2021年中考必备:选填压轴分类汇编--圆的解题技巧及真题演练
2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图,AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=4,求CE的长.2.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作⊙O的切线DE交AB于E.(1)求证:DE⊥AB;(2)如果tan B=,⊙O的直径是5,求AE的长.4.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为E,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.5.【发现】如图(1),AB为⊙O的一条弦,点C在弦AB所对的优弧上,根据圆周角性质,我们知道∠ACB的度数(填“变”或“不变”);若∠AOB=150°,则∠ACB =°.爱动脑筋的小明猜想,如果平面内线段AB的长度已知,∠ACB的大小确定,那么点C是不是在某一个确定的圆上运动呢?【研究】为了解决这个问题,小明先从一个特殊的例子开始研究.如图(2),若AB=2,直线AB上方一点C满足∠ACB=45°,为了画出点C所在的圆,小明以AB为底边构造了一个等腰Rt△AOB,再以O为圆心,OA为半径画圆,则点C在⊙O上.请根据小明的思路在图(2)中完成作图(要求尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗).后来,小明通过逆向思维及合情推理,得出一个一般性的结论,即:若线段AB的长度已知,∠ACB的大小确定,则点C一定在某一个确定的圆上,即定弦定角必定圆,我们把这样的几何模型称之为“定弦定角”模型.【应用】(1)如图(3),AB=2,平面内一点C满足∠ACB=60°,则△ABC面积的最大值为.(2)如图(4),已知正方形ABCD,以AB为腰向正方形内部作等腰△BAE,其中BE =BA,过点E作EF⊥AB于点F,点P是△BEF的内心.①∠BPE=°,∠BPA=°;②连接CP,若正方形ABCD的边长为2,则CP的最小值为.6.如图,BE为⊙O的直径,C为线段BE延长线上一点,CA为⊙O的切线,A为切点,连接AB,AE,AO.∠C=30°.(1)求∠ABC的度数;(2)求证:BO=CE;(3)已知⊙O的半径为6,求图中阴影部分的面积.(结果保留π)7.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长;(3)求证:CE2=CD•CA.8.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.9.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;(2)△ABC中,BC=14,tan B=,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.10.如图,DE是△DBC的外角∠FDC的平分线,交BC的延长线于点E,DE的延长线与△DBC的外接圆交于点A.(1)求证:AB=AC;(2)若∠DCB=90°,sin E=,AD=4,求BD的长.11.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.(1)如图1,求证:BD=ED.(2)如图2,AD为⊙O的直径.若BC=12,sin∠BAC=,求OE的长.12.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.13.已知△ABC是⊙O的内接三角形,AB为⊙O的直径.点D是⊙O外一点,连接AD 和OD,OD与AC相交于点E,且OD⊥AC.(1)如图1,若AD是⊙O的切线,tan∠BAC=,证明:AD=AB;(2)如图2,延长DO交⊙O于点F,连接CD,CF,AF.当四边形ADCF为菱形,且∠BAC=30°,BC=1时,求DF的长.14.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过C作CD∥AB,CD交⊙O于D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:AF是⊙O的切线;(2)求证:AB2﹣BE2=BE•EC;(3)如图2,若点G是△ACD的内心,BC•BE=64,求BG的长.15.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案1.解:(1)如图,连接OC,AE,过点A作AM⊥CE,垂足为M,∵PC是⊙O的切线,∴∠CAB=∠DCB,又∵CA=CD,∴∠CAB=∠CDB,∴∠DCB=∠CDB,∴BC=BD,又∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CBA=2∠CDB=2∠CAB,∴∠CBA=90°×=60°,∵OC=OB,∴△OBC是正三角形,∴BC=OB;(2)连接AE,过点A作AM⊥CE,垂足为M,∵E是中点,∴AE=BE=4,∠ACE=∠BCE=∠ACB=×90°=45°,在Rt△AEM中,AE=4,∠AEM=∠CBA=60°,∴EM=AE=2,AM=AE=2,在Rt△ACM中,AM=2,∠ACM=45°,∴CM=AM=2,∴CE=EM+CM=2+2,答:CE的长为2+2.2.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===12,在Rt△ACE中,S△ACE==,∵AE=AB=20,∴=CD,解得:CD=9.6.3.(1)证明:连接AD,OD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠BAD=∠ODA,∴AB∥OD,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)解:∵tan B==,∴设AD=k,BD=2k,∴AB==k,∵AB=AC=5,∴k=,∴AD=,BD=2,∵S△ABD=AB•DE=AD•BD,∴DE==2,∴AE===1.4.解:(1)∵O、I、N三点共线∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d.(2)BD=ID.理由如下:∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI ∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID.(3)由(2)知BD=ID∴式子②可改写为IA•ID=DE•IF又∵IA•ID=IM•IN∴DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr.(4)∵d2=R2﹣2Rr=62﹣2×6×2=12∴d=2.故答案为:2.5.解:【发现】根据圆周角性质,∠ACB的度数不变,∵∠AOB=150°,∴∠ACB=∠AOB=75°,故答案为:不变,75°;【研究】补全图形如图1所示,【应用】(1)如图2,记△ABC的外接圆的圆心为O,连接OA,OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,∴∠OAB=30°,过点O作OH⊥AB于H,∴AH=AB=,在Rt△AHO中,设⊙O的半径为2r,则OH=r,根据勾股定理得,(2r)2﹣r2=3,∴r=1(舍去负数),∴OA=2,OH=1,∵点C到AB的最大距离h为r+OH=2+1=3,∴S△ABC最大=AB•h=×2×3=3,故答案为:3;(2)①∵EF⊥AB,∴∠EFB=90°,∴∠BEF+∠EBF=90°,∵点P是△BEF的内心,∴PE,PB分别是∠BEF和∠EBF的角平分线,∴∠BEP=∠BEF,∠EBP=∠ABP=∠ABE,∴∠BPE=180°﹣(∠BEP+∠EBP)=180°﹣(∠BEF+∠EBF)=180°﹣×90°=135°;在△BPE和△BPA中,,∴△BPE≌△BPA(SAS).∴∠BPA=∠BPE=135°,故答案为:135°,135°;②如图3,作△ABP的外接圆,圆心记作点O,连接OA,OB,在优弧AB上取一点Q,连接AQ,BQ,则四边形APBQ是⊙O的圆内接四边形,∴∠AQB=180°∠BPA=45°,∴∠AOB=2∠AQB=90°,∴OA=OB=AB=,连接OC,与⊙O相交于点P'此时,CP'是CP的最小值,过点O作OM⊥AB于M,ON⊥CB,交CB的延长线于N,则四边形OMBN是正方形,∴ON=BN=BM=AB=1,∴CN=BC+BN=3,在Rt△ONC中,OC==,∴CP 的最小值=CP'=OC﹣OP'=﹣,故答案为:﹣.6.(1)解:∵CA为⊙O的切线,∴∠OAC=90°,∴∠AOC=90°﹣∠C=60°,由圆周角定理得,∠ABC=∠AOC=30°;(2)证明:在Rt△AOC中,∠C=30°,∴OA=OC,∵OA=OB=OE,∴OB=CE;(3)解:在Rt△AOC中,AC==6,∴图中阴影部分的面积=×6×6﹣=18﹣6π.7.(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC===2,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为.(3)证明:连接AE,DE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB+∠DEC=90°,∵BA是⊙O的切线,∴∠BAC=90°,∴∠BAE+∠EAD=90°,∵AB=BE,∴∠BAE=∠BEA,∴∠DEC=∠EAD,∴△EDC∽△AEC,∴,∴CE2=CD•CA.8.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.9.解:(1)如图:D即为△ABC边AB上的“好点”;(2)如答图1:过A作AH⊥BC于H,∵tan B=,tan C=1,∴,=1,设AH=3k,则BH=4k,CH=3k,∵BC=14,∴3k+4k=14,解得k=2,∴BH=8,AH=CH=6,设BD=x,则CD=14﹣x,DH=8﹣x,Rt△ADH中,AD2=AH2+DH2=62+(8﹣x)2,而点D是BC边上的“好点”,有AD2=BD•CD=x•(14﹣x),∴62+(8﹣x)2=x•(14﹣x),解得x=5或x=10,∴BD=5或BD=10;(3)①∵∠CAH=∠HDB,∠AHC=∠BHD,∴△ACH∽△DBH,∴,∴AH•BH=CH•DH,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴AH=BH,∴OH⊥AB;②如答图2:连接AD,∵OH⊥AB,OH∥BD,∴AB⊥BD,∴AD是直径,∵r=3OH,设OH=m,则OA=3m,BD=2m,Rt△AOH中,AH==2m,∴BH=2m,Rt△BHD中,HD==2m,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴CH==m,∴==.10.