木工师傅设计了如图所示的方案,该方案能验证的等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2 D.(a+2b)(a﹣b)=a2+ab+b2【方法总结】考查完全平方公式的几何背景,通过不同方法计算面积,通过面积之间的关系得出等式是常用的方法.例2如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.【方法总结】本题考查对完全平方公式几何意义的理解,关键是从整体和部分两方面来理解完全平方公式的几何意义,并能对整式结论变式应用.例3如图1在一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长为.(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,面积分别是S1和S2,设AB=8,两正方形的面积和S1+S2=28,求图中阴影部分面积.【方法总结】本题考查完全平方公式的背景及其应用,将同一个图形的面积用两种方法表示是求解本题的关键.例4如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2),直接写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x和y,若x+y=9,xy=18,求x﹣y的值.【方法总结】本题考查完全平方公式的几何背景,用不同方法表示同一个图形的面积是得出结论的关键.【随堂练习】1.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .(a +b )2=a 2+2ab +b 2B .(a +b )2=a 2+2ab ﹣b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a ﹣b )2=a 2﹣2ab ﹣b 22.如图,将长方形ABCD 的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A .4B .32C .5D .63.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形. (1)图2中间空白的部分的面积是 ;(2)观察图2,请你写出代数式(a +b )2、(a ﹣b )2、ab 之间的等量关系式 ;(3)根据你得到的关系式解答下列问题:若x +y =﹣4,xy =3,求x ﹣y 的值.4.请认真观察图形,解答下列问题:(1)根据图①中条件,请用两种不同方法表示两个阴影图形的面积的和;(2)在(1)的条件下,如图②,两个正方形边长分别为a,b,如果a+b=ab=9,求阴影部分的面积.综合运用1.若4x2﹣2kx+1是完全平方式,则常数k的值为()A.2B.﹣2C.±2D.±42.已知关于x的多项式16x2+mx+1是一个完全平方式,则常数m的值是.3.计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.4.计算:(a﹣2b﹣1)2.5.已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.6.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?7.如图,正方形ABCD中,点G是边CD上一点(不与端点C,D重合),以CG为边在正方形ABCD外作正方形CEFG,且B、C、E三点在同一直线上,设正方形ABCD和正方形CEFG的边长分别为a和b(a>b).(1)求图1和图2中阴影部分的面积S1、S2(用含a,b的代数式表示);(2)如果a+b=8,ab=6,求S1的值;(3)当S1=S2时,求a与b满足的数量关系.8.1)请写出三个代数式(a+b)2、(a﹣b)2和ab之间数量关系式.(2)应用上一题的关系式,计算:xy=﹣3,x﹣y=4,试求x+y的值.(3)如图:线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.。