(1)证明:∵DE是△DBC的外角∠FDC的平分线,∴∠FDE=∠CDE,∵∠ADB=∠ACB=∠FDE,∠ABC=∠CDE,∴∠ABC=∠ACB,∴AB=AC;(2)解:∵∠DCB=90°,∴∠DCE=∠BAD=90°,∴∠E+∠CDE=∠ABD+∠ADB=90°,∵∠ADB=∠FDE=∠CDE,∴∠ABD=∠E,∵sin E=,∴sin∠ABD==,∵AD=4,∴BD=4.11.(1)证明:如图1,连接BE.∵E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD,∵∠DBC=∠CAD.∴∠DBC=∠BAD,∵∠BED=∠BAD+∠ABE,∴∠DBE=∠DEB,∴BD=ED;(2)如图2 所示;连接OB.∵AD是直径,AD平分∠BAC,∴AD⊥BC,且BF=FC=6,∵,∴OB=10.在Rt△BOF中,BF=6,OB=10,∴,∴DF=2,在Rt△BDF中,BF2+DF2=BD2,∴,∴,∴.12.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,∴O1D∥OC.又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.13.解:(1)证明:∵OD⊥AC,∴AE=EC=AC,∠DEA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠BAC==,∴BC=AC,∴AE=BC,∵AD是⊙O的切线,∴DA⊥AB,∴∠DAO=∠ACB=90°,∴∠DAE+∠CAB=∠ABC+∠CAB=90°,∴∠DAE=∠ABC,在△DAE和△ABC中,,∴△DAE≌△ABC(ASA),∴AD=AB;(2)在Rt△ABC中,∠BAC=30°,BC=1,∴AB=2,AC=,∵∠ABC=∠AFC=60°,∵四边形ADCF为菱形,∴AC=FC=,∴△AFC是等边三角形,∴∠DFC=AFC=30°,∴CE=FC=,∴EF=CE=,∴DF=2EF=3.14.解:(1)如图1,连接OA,∵AB=AC,∴=,∠ACB=∠B,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∵CD∥AB,∴∠BCD=∠B,∴∠ACB=∠BCD,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(2)∵∠BAD=∠BCD=∠ACB,∠B=∠B,∴△ABE∽△CBA,∴,∴AB2=BC•BE=BE(BE+CE)=BE2+BE•CE,∴AB2﹣BE2=BE•EC;(3)由(2)知:AB2=BC•BE,∵BC•BE=64,∴AB=8,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∠BAD=∠ACB,∴∠BAG=∠BGA,∴BG=AB=8.15.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。
中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.23【答案】(1)证明见解析;(2)AB=DI,理由见解析(3【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.5.如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PB <PC ,PA 交BC 于E ,点F 是PC 延长线上的点,CF=PB ,AB=13,PA=4.(1)求证:△ABP ≌△ACF ;(2)求证:AC 2=PA•AE ;(3)求PB 和PC 的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA •AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
2021年中考必备:选填压轴分类汇编--圆的解题技巧及真题演练

2021年中考必备-圆选填压轴分类汇编A 类:面积问题技巧:多连半径,探讨线段,角度关系,以角导边1.(2017·湖北省中考模拟)如图,在Rt △AOB 中,∠AOB=90°,OA=2,OB=1,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、 ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( ) A .πB .5π+C .144π- D .104π- 2.(2020·河北省初三期末)如图,以等边ABC ∆的一边AB 为直径的半圆O 交AC 于点D ,交BC 于点E ,若4AB =,则阴影部分的面积是( )A.B.CD .23.(2021·浙江省初三二模)如图,已知矩形ABCD 的周长为16,E 和F 分别为ABC ∆和ADC ∆的内切圆,连接AE ,CE ,AF ,CF ,EF ,若37AECF ABCDS S =四边形矩形,则EF 的长为( ) A.B.C.D.4.(2020·柘城县实验中学初三二模)如图,点O 为Rt ABC 的斜边AB 的中点,90C ∠=︒,30A ∠=︒,以点O 为旋转中心顺时针旋转ABC 得到111A B C △,若2BC =,当11BC AC ∥时,图中弧1BC 所构成的阴影部分面积为(). A.33π-B.33π+C.66π-D.66π+5.(2020·湖北省初三二模)如图,在Rt ABC 中,90C ∠=︒,6AB =,AD 是BAC ∠的平分线,经过A ,D 两点的圆的圆心O 恰好落在AB 上,O 分别与AB 、AC 相交于点E 、F .若圆半径为2.则阴影部分面积( ). A .13πB .43πC .23π D3- 6.(2020·山西省初三月考)如图,在Rt ABC中,90,30,ACB A BC ∠=︒∠=︒=以直角边AC 为直径作O交AB 于点D ,则图中阴影部分的面积是( ) A.3πB.3πC.6π-D.6π7.(2020·山东大学附属中学初三月考)如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为DG ,若AB =2,BC =4,则阴影部分的面积为( )A .2πB .83π C .43π+D .43π+8.(2020·合肥一六八中学初三一模)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ,B 、E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为( )A .9π B C 32π- D 23π-9.(2020·山西省初三零模)如图,在O 的内接正方形ABCD 中,AB =,以点A 为圆心,AD 长为半径车弧,得到BD ,则图中阴影部分的面积为( ) A .1B .12π- C .1π-D .22π-10.(2020·泰安市黄前中学初三一模)如图,菱形ABCD 的边长为2,∠A=60°,以点B 为圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为( )A 2πB πC 2πD .2π+11.(2020·内蒙古自治区初三三模)如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A ,点C ,交OB 于点D ,若3OA =,则阴影部分的面积为_____.12.(2020·山东省初三一模)如图,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若=OA _____.13.(2020·浙江省初三一模)如图,在△ABC 中,∠ACB =90°,D 是BC 边上的点,CD =2,以CD 为直径的⊙与AB 相切于点E .若弧DE 的长为13π,则阴影部分的面积_____.(保留π) 14.(2020·东莞市横沥中学初三二模)如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是_____.15.(2020·广东华侨中学初三其他)如图,如图,在菱形ABCD 中,2AB =,60DAB ∠=︒,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为CC ,则图中阴影部分的面积为_________. 16.(2020·山东省初三二模)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留π) 17.(2020·郑州市第八中学初三其他)如图所示,在Rt △ABC 中,90ACB ∠=︒,30BAC ∠=︒,2BC =,将三角形绕着BC 的中点O 逆时针旋转60︒,点A 的对应点为E ,则图中阴影部分的面积为______. 18.(2019·河南省河南师大附中初三其他)如图,ABC 的内切圆O 与BC,CA,AB 分别相切于点,,D E F ,且5,13AB BC ==,12CA =,则阴影部分的面积为_______ (结果保留π).19.(2020·浙江省初三其他)如图,在菱形ABCD 中,160AB DAB =∠=︒,,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为'CC ,则图中阴影部分的面积为________.20.(2020·广西壮族自治区初三学业考试)如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__.(结果保留)πB 类:最值问题技巧:善于添辅助线围三角形,三边关系求解。
中考热点题型攻略 与圆有关的压轴题 经典模型及精选例题 免费

中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
三、经典模型分析——等腰三角形模型(一)
与圆有关的压轴题偏爱等腰三角形,主要会遇到下以情形:
如图,已知△ABC中,以AB为直径作⊙O交BC于D,交AC于E,
方法指导:
1.由AB为直径,可有两种辅助线作法:连接AD或BE,都可以得到直角:
A
F
O
B
D
C
中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
四、经典考题:
例5:如图,△ABC中AB=BC,以AB为直径的⊙O交AC于D点,直线DP⊥BC于点E.
(1)求证:直线DP是⊙O的切线;
(2)若∠ABC=120°,AB=4cm,求AC的长.
C
D
E
P
A
B
O
中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
思路和方法;
3.增强分析能力、解题能力、应考能力.
中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
二、与圆有关的压轴题的题型特点:
1.一般都与相切有关,一般有1--3问;
2.第1问一般为圆的切线的证明;
2.第2、3问、形式较灵活,主要有求弦长、求直径、求切线长、求
弦心距、求角度、求周长、求面积、证相似、证线段相等、证角
与圆有关的压轴题偏爱等腰三角形,主要会遇到下以情形:
如图,已知△ABC中,以AB为直径作⊙O交BC于D,交AC于E,
方法指导:
A
1.若已知BD=DC,则连接AD、OD
可得:OD是中位线、AD是BC的中垂线、AB=AC
O
E
2.若已知AE=EC,则连接BE、OE
可得:OE是中位线、BE是AC的中垂线、BA=BC
2021年九年级中考数学复习《中考压轴题:圆的综合应用》经典题型提升练习(四)

2021年中考数学复习《中考压轴题:圆的综合应用》经典题型提升练习(四)1.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE 平分∠BAC交边BC与点E,经过A、D、E三点的即的圆心F恰好在y轴上,⊙F与y轴交于另一点G.(1)求证:BC是⊙F的切线;(2)试探究线段AG、AD、CD之间的关系,并证明;(3)若点A(O,﹣1)、D(2,0),求AB的长.2.如图,在Rt△ABC中,∠ABC=90°,⊙O(圆心O在△ABC内部)经过B,C两点,交线段AC于点D,直径BH交AC于点E,点A关于直线BD的对称点F落在⊙O上.连结BF.(1)求证:∠C=45°;(2)在圆心O的运动过程中;①若tan∠EDF=,AB=6,求CE的长;②若点F关于AC的对称点落在△BFE边上时,求点的值.(直接写出答案);(3)令⊙O与边AB的另一个交点为P,连结PC,交BD于点Q,若PC⊥BF,垂足为点G,求证:BD=AD+CE.3.如图①,△ABC和△CDE都是等腰直角三角形,∠ACB=∠DCE=90°,且点A在ED的延长线上,以DE为直径的⊙O与AB交于G、H两点,连接BE.(1)求证:BE是⊙O的切线;(2)如图②,连接OB、OC,若tan∠CAD=,试判断四边形BECO的形状,请说明理由;(3)在(2)的条件下,若BF=,请你求出HG的长.4.如图1,AB为半圆O的直径,半径OP⊥AB,过劣弧AP上一点D作DC⊥AB于点C.连接DB,交OP于点E,∠DBA=22.5°.(1)若OC=2,则AC的长为;(2)试写出AC与PE之间的数量关系,并说明理由;(3)连接AD并延长,交OP的延长线于点G,设DC=x,GP=y,请求出x与y之间的等量关系式.(请先补全图形,再解答).5.如图,在△ABC中,AB=AC=4,以AB为直径的⊙O交BC于点D,交AC于点E,点P是AB的延长线上一点,且∠PDB=∠A,连接DE、OE.(1)求证:PD是⊙O的切线;(2)填空:①当∠P的度数为时,四边形OBDE是菱形;②当∠BAC=45°时,△CDE的面积为.6.如图,△OAB中,OA=OB=5cm,AB长为8cm,以点O为圆心6cm为直径的⊙O交线段OA 于点C,交直线OB于点E、D,连接CD,EC.(1)求证:△OCD∽△OAB;(2)求证:AB为⊙O的切线;(3)在(2)的结论下,连接点E和切点,交OA于点F求证:OF•CE=OD•CF.7.已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点,以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,连接EF交CD于点G.(1)如图1,如果BC=2,求DE的长;(2)如图2,设BC=x,=y,求y关于x的函数关系式及其定义域;(3)如图3,连接CE,如果CG=CE,求BC的长.8.已知:在矩形ABCD中,AB=a(a为定值),连接AC,点O是AC上的一个动点,以AO 为半径的⊙O与AD交于点P.(1)如图(a),当∠DCP=∠DAC时,求证:PC是⊙O的切线;(2)在(1)的条件下,若△APC是等腰三角形,①请你判断⊙O与BC的位置关系,并说明理由;②求⊙O的半径(用含a的代数式表示);(3)如图(b),若BC=AB=a,且点O运动到AC与BD的交点处,在弧CD上任取一点Q,连接AQ、BQ分别交BD、AC于M,N.求证:四边形ABNM的面积为定值.9.如图,△ABC内接于⊙O,AB=BC,AO⊥BC于D.(1)求证:△ABC是等边三角形;(2)若AB=1,P是劣弧上一个动点,∠APC=60°(点P与B、C不重合),PA交BC于点E,设AE=x,EP=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,令∠PAC=α,∠APC=β,当y取何值时,sin2α+sin2β=1.10.如图①,已知A、B是⊙O1上的两点,直线l与⊙O1相交于B、C两点,过A点作⊙O1的切线AO,AO⊥l交于点O,已知BC=8,⊙O1的半径为5.(1)证明:∠ABO1=∠ABO.(2)求AB的长.(3)如图②,以AO所在直线为x轴,以直线l为y轴,建立如图所示的直角坐标系,过A、B两点作⊙O2与y轴的正半轴交于点M,与O1B的延长线交于点N,当⊙O2的大小变化时,BM﹣BN的值是否改变?若改变,请说明理由.若不变,请求出该值.参考答案1.(1)证明:连接EF,如图1所示:∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:AG=AD+2CD;理由如下:作FR⊥AD于R,连接DF,如图2所示:则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∠EFR=90°,∵FR⊥AD,∴AR=RD=AD,∴EF=RD+CD=AD+CD,∵AF=EF,∴AF=AD+CD,∴AG=2AF=AD+2CD;(3)解:设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,∴FA=FG=FE=,∵点A(O,﹣1)、D(2,0),∴AD==,∴AR=,∵∠EFR=90°,∴∠BFE+∠AFR=90°,∵∠BFE+∠EBF=90°,∴∠EBF=∠AFR,∵∠BEF=∠FRA=90°,∴△BEF∽△FRA,∴=,即=,解得:BF=,∴AB=AF+BF=+=.2.(1)证明:∵点A,F关于直线BD对称,∵∠BFD=∠C,∴∠A=∠C,∵∠ABC=90°,∴∠C=45°;(2)①解:∵点A,F关于直线BD对称,∴AD=DF,AB=FB,∵∠A=∠C=45°,∴AB=BC=FB=6,∴,∵BH是直径,∴由圆的对称性可知,△BFE≌△BCE,∴∠BFE=∠C=∠BFD=45°,FE=CE,∴∠DFE=90°,∵tan∠EDF=,AB=6,∴设DF=AD=3a,则EF=CE=4a,DE=5a,∵AC==6,∴AC=3a+4a+5a=6,解得,a=,∴CE=4a=2;②如图1,当点F关于AC的对称点落在BF边上时,连接DO,设FF'交AC于点M,则AC垂直平分FF',由(1)知,∠A=∠C=45°,∠ABC=90°,∴BA=BC,∠ABM=∠CBM=×90°=45°,∵点A,F关于直线BD对称,∴AD=DF,AB=FB,∴△ABD≌△FBD(SSS),∴∠ABD=∠FBD,由(2)知,△BFE≌△BCE,∴∠FBE=∠CBE,∴∠ABD=∠FBD=∠FBE=∠CBE=22.5°,∴∠DBE=∠DBF+∠EBF=45°,∵OD=OB,∴∠OBD=∠ODB=45°,∴∠DOB=90°,在△BDM与△BEM中,∠BDM=∠BEM=90°﹣22.5°=67.5°,∴BD=BE,在等腰Rt△BOD中,设OB=OD=r,则BD=r,∴BE=r,OE=(﹣1)r,∴==﹣1;如图2,当点F关于AC的对称点落在BE边上时,∵∠DF'E=∠DOE=90°,∴点F'与点O重合,连接OF,则OD=OF=DF,∴△DOF为等边三角形,∴∠ODF=60°,由对称性知,∠ODE=∠FDE=30°,在Rt△DOE中,tan∠ODE==tan30°=,∴=;综上所述,的值为﹣1或;(3)如图3,连接PD,FC,FC交BH于点M,∵∠ABC=90°,∴PC⊥BF,∴CF=BC=BF,∴△FBC是等边三角形,∴BG=CM=BF,∠QGB=∠CME=90°,∠DBF=∠DCF,∴△QBG≌△ECM(ASA),∴BQ=CE,∵∠PDA=90°,∠A=45°,∴DP=DA=DF,∴,∵∠DPC=(),∠DQP=∠QDC+∠QCP=(),∴∠DPC=∠DQP,∴DQ=DP=AD,∴BD=AD+CE.3.