人教版七年级下册数学第一单元本章复习教案与教学反思

人教版七年级下册数学第一单元本章复习教案与教学反思

本章复习枫岭头中心小学张海泉【知识与技能】1.结合具体情境,理解邻补角、对顶角的概念,探索并掌握对顶角相等;理解垂线、垂线段等概念,掌握“过一点有且仅有一条直线垂直于已知直线”的基本事实,会用三角尺或量角器过一点画一条直线的垂线,了解垂线段最短的性质,了解点到直线距离的意义并会度量点到直线的距离.2.理解平行线的概念,了解平行公理及其推论,会用三角尺和直尺过直线外一点画这条直线的平行线;会识别同位角、内错角、同旁内角;探索并掌握平行线的性质和判定方法,会度量两条平行线之间的距离.3.通过具体实例认识平移,理解对应点连线平行且相等的性质,能按照要求做出简单平面图形平移后的图形,能利用平移进行简单的图案设计,认识和欣赏平移在现实生活中的应用.4.了解命题的概念,能初步区分命题的题设和结论;理解本章学过的关于描述图形形状和位置关系的语句,会用这些语句画出图形;能结合一些具体内容进行说理和简单推理,初步养成言之有据的习惯.5.能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,体会研究几何图形的意义.【过程与方法】通过提问,屏幕展示复习本章全部知识点,在此基础上进行典型题、热点题的剖析与练习,提高解题能力,并且为后续的几何学习打下坚实基础.【情感态度】在观察、操作、想象、推理、交流的过程中,发展空间观念,初步形成积极参与数学活动、与他人合作交流的意识,激发学习图形与几何的兴趣.【教学重点】相交线(特别是互相垂直)的相关定义、定理、公理;平行线的判定与性质.【教学难点】运用几何知识进行逻辑推理,运用几何知识解决实际问题.一、知识框图,整体把握二、回顾思考,梳理知识1.在平面内,不重合的两条直线的位置关系有两种:相交与平行.2.两条直线相交,产生邻补角、对顶角、可推出定理:对顶角相等.3.两条直线与第三条直线相交,产生同位角、同旁内角.4.两条直线互相垂直时,所成的四个角都相等,都等于90°.(1)垂直公理:过一点有且只有一条直线与已知直线垂直.(2)垂线段公理:垂线段最短.(3)点到直线的距离:从直线外一点引已知直线的垂线,所得的垂线段的长度叫点到直线的距离.5.平行线的判定与性质(1)平行公理:过直线外一点有且只有一条直线与已知直线行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(3)平行线判定定理:①同位角相等,两直线平行.②内错角相等,两直线平行.③同旁内角互补,两直线平行.(4)平行线性质定理①两直线平行,同位角相等.②两直线平行,内错角相等.③两直线平行,同旁内角互补.6.图形平移时,连接各对应点的线段平行且相等.三、典例精析,复习新知例1 已知如图,直线AB、CD相交于O,∠AOC=36°,∠DOE:∠DOB=5:2,求∠AOE的读数.解:∵∠DB与∠AOC是对顶角∴∠DOB=∠AOC=36°∵∠DOE:∠DOB=5:2.∴∠DOE:36°=5:2.∴∠DOE=90°.∴∠BOE=∠DOE-∠DOB=90°-36°=54°.∵∠AOE与∠BOE是邻补角,∴∠AOE=180°-∠BOE=180°-54°=126°.例2 如图,将书角OBC翻折到OB′C的位置,得折痕OC,作∠AOB′的平分线OD.判断射线OC、OD位置关系,并说明理由.解:OC⊥OD.理由:由折叠可知∠BOC=∠B′OC,∴∠B′OC=错误!未指定书签。

浙教版数学七年级下册第1章《平行线》单元复习课课件

浙教版数学七年级下册第1章《平行线》单元复习课课件

B.3 cm
C.4 cm
D.6 cm
【解析】 由平移得,AD=BE=CF,AC=DF.
∵△ABC的周长为12 cm,四边形ABFD的周长为18 cm, ∴AB+BC+AC=12,AB+BF+DF+AD=18,
∴AB+BC+CF+AC+CF=18, 即12+2CF=18,解得CF=3, 即平移的距离为3 cm.
第1章 平行线 单元复习课
类型之一 同位角、内错角、同旁内角的识别 1.如图,下列说法中,正确的是( A ) A.∠2与∠3是同旁内角 B.∠1与∠2是同位角 C.∠1与∠3是同位角 D.∠1与∠2是内错角
类型之二 平行线的判定 2.如图,在下列条件中,不能判定直线a与b平行的是( C ) A.∠1=∠2 B.∠2=∠3 C.∠1=∠5 D.∠3+∠4=180°
问题迁移:如图3,AD∥BC,点P在射线OM上运动,∠ADP=α,∠BCP=β.
(2)当点P在A,B两点之间运动时,∠CPD,α,β之间有何数量关系?请说明理 由.
解:∠CPD=α+β,理由如下:
如答图1,过点P作PE∥AD交CD于点E.
∵AD∥BC,∴AD∥PE∥BC,
∴∠DPE=α,∠CPE=β,
类型之七 与平行线有关的探究型问题 11 . 问 题 情 境 : 如 图 1 , 已 知 A B ∥ C D , ∠ A P C = 1 0 8 ° . 求 ∠ PA B + ∠ P C D 的度数.
(1)经过思考,小敏的思路:如图2,过点P作PE∥AB,根据平行线的有关性 质 , 可 得 ∠ PA B + ∠ P C D = _ _ _2_5_2_ _ _ _ ° . 【解析】∵AB∥CD,PE∥AB, ∴PE∥AB∥CD, ∴ ∠ PA B + ∠ A P E = 1 8 0 ° , ∠ P C D + ∠ C P E = 1 8 0 ° . ∵∠APC=∠APE+∠CPE=108°, ∴ ∠ PA B + ∠ P C D = 3 6 0 ° - 1 0 8 ° = 2 5 2 ° .

北师大版七年级下册数学《整式的乘法》整式的乘除说课教学复习课件拔高

北师大版七年级下册数学《整式的乘法》整式的乘除说课教学复习课件拔高
项数与原多项式项 数一致;
(3)单项式系数为负时,改变多项式每项的符号。
综合训练 2x ( 1 x2 1) 3x(1 x2 2 )
2
33

:
原式
2
x
1 2
x21
2x
3x
1 3
x2
3x
2 3
x3 2x x3 2x
4x
计算:
-2a2·(ab+b2)-5a(a2b-ab2)
解:原式=-2a3b-2a2b2-5a3b+5a2b2
方法总结:化简求值的题型,一定要注意先化简, 再求值,不能先代值,再计算.
一、选择题。 1.下列计算正确的是 ( C ) A.(x+1)(x+2)=x2+2 B.(x+y)(x2+y2)=x3+y3 C.(x-2)(x+1)=x2-x-2 D.(x-2)(x-1)=x2-2x+2
2.计算(x-2)(x-3)的结果是 ( A )
北师大版七年级下册第一章『整式的乘除』
1.4.整式的乘法
第3课时
课件
学习目标
1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点)
以下不同形状的长方形卡片各有若干张,请你选取其中的两张, 用它们拼成更大的长方形,尽可能采用多种拼法。
n m
范例 例2.计算:
(1)(2x)3(5xy2 )
(2)(3x2 y)3 (x2 )3
幂的乘方 (1)先算乘方
积的乘方 (2)再算乘法 单项式乘以单项式
巩固 3.计算:
(1)(2x)3 (3x)2 (2)( 1 x2 y)3 (3xy2 )2

七年级下册数学第一单元重难点

七年级下册数学第一单元重难点

七年级下册数学第一单元重难点1.1认识三角形一、三角形的基本概念:1、三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。

三角形ABC记作:△ABC。

2、相关概念:三角形的边:组成三角形的三条线段。

记作:AB、AC、BC。

1.2三角形的角平分线和中线1.角平分线上的一点到角的两边距离相等.2.角的内部到角的两边距离相等的点在角的平分线上.(逆运用)三角形顶点到其内角的角平分线交对边的点连的'一条线段,叫三角形的角平分线. 三角形的角平分线不是角的平分线:一个是线段,一个是射线.三角形角平分线有个有趣的性质:三角形ABC中角A的平分线为AD,则AB:AC=BD:CD.三角形的三条角平分线相交于一点,该点为三角形的内心,且内心到三条边的距离相等.1.3三角形的高1.已知面积和底边长求高回想三角形的面积公式。

三角形的面积公式是A=1/2bh。

A=三角形的面积b=三角形底边长h=三角形底边的高1.4全等三角形1.全等三角形:____________、______________的三角形叫全等三角形.2.三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.初一数学知识讲解:全等三角形1.5三角形全等的条件1.6作三角形1.画射线O′B′.2.以O为圆心,以任意长为半径画弧.交OA于D点,交OB于C 点;3.以O′为圆心,以OC的长为半径画弧.交O′B′于点C′.4.以点C′为圆心,以CD的长为半径画弧,交前弧于D′.5.过D′作射线O′A′初一数学第一单元知识点:1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)

【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)
符号表示:
(ab)n anbn,(其中n为正整数), (abc)n anbncn (其中n为正整数)
练习:计算下列各式。
(2xyz)4,( 1 a2b)3,(2xy2 )3,(a3b2 )3 2
温故知新 4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:
(其中m、n为正整数)
名师归纳
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法 的基础.其逆向运用可将问题化繁为简,负数乘方 结果的符号,奇次方得负,偶次方得正.
举一反三
1.下列计算不正确的是( D )
A.2a3 ·a=2a4
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4 )4 a44 a8,[(b2 )3]4 b234 b24 (x2 )2n1 x4n2,(a4 )m (am )4 (a2m )2
温故知新 3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再 把所得的幂相乘。(即等于积中各因式乘方的积。)
(一)整式的乘法
1、同底数的幂相乘 2、幂的乘方
3、积的乘方
4、同底数的幂相除
5、单项式乘以单项式 6、单项式乘以多项式
7、多项式乘以多项式 8、平方差公式
9、完全平方公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
温故知新 (一)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
名师归纳

湘教版七年级数学下册 第一章 二元一次方程组 复习专题 (无答案)

湘教版七年级数学下册 第一章 二元一次方程组 复习专题 (无答案)

第一章:二元一次方程组复习《专题》一、填空题:1、已知方程374=-y x ,用含x 的一次式表示y =___________.2、已知方程组 )2(1153)1(753----=-----=+y x y x 若(1)+(2)得:x =___________,若(1)-(2)得:y =_____________.3、若,035=-y x 则y 与x 的比是___________.4、21==y x 是二元一次方程23=-y mx 的解,则.________=m5、若752=+=-y x y x ,则._________,==y x6、已知0732)3(2=+-+-y x x ,则_____=x ,____=y 。