(1)证明:∵△ABC和△CDE都是等腰直角三角形,∴BC=AC,EC=DC,∴∠DCE=∠ACB=90°,∴∠DCE﹣∠FCD=∠ACB﹣∠FCD,∴∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴∠CBE=∠CAD,∴∠ABE+∠BAE=90°,∴∠AEB=90°,∴BE⊥OE,又∵OE是⊙O的半径,∴BE是⊙O的切线;(2)四边形BECO是平行四边形,理由如下:∵点O是ED的中点,∴CO是DE边上的中线,∵△CDE是等腰三角形,∴CO是DE边上的高线,∴CO⊥DE,∴∠COE=∠AOC=90°,∵∠AEB=90°,∴∠AEB=COE,∴CO∥BE,∵在Rt△AOC中,tan∠CAD=,∴=,∴AO=2CO,∴DO=CO,∴AD=CO,∵△BCE≌△ACD,∴BE=AD,∴BE=CO,∴四边形BECO是平行四边形;(3)∵四边形BECO是平行四边形,∴CF=BF=,∴BC=2,∴AC=BC=2,∴AB==2,设OC=x,则AO=2x,∵在Rt△AOC中,OC2+AO2=AC2,∴x2+(2x)2=(2)2,解得,x=2(取正值),∴OC=BE=2,AO=4,如图3,过点O作OM⊥AB于点M,连接OG,∴∠AMO=90°,HG=2MG,∴∠AMO=∠AEB=90°,∵∠MAO=∠BAE,∴△MAO∽△BAE,∴=,∴=,∴OM=,在Rt△MOG中,OM2+MG2=OG2,∴()2+MG2=22,∴MG=(取正值),∴HG=2MG=.4.解:(1).∵∠DBA=22.5°∴∠DOC=45°∵OC=2∴OD=∴AC=OA﹣OC=(2)连接AD,DP,OD,过点D作DF⊥OP,垂足为点F.∵∠DCA=∠DFP=90°,AD=DP,CD=DF∴Rt△ACD≌Rt△DFP(HL)∴AC=PF∵∠A=∠CDB=∠OEB=∠DEF,∠ACD=∠DFE=90°,CD=DF ∴Rt△ACD≌Rt△DEF(HL)∴AC=EF∴PE=2AC(3)如图所示,由∠DCO=90°,∠DOC=45°得OD==∵∠ADB=90°,点O是AB中点∴AB=2OD=∵∠A=∠GED,∠GDE=∠ADB,AD=DE∴△DGE≌△DBA(ASA)∴GE=AB=x∵PE=2AC∴PE=2()∴GP=GE﹣PE=即:y=2x5.解:(1)如图,连接OD∵OB=OD,∠PDB=∠A∴∠ODB=∠ABD=90°﹣∠A=90°﹣∠PDB ∴∠ODB+∠PDB=90°∴∠ODP=90°又∵OD是⊙O的半径∴PD是⊙O的切线(2)①30°若四边形OBDE为菱形,则OB=BD=DE=EO=OD ∴△OBD为等边三角形∴∠ABD=∠A=60°∴∠PDB=30°∴∠P=30°即当∠P为30°时,四边形OBDE为菱形②如图所示∵AO=OE=2,∠AOE=90°∴AE=∴EC=4﹣∵∠BAC=45°∴∠EDB=135°∴∠EDC=45°设DF=EF=b,FC=a∵△EFC∽△ADC∴∴∵a2+b2=(4﹣)2解得a=()b,b2=4﹣2S===b2=△CDE6.证明:(1)∵OC=OD,OA=OB,∴=,又∵∠COD=∠AOB,∴△OCD∽△OAB;(2)过点O作OG⊥AB,垂足为G,∴∠OGA=∠OGB=90,∵OA=OB,∴AG=BG=4,在Rt△AOG中,OA=5,AG=4,∴OG==3,∵⊙O的直径为6,∴半径r为3,∴OG=r=3,又OG⊥AB,∴AB为⊙O的切线;(3)∵OA=OB,AG=BG,∴∠AOG=∠BOG,∵OE=OC,∴∠OEC=∠OCE,∵∠AOB=∠OEC+∠OCE,∴∠AOG=∠OCE,∴OG∥EC,∴△FOG∽△FCE,∴=,∴OF•CE=OD•CF,∵OG=OD,∴OF•CE=OD•CF.7.解:(1)如图1中,连接CE.在Rt△ACB中,∵∠ACB=90°,AC=1,BC=2,∴AB==,∵CD是⊙Q的直径,∴∠CED=90°,∴CE⊥AB,∵BD=AD,∴CD=AB=,∵•AB•CE=•BC•AC,∴CE=,在Rt△CDE中,DE===.(2)如图2中,连接CE,设AC交⊙Q于K,连接FK,DF,DK.∵∠FCK=90°,∴FK是⊙Q的直径,∴直线FK经过点Q,∵CD是⊙Q的直径,∴∠CFD=∠CKD=90°,∴DF⊥BC,DK⊥AC,∵DC=DB=DA,∴BF=CF,CK=AK,∴FK∥AB,∴=,∵BC=x,AC=1,∴AB=,∴DC=DB=DA=,∵△ACE∽△ABC,∴可得AE=,∴DE=AD﹣AE=﹣,∴=,∴=,∴y=(x>1).(3)如图3中,连接FK.∵CE=CG,∴∠CEG=∠CGE,∵∠FKC=∠CEG,∵FK∥AB,∴∠FKC=∠A,∵DC=DA,∴∠A=∠DCA,∴∠A=∠DCA=∠CEG=∠CGE,∴∠CDA=∠ECG,∴EC=DE,由(2)可知:=﹣,整理得:x2﹣2x﹣1=0,∴x=1+或1﹣(舍弃),∴BC=1+.8.解:(1)证明:连接OP,如图a,∵OA=OP,∴∠DAC=∠APO,∵∠DCP=∠DAC,∴∠DCP=∠APO,∵四边形ABCD是矩形,∴∠D=90°,CD=AB=a,∴∠DCP+∠DPC=90°,∴∠OPC=180°﹣∠DPC﹣∠APO=180°﹣∠DPC﹣∠DCP=90°,∴OP⊥PC,∴PC是⊙O的切线;(2)①BC是⊙O的切线,理由如下:如图a﹣1,过点O作OE⊥BC于E,∵△APC是等腰三角形,∴AP=PC,∴∠PAC=∠PCA,∵AD∥BC,∴∠PAC=∠ACE=∠PCA,又∵∠OPC=∠OEC=90°,OC=OC,∴△OPC≌△OEC(AAS),∴OP=OE,又∵OE⊥BC,∴BC是⊙O的切线;②∵AP=PC,∴∠DAC=∠ACP,∵∠DAC+∠ACD=∠DAC+∠ACP+∠DCP=90°,∴∠DAC=∠DCP=∠ACP=30°,∵在Rt△CDP中,cos∠DCP==,∴PC==a,∵Rt△OPC中,tan∠OCP==,∴OP=PC=,∴⊙O半径为;(3)连接DQ、CQ,如图b,∵矩形ABCD中,BC=AB=a,∴矩形ABCD是正方形,∴AB=AD=BC=a,∠AOB=∠AOM=∠BON=90°,∠ADM=∠BCN=45°,∴AC=BD=a,OA=OB=a,AC、BD为⊙O直径,∵Q在弧CD上运动,∴∠AQB=∠AOB=45°,∵∠ADM=∠AQB=45°,∠DAM=∠QBM,∴△ADM∽△BQM,∴,∴BM=,∵∠BCN=∠AQB=45°,∠CBN=∠QAN,∴△BCN∽△AQN,∴,∴AN=,∵AC、BD为⊙O直径,∴∠AQC=∠BQD=90°,∵∠AOM=∠AQC=90°,∠OAM=∠QAC,∴△AOM∽△AQC,∴,∴AM•AQ=AO•AC=a2,∵∠BON=∠BQD=90°,∠OBN=∠QBD,∴△BON∽△BQD,∴,∴BN•BQ=BO•BD=a2,∴S四边形AMNB =S△AMB+S△NMB=MB•OA+MB•ON=MB(OA+ON)=MB•AN=••=•=•=a2,∴四边形AMNB的面积为定值.9.(1)证明:∵△ABC内接于⊙O,AO⊥BC,∴BD=CD=BC,∴AB=AC,∵AB=BC,∴AB=BC=AC,∴△ABC是等边三角形;(2)解:由(1)得:△ABC是等边三角形,∴AC=AB=BC=1,∠ABC=∠ACB=60°,∴BD=CD=,AD=BD=,∵∠APC=∠ABC,∴∠ACB=∠APC,又∵∠CAE=∠PAC,∴△ACE∽△APC,∴=,∴AE×AP=AC2=1,即x(x+y)=1,∴y=又∵AD<AE<AB,∴<x<1;(3)解:∵∠APC=∠B=60°,∠PAC=α,∠APC=β,∴sin2α=sin2∠APC=()2=,∵sin2α+sin2β=1.∴sin2β=1﹣=,∴sinβ=,∴∠PAC=30°,∴点E与D重合,如图所示:连接OB,则OB平分∠ABC,∴∠OBD=30°,∵AD⊥BC,∴OD=BD=,OP=OA=OB=2OD=,∴PD=PE=OP﹣OD=﹣=;即y取时,sin2α+sin2β=1.10.解:(1)连接O1A,过O1作EO1⊥BC于E,∵EO1⊥BC,∴BE=BC=4,∵O1B=5,∴O1E===3,∵过A点作⊙O1的切线AO,∴AO1⊥AO,且AO⊥l,EO1⊥BC,∴四边形OEO1A是矩形,∴AO=O1E=3,AO1∥OE,AO1=EO=5,∴∠O1AB=∠ABO,∵O1A=O1B,∴∠O1AB=∠O1BA,∴∠ABO1=∠ABO;(2)∵OB=OE﹣BE=5﹣4=1,∴AB===;(3)在MB上截取MG=NB,连接AM,AN,AG,MN,∵四边形ABNM是圆内接四边形,=∠NMA,∴∠ABO1=∠ABO,∠ABO=∠ANM∵∠ABO1∴∠AMN=∠ANM,∴AM=AN,∵=,∴∠AMG=∠ANB,且AM=AN,MG=NB,∴△AMG≌△ANB(SAS)∴AG=AB,且AO⊥BC,∴BO=GO=1,∴BG=2,∴BM﹣BN=BM﹣MG=BG=2,∴BM﹣BN的值不变.。
2021年九级中考数学压轴题满分训练 –几何之圆的专题(三)

2021年九级中考数学压轴题满分训练–几何之圆的专题(三)1.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=,试求的值.2.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF 交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连接AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.3.如图,A是以BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G是AD的中点,连接并延长CG与BE相交于点F,连接并延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线;(3)若FG=EF=3,求圆O的半径和BD的长度.4.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG是⊙O的切线;(2)若DE=4,BE=5,求DI的长.5.如图,在△ABC中,AB=AC,以边BC为直径作⊙O,交AC于点D,连接AO,交BD于点E,交⊙O于点F,连接DF.(1)求证:∠CAO=∠CBD;(2)求证:=;(3)当△DEF为等腰三角形时,若BC=4,求△DEF的面积.6.如图,AB为⊙O的直径,C、D是⊙O上的点,P是⊙O外一点,AC⊥PD于点E,AD平分∠BAC.(1)求证:PD是⊙O的切线;(2)若DE=2,∠BAC=60°,求⊙O的半径.7.如图,在锐角三角形ABC中,AB=AC,⊙O是△ABC的外接圆,连接AO,BO,延长BO交AC于点D.(1)求证:AO平分∠BAC;(2)若⊙O的半径为5,AD=6,设△ABO的面积为S1,△BCD的面积为S2,求的值.(3)若=m,求cos∠BAC的值(用含m的代数式表示).8.如图,在△ABC中,AC=BC,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)若BC=4,∠A=30°,求的长.(结果保留π)9.如图,AB是⊙O的直径,弦CD⊥AB,E是CA延长线上的一点,连接DE交⊙O于点F,连接AF,CF.(1)若的度数是40°,求∠AFC的度数;(2)求证:AF平分∠CFE;(3)若AB=5,CD=4,CF经过圆心,求CE的长.10.如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E.(1)证明:ED是⊙O的切线;(2)若⊙O半径为3,CE=2,求BC的长.11.如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.12.如图1,AB是⊙O的直径,PB,PC是⊙O的两条切线,切点分别为B,C.(1)求证:∠CPB=2∠ABC;(2)延长BA、PC相交于点D(如图2),设⊙O的半径为2,sin∠PDB=,求PC 的长.13.如图1,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点O是边AC上一个动点(不与A、C重合),点D为射线AB上一点,且OA=OD,以点C为圆心,CD为半径作⊙C,设OA=x.(1)如图2,当点D与点B重合时,求x的值;(2)当点D在线段AB上,如果⊙C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;(3)在点O的运动过程中,如果⊙C与线段AB只有一个公共点,请直接写出x的取值范围.14.如图,在矩形ABCD中,点O在对角线AC上,以O为圆心,OC的长为半径的⊙O 与AC,CD分别交于点E,F,且∠DAF=∠BAC.(1)求证:直线AF与⊙O相切;(2)若tan∠DAF=,AB=4,求⊙O的半径.15.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.参考答案1.解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴=,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=,设OF=5x,则DF=12x,∴OD==13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE==4x,BE==6x,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠PEF=∠AGF,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH=AH,过点H作HK⊥PA于点K,∴PK=AK,∴,∵tan∠P=,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE=HG=36a﹣13a=23a,∴AG=GH﹣AH=23a﹣13a=10a,∴.2.解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵=,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠FAC=∠EBC=∠ABC=45°,∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED﹣∠FED=∠FAC﹣∠FAD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴,∵在Rt△ABG中,AB=8,∠ABG=45°,∴AG=,在Rt△ADE中,AE=AD,∴,∴,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=,∴ED=AD=,∴CE=CD+DE=,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=CE=,∴DM=DE﹣EM=,∵∠FDM=45°,∴FM=DM=,∴S△DEF=DE•FM=.3.解:(1)∵EB是切线,AD⊥BC,∴∠EBC=∠ADC=90°,∴AD∥EB,∴,∵G是AD的中点,∴AG=GD,∴EF=FB;(2)证明:连接AO,AB,∵BC是⊙O的直径,∴∠BAC=90°.在Rt△BAE中,由(1)知,F是斜边BE的中点,∴AF=FB=EF.∴∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是⊙O的切线,∴∠EBO=90°.∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA是⊙O的切线.(3)如图2,连接AB,AO,∵BC是直径,∴∠BAC=∠BAE=90°,∵EF=FB,∴FA=FB=FE=FG=3,过点F作FH⊥AG交AG于点H,∵FA=FG,FH⊥AG,∴AH=HG,∵∠FBD=∠BDH=∠FHD=90°,∴四边形FBDH是矩形,∴FB=DH=3,∵AG=GD,∴AH=HG=1,GD=2,FH===2,设半径为r,在Rt△ADO中,∵AO2=AD2+OD2,∴r2=42+(r﹣2)2,∴r=3.4.(1)证明:连接OD.∵点I是△ABC的内心,∴∠CBD=∠ABD,∴=,∴OD⊥AC,∵DG平分∠ADF,∴∠ADG=∠ADF,∠CBD=∠ABC,∵四边形ABCD是圆内接四边形,∴∠ADF=∠ABC,∴∠ADG=∠CBD,∵∠CAD=∠CBD,∴∠ADG=∠CAD,∴DG∥AC;∴DG是⊙O的切线;(2)解:∵点I是△ABC的内心,∴∠BAI=∠CAI,∵∠EIA=∠IBA+∠IAB=∠CAD+∠CAI,即∠DIA=∠DAI,∴DA=DI,∵∠DAE=∠DBA,∠ADE=∠BDA,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6.5.(1)证明:∵AB=AC,OB=OC,∴∠AOC=90°,∴∠CAO+∠ACO=90°,∵BC是⊙O的直径,∴∠BDC=90°,∴∠CBD+∠BCD=90°,∴∠CAO=∠CBD;(2)证明:∵AB=AC,OB=CO,∴∠BAO=∠CAO,又∵∠CAO=∠CBD,∵∠BAO=∠EBO,又∵∠AOB=∠BOE,∴△AOB∽△BOE,∴,又∵OB=OF,∴,∴,∴,即;(3)解:∵∠BDF=∠BOF,∠BOF=90°,∴∠BDF=45°,∴∠ADF=45°,又∵∠DFE=∠ADF+∠FAD,∴∠DFE>45°,连接BF,∵OB=OF,∴∠OBF=∠OFB=45°,又∵∠BEO=∠OFB+∠FBE,∴∠BEO>45°,∴∠DEF=∠BEO>45°,在△DEF中,∠EDF=45°,∠DFE>45°,∠DEF>45°,∴DE≠EF,DF≠EF,∴若△DEF是等腰三角形,则只有一种情况:DE=DF.