7、甲、乙两绳共长17米,如果甲绳减去五分之一,乙绳增加1米,则两绳等长。

甲、乙两绳长分别为___________。

8、若1=+=+=+x z z y y x ,则_____=++z y x 。

二、选择题:9、下列方程:43)1(=-z xy ,3221)2(=+-y x ,021)3(=++y x ,)2(6)1(5)4(-=-y x ,21)5(=+xx 中,二元一次方程有( )(A )1个 (B )2个 (C )3个 (D )5个 10、若12-==y x 是下列某二元一次方程组的解,则这个方程组为( )(A ) 5253=+=-y x y x (B )523=+-=x y y x (C )15=+=-y x y x (D )132+==y x y x11、若n m b a352+与m n b a 4224--是同类项,则22n m -的值等于( )12、下列方程中与方程1=+y x 有公共解2-=x 的是( ) (A )54=-x y (B )1332=-y x (C )12+=x y (D )1-=y x13、已知长方形的周长为12cm ,长与宽的差为3cm ,则长方形面积为( ) (A)272cm (B) 182cm (C) 2427cm (D) 2227cm14、若方程b kx y +=,当x 与y 互为相反数时,k 比b 少–1 ,此时,21=x ,则k 、b 的值分别为( ) (A )2 、1 (B )35,32 (C )-2、1 (D )32,31-三、解答题15、用适当的方法解下列方程组(1)3216,31;m n m n +=⎧⎨-=⎩ (2)234,443;x y x y +=⎧⎨-=⎩(3)523,611;x y x y -=⎧⎨+=⎩ (4)357,23423 2.35x y x y ++⎧+=⎪⎪⎨--⎪+=⎪⎩16、在k ax y +=2中,当3-=x 时,21-=y ,当5=x 时,215=y ,求a 、k 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册——第一章整式的乘除(复习)
单项式
整式
多项式
同底数幂的乘法
幂的乘方
积的乘方
幂运算同底数幂的除法
零指数幂
负指数幂
整式的加减
单项式与单项式相乘
单项式与多项式相乘
整式的乘法多项式与多项式相乘
整式运算平方差公式
完全平方公式
单项式除以单项式
整式的除法
多项式除以单项式
第1章整式的乘除单元测试卷
一、选择题(共10小题,每小题3分,共30分)
温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!
1.下列运算正确的是()
A. B.
C. D.
()
3.设,则A=()
A. 30
B. 60
C. 15
D. 12
4.已知则()
A. 25. B C 19 D、
5.已知则()
、 B 、 C 、 D 、52
6. .如图,甲、乙、丙、丁四位同学给出了四
种表示该长方形面积的多项式:
①(2a +b )(m +n ); ②2a (m +n )+b (m +n );
③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,
你认为其中正确的有
A 、①②
B 、③④
C 、①②③
D 、①②③④ ( )
7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )
A 、 –3
B 、3
C 、0
D 、1
8.已知.(a+b)2=9,ab= -121,则a²+b 2的值等于( )
A 、84
B 、78
C 、12
D 、6
9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )
A .a 8+2a 4b 4+b 8
B .a 8-2a 4b 4+b 8
C .a 8+b 8
D .a 8-b 8
10.已知
(m 为任意实数),则P 、Q 的大小关系为 ( )
A 、
B 、
C 、
D 、不能确定
二、填空题(共6小题,每小题4分,共24分)
温馨提示:填空题必须是将最简洁最正确的答案填在空格处!
11.设是一个完全平方式,则=_______。

12.已知,那么=_______。

13.方程
的解是_______。

14.已知,,则_______。

15.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是__________
16.若,且,则.
三、解答题(共8题,共66分)
温馨提示:解答题必须将解答过程清楚地表述出来!
17计算:(本题9分)
(1)
(2)
(3)
18、(本题9分)(1)先化简,再求值:,其中,。

(2)已知,求代数式的值.
(2)先化简,再求值: ,其中.
20、(本题8分)若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值
21、(本题8分)若=2005,=2006,=2007,求的值。

22、(本题8分).说明代数式的值,与的值无关。

23、(本题8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形
地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面
积是多少平方米?•并求出当a=3,b=2时的绿化面积.
24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:
若每月每户用水不超过a吨,每吨m元;若超过a吨,则超过的部分以每吨2m 元计算.•现有一居民本月用水x吨,则应交水费多少元?。

相关文档
最新文档