∴∠DFE=∠DEF,连接EC,FC,∵∠DEC+2∠BEO=180°,∴∠DEC+2∠DEF=180°,又∵∠EDF+2∠DEF=180°,∴∠DEC=∠EDF=45°,又∵∠EDC=90°,∴∠DCE=45°,∴DE=DC,又∵∠ADE=∠BDC=90°,∠EAD=∠CBD,∴△ADE≌△BDC(ASA),∴AE=BC=4,又∵OF=BC=2,,∴,∴EF=4﹣2或EF=4+2(大于2,舍去),∴EO=2﹣2,过点D作DG⊥EF于点G,∴EG=EF=2﹣,DG∥BC,∴△DGE∽△BOE,∴,∴,∴DG=,∴==2﹣2 6.(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAE,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠DAE,∴OD∥AE,∵AC⊥PD,∴OD⊥PE,∵OD是⊙O的半径,∴PD是⊙O的切线;(2)解:连接BD,∵AD平分∠BAC,∠BAC=60,∴∠BAD=∠DAE=30°,∵AC⊥PE,DE=2,∴AD=2DE=4,∵AB为⊙O的直径,∴∠ADB=90°,∴AB=2BD,设BD=x,则AB=2x,∵BD2+AD2=AB2,∴x2+42=(2x)2,∴,∴BD=,AB=,∴AO=,即⊙O的半径为.7.(1)证明:过点O作OM⊥AB于点M,作ON⊥AC于点N,∵AB=AC,∴OM=ON,∴OA平分∠BAC.(2)解:延长AO交BC于点Q,延长AQ至P,使PQ=OQ,连接CP、CO,∵AB=AC且OA平分∠BAC,∴AP⊥BC,∴∠BQO=∠CQP=90°,BQ=CQ,∴△BQO≌△CQP(SAS),∴∠OBQ=∠PCQ,CP=BO=5,S△BOQ=S△OPQ,∴BO∥CP,∵OA=OB,∴∠OBA=∠BAO=∠DAO,∴△ADO~△BDA,∴,解得OD=4,∵BO∥CP,∴△AOD~△APC,∴,∴S1=,S2=S四边形CDOP=S△ACF﹣S△AOD=,∴.(3)由(2)同理,设CP=BO=AO=r,∴=m,∴PQ=PO=,∵∠BAC=2∠BAO=∠BAO+∠ABO=∠AOD=∠P,∴.8.(1)证明:连接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)解:∵BC=4,∴OB=2,∵∠B=∠A=30°,∴∠DOC=60°,∴的长为=.9.(1)解:如图1中,连接OD,AD,设AB交CD于H.∵的度数是40°,∴∠BOD=40°,∴∠DAB=∠DOB=20°,∵AB⊥CD,∴∠AHD=90°,∴∠ADH=90°﹣∠DAB=70°,∴∠AFC=∠ADH=70°.(2)证明:∵AB是直径,AB⊥CD,∴=∴∠ACD=∠ADC,∵∠ACD+∠AFD=180°,∠AFD+∠AFE=180°,∴∠AFE=∠ACD,∵∠AFC=∠ADC=∠ACD,∴∠AFC=∠AFE,即AF平分∠CFE.(3)解:如图2中,设AB交CD于H.∵AB是直径,AB⊥CD,∴CH=DH=2,∵OC=,∠OHC=90°,∴OH===,∴AH=OH+OA=4,∴AC===2,∵CF是直径,∴∠CDF=∠AHC=90°,∴AH∥DE,∵CH=HD,∴AC=AE,∴CE=2AC=4.10.(1)证明:如图1,连接OD.∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴AE∥OD,∵DE⊥AE,∴ED⊥DO,∵点D在⊙O上,∴ED是⊙O的切线;(2)解:如图2,过点O作OK⊥AC,∵∠E=∠ODE=∠OKE=90°,∴四边形OKED为矩形,AK=KC,∴EK=OD=3,∴AK=CK=EK﹣CE=3﹣2=1,∴AC=2,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠ACB=90°,AC2+BC2=AB2,∴BC===4,答:BC的长为4.11.(1)证明:∵∠CDE=∠CDF=60°,∴∠CDE=∠EDF=60°,∵四边形ABCD内接于⊙O,∴∠CDE=∠ABC=60°,由圆周角定理得,∠ACB=∠ADB=∠EDF=60°,∴△ABC是等边三角形;(2)解:DA+DC=DB,理由如下:在BD上截取PD=AD,∵∠ADP=60°,∴△APD为等边三角形,∴AD=AP,∠APD=60°,∴∠APB=120°,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,∴DB=BP+PD=DA+DC.12.解:(1)证明:连接OP,∵PB,PC是⊙O的两条切线,∴PC=PB,∠CPO=∠BPO,∴PE⊥BC,∴∠PEB=90°,∴∠EPB+∠PBE=90°,∵AB为直径,PB是⊙O的切线,∴∠ABP=90°,∴∠PBE+∠ABC=90°,∴∠EPB=∠ABC,∴∠CPB=2∠ABC;(2)连接OC,∵PC是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵⊙O的半径为2,sin∠PDB=,∴sin∠CDO=,∴OD=3,∴DC===,设PC=x,方法一:∵BD2+PB2=PD2,∴,解得x=2.∴PC=2.方法二:∵sin∠PDB===,∴x=2.13.解:(1)如图1中,在Rt△ABC中,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∵OA=OB=x,∴OC=4﹣x,在Rt△BOC中,∵OB2=BC2+OC2,∴x2=32+(4﹣x)2,∴.(2)如图2,过点O,C分别作OH⊥AB,CG⊥AB,垂足为点H,G.∵OH⊥AD,CG⊥AB,∴AH=DH,DG=EG,又∵在Rt△ABC中;∴在Rt△OHA中,∴,又∵∠AGC=∠ACB=90°,∠A=∠A,∴△AGC∽△ACB,∴,∴,又∵AE=y,∴,∴,又∵DG+GE+EA=AD,即.化简得(2<x≤).(3)①如图3中,当⊙C经过点B时,易知:∴,∴,∴,∴.观察图象可知:当时,⊙C与线段AB只有一个公共点.②如图4中,当⊙C与AB相切时,CD⊥AB,易知OA=2,此时x=2.③如图5中,当时,⊙C与线段AB只有一个公共点.综上所述,当或x=2或时,⊙C与线段AB只有一个公共点.14.(1)证明:连接OF.∵OC=OF,∴∠OCF=∠OFC.∵四边形ABCD是矩形,∴∠B=∠D=∠DCB=90°.又∵∠DAF=∠BAC,∴∠AFD=∠ACB,∵∠ACB+∠ACD=90°,∴∠AFD+∠OFC=90°.∴∠AFO=90°.∴OF⊥AF于F.∴直线AF与⊙O相切;(2)解:∵tan∠DAF=,∠DAF=∠BAC,∴tan∠BAC=.∵∠B=90°,∴tan∠BAC==.∵AB=4,∴BC=2,∴.又∵四边形ABCD是矩形,∴BC=AD=2.又∵∠D=90°,tan∠DAF=,∴DF=AD•tan∠DAF=2×=2.∴AF=2.设⊙O的半径为r,在Rt△AFO中,∠AFO=90°.∴OA2=OF2+AF2.即(2﹣r)2=r2+12.解得r=.∴⊙O的半径为.15.证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.。
2021年全国中考数学真题分类汇编--圆:与圆有关的计算(含答案)

中考真题分类汇编(圆)----与圆有关的计算一、选择题1. (2021•山西)如图,正六边形 ABCDEF 的边长为 2,以 A 为圆心,AC 的长 为半径画弧,得BC ,连接 AC 、AE ,则图中阴影部分的面积为( )A. 2πB. 4πC. 33πD. 233π解:过B 点作AC 垂线,垂直为G ,根据正六边形性质可知,30CAB BCA ∠=∠=︒,∴22222=222123AC AG AB GH =⨯-=⨯-=,∴S 扇形=260(23)2360ππ⨯⨯=, 故选:A .2. (2021•河北省)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作:①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【分析】如图,连接EM,EN,MF.NF.根据矩形的判定证明四边形MENF是矩形,再说明∠MOF≠∠AOB,可知(Ⅱ)错误.【解答】解:如图,连接EM,EN,MF.NF.∵OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图象可知∠MOF≠∠AOB,∴S扇形FOM≠S扇形AOB,故(Ⅱ)错误,故选:D.3.(2021•四川省成都市)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D4.(2021•湖北省荆州市)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC 长为半径画,点P为菱形内一点,连接P A,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为()A.B.C.2πD.【分析】连接AC,延长AP,交BC于E,根据菱形的性质得出△ABC是等边三角形,进而通过三角形全等证得AE⊥BC,从而求得AE、PE,利用S阴影=S扇形ABC﹣S△P AB﹣S△PBC即可求得.【解答】解:连接AC,延长AP,交BC于E,在菱形ABCD中,∠D=60°,AB=2,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,,∴△APB≌△APC(SSS),∴∠P AB=∠P AC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=BC=1,在Rt△ABE中,AE=AB=,∴AP=﹣1,∴S阴影=S扇形ABC﹣S△P AB﹣S△PBC=﹣(﹣1)×1﹣=π﹣,故选:A.5.(2021•四川省广元市)如图,在边长为2的正方形ABCD中,AE是以BC为直径的半圆的切线,则图中阴影部分的面积为()A. 32π+B. 2π- C. 1 D.52π-【答案】D【解析】【分析】取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∠OF A=∠OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC 的中点O ,设AE 与⊙O 的相切的切点为F ,连接OF 、OE 、OA ,如图所示:∵四边形ABCD 是正方形,且边长为2,∴BC=AB =2,∠ABC=∠BCD =90°,∵AE 是以BC 为直径的半圆的切线,∴OB =OC =OF =1,∠OF A =∠OFE =90°,∴AB =AF =2,CE =CF ,∵OA =OA ,∴Rt △ABO ≌Rt △AFO (HL ),同理可证△OCE ≌△OFE ,∴,AOB AOF COE FOE ∠=∠∠=∠,∴90AOB COE AOB BAO ∠+∠=︒=∠+∠,∴COE BAO ∠=∠,∴ABO OCE ∽, ∴OC CE AB OB=, ∴12CE =, ∴15222222ABO OCE ABCE S S S S S S ππ-=-=+-=+-=阴影半圆半圆四边形; 6.(2021•四川省广元市)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90︒的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A. 4πB. 24C. 12D. 1【答案】B【解析】【分析】先计算BC 的长度,然后围成的圆锥底面周长等同于BC 的长度,根据公式计算即可.【详解】解:如下图:连接BC ,AO ,∵90BAC ∠=,∴BC 是直径,且BC=2,又∵AB AC =,∴45ABC ACB ∠=∠=,,AO BC ⊥又∵sin 45OA AB ︒=,112OA BC == , ∴ 12sin 452OA AB ===︒ ∴BC 的长度为:9022=1802π⨯,∴围成的底面圆周长为22π, 设圆锥的底面圆的半径为r , 则:222r ππ=, ∴212=224r ππ=⨯. 故选:B7. (2021•浙江省衢州卷) 已知扇形的半径为6,圆心角为150︒.则它的面积是( )A. 32πB. 3πC. 5πD. 15π【答案】D8. (2021•遂宁市) 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°, 则阴影部分的面积为( )A. 16123π-B. 16243π-C. 20123π-D. 20243π-【答案】A【解析】 【分析】连接AD ,连接OE ,根据圆周角定理得到∠ADB =90°,根据等腰三角形的性质得到∠BAC =2∠DAC =2×15°=30°,求得∠AOE =120°,过O 作OH ⊥AE 于H ,解直角三角形得到OH 3AH =6,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接AD ,连接OE ,∵AB 是直径,∴∠ADB =90°,∴AD ⊥BC ,∴∠ADB =∠ADC =90°,∵DF ⊥AC ,∴∠DFC =∠DF A =90°,∴∠DAC =∠CDF =15°,∵AB =AC ,D 是BC 中点,∴∠BAC =2∠DAC =2×15°=30°,∵OA =OE ,∴∠AOE =120°,过O 作OH ⊥AE 于H ,∵AO 3∴OH =12AO 3, ∴AH 3=6,∴AE =2AH =12,∴S 阴影=S 扇形AOE -S △AOE =(212043112233602π⨯-⨯⨯163π=-故选:A .9. (2021•四川省自贡市)如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,OPQ △绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部份)面积的最大值是( )A. 23πB. 12π C. 1116π D. 2132π 【答案】A【解析】【分析】根据题意得OQM OMN S S S =-阴影扇形扇形,设P (a ,2-2a ),则Q (a ,3-a ),利用扇形面积公式得到()21325?8S a a π=-++阴影,利用二次函数的性质求解即可.【详解】解:如图,根据旋转的性质,OPQ OMN ≅,∴OPQ OMN S S =,则OMN OPQ OQM OPN S S S S S =+--阴影扇形扇形OQM OPN S S =-扇形扇形,∵点P 在直线22y x =-+上,点Q 在直线3y x =-+上,且PQ ∥y 轴,设P (a ,2-2a ),则Q (a ,3-a ),∴OP 2=()22222584a a a a +-=-+,OQ 2=()2223269a a a a +-=-+, OQM OPN S S S =-阴影扇形扇形2245?45?360360OQ OP ππ=- ()21325?8a a π=-++, 设22116325333y a a a ⎛⎫=-++=--+ ⎪⎝⎭, ∵30-<,∴当13a =时,y 有最大值,最大值为163, ∴S 阴影的最大值为1612383ππ⨯=. 故选:A .10. (2021•青海省)如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( )A .πm 2B .πm 2C .πm 2D .πm 2【分析】小羊的最大活动区域是一个半径为5、圆心角为90°和一个半径为1、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【解答】解:大扇形的圆心角是90度,半径是5,所以面积==π(m 2);小扇形的圆心角是180°﹣120°=60°,半径是1m ,则面积==(m 2),则小羊A 在草地上的最大活动区域面积=π+=π(m 2). 故选:B .11. (2021•浙江省湖州市)如图,已知在矩形ABCD 中,AB =1,BC =3,点P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为C 1,当点P 运动时,点C 1也随之运动.若点P 从点A 运动到点D ,则线段CC 1扫过的区域的面积是A .πB .334π+C .332D .2π 【答案】B【解析】如图,C 1运动的路径是以B 为圆心,3为半径,圆心角为120°的弧上运动,故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以3为边长的等边三角形,故S =22120(3)333(3)36044ππ+⨯=+,故选B .12. (2021•湖南省张家界市)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,设正方形ABCD 的面积为S ,黑色部分面积为1S ,则1S :S 的比值为(A ).A 8π .B 4π .C 41 .D 2113. (2021•云南省)如图,等边△ABC 的三个顶点都在⊙O 上,AD 是⊙O 的直径.若0A =3,则劣弧BD 的长是( )BA .B .πC .D .2π14. (2021•广西贺州市)如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为( )A. π6B. π3C. π2D. 2π3【答案】C【解析】【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒2222213AD AB BD ∴=-=-=S 扇形AEF 226060(3)3602r πππ⨯=== 故选C .15. (2021•湖北省江汉油田)用半径为30cm ,圆心角为120︒的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )A. 5cmB. 10cmC. 15cmD. 20cm【答案】B【解析】【分析】根据圆锥的侧面是一个扇形,这个扇形的弧长等于圆锥底面周长即可得.【详解】解:设这个圆锥底面半径为cmr,由题意得:12030 2180ππ⨯=r,解得10(cm)r=,即这个圆锥底面半径为10cm,故选:B.二.填空题1..(2021•湖南省衡阳市)底面半径为3,母线长为4的圆锥的侧面积为12π.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×4÷2=12π.故答案为:12π.2.(2021•怀化市)如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是π﹣.(结果保留π)【分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB 可得出结论.【解答】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB==π﹣.故答案为:π﹣.3.(2021•宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【答案】48π【解析】【分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.【详解】解:∵底面圆的半径为4,∴底面周长为8π,∴侧面展开扇形的弧长为8π,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴120180rπ=8π,解得:r=12,∴侧面积为π×4×12=48π,故答案为:48π.4.(2021•山东省聊城市)用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm2【答案】80【解析】【分析】先求出圆锥的底面半径,再利用勾股定理求出圆锥的母线长,最后利用扇形的面积公式求解即可.【详解】解:∵弧长16πcm的扇形铁片,∴做一个高为6cm的圆锥的底面周长为16πcm,∴圆锥的底面半径为:16π÷2π=8cm , ∴圆锥的母线长为:226810cm +=,∴扇形铁片的面积=16110280ππ⨯⨯=cm 2, 故答案是:80π.5. (2021•山东省泰安市)若△ABC 为直角三角形,AC =BC =4,以BC 为直径画半圆如图所示,则阴影部分的面积为 4 .【分析】连接CD .构建直径所对的圆周角∠BDC =90°,然后利用等腰直角△ABC 的性质:斜边上的中线是斜边的一半、中线与垂线重合,求得CD =BD =AD ,从而求得弦BD 与CD 所对的弓形的面积相等,所以图中阴影部分的面积=直角三角形ABC 的面积﹣直角三角形BCD 的面积.【解答】解:连接CD .∵BC 是直径,∴∠BDC =90°,即CD ⊥AB ;又∵△ABC 为等腰直角三角形,∴CD 是斜边AB 的垂直平分线,∴CD =BD =AD ,∴=,∴S 弓形BD =S 弓形CD ,∴S 阴影=S Rt △ABC ﹣S Rt △BCD ;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴S Rt△ABC=2S Rt△BCD;又S Rt△ABC=×4×4=8,∴S阴影=4;故答案为:4.6..(2021•湖北省宜昌市)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为(2π﹣2)平方厘米.(圆周率用π表示)【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵AB=AC=BC=2厘米,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1厘米,AD=BD=厘米,∴△ABC的面积为BC•AD=(厘米2),S扇形BAC==π(厘米2),∴莱洛三角形的面积S=3×π﹣2×=(2π﹣2)厘米2,故答案为:(2π﹣2).7.(2021•广东省)如题13图,等腰直角三角形ABC中,90BC=.分别以点B、A∠=︒,4点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为_________.【答案】4π- 【解析】211142π24π424ABC B S S S =-=⨯⨯-⨯⨯=-△⊙阴影,考查阴影面积的求法(主要还是用整体减去局部)8. (2021•湖北省恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 26 寸.【分析】过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,则CD =1寸,AC =BC =AB ,连接OA ,设圆的半径为x ,利用勾股定理在Rt △OAC 中,列出方程,解方程可得半径,进而直径可求.【解答】解:过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,连接OA ,如图:∵OC ⊥AB ,∴AC =BC =AB ,.则CD =1寸,AC =BC =AB =5寸.设圆的半径为x 寸,则OC =(x ﹣1)寸.在Rt △OAC 中,由勾股定理得:52+(x ﹣1)2=x 2,解得:x =13.∴圆材直径为2×13=26(寸).故答案为:26.9. (2021•浙江省宁波市) 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)【答案】2π【解析】【分析】连接OC 、OD ,利用切线的性质得到90OCP ODP ∠=∠=︒,根据四边形的内角和求得60COD ∠=︒,再利用弧长公式求得答案.【详解】连接OC 、OD ,∵,AC BD 分别与O 相切于点C ,D ,∴90OCP ODP ∠=∠=︒,∵120P ∠=︒,360OCP ODP P COD ∠+∠+∠+∠=︒,∴60COD ∠=︒,∴CD 的长=6062180(cm ),故答案为:2π..10. (2021•浙江省台州)如图,将线段AB 绕点A 顺时针旋转30°,得到线段AC .若AB=12,则点B经过的路径BC长度为_____.(结果保留π)【答案】2π【解析】【分析】直接利用弧长公式即可求解.【详解】解:30122180BClππ⋅==,故答案为:2π.11. 2021•浙江省温州市)若扇形的圆心角为30°,半径为17,则扇形的弧长为π.【分析】根据弧长公式代入即可.【解答】解:根据弧长公式可得:l===π.故答案为:π.12.(2021•湖北省荆门市)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为2﹣.【分析】连接PB、PC,作PF⊥BC于F,根据等边三角形的性质得到∠PBC=60°,解直角三角形求出BF、PF,根据扇形面积公式、三角形的面积公式计算,得到答案.【解答】解:连接PB、PC,作PF⊥BC于F,∵PB=PC=BC,∴△PBC为等边三角形,∴∠PBC=60°,∠PBA=30°,∴BF=PB•cos60°=PB=1,PF=PB•sin60°=,则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2=[﹣(﹣×2×)]×2=2﹣,故答案为:2﹣.13.(2021•江苏省盐城市)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为6π.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:该圆锥的侧面积=×2π×2×3=6π.故答案为6π.14.(2021•重庆市A)如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为___________.(结果保留π).【答案】4 5【解析】【分析】利用矩形的性质求得OA=OC=OB=OD=2,再利用扇形的面积公式求解即可.【详解】解:∵矩形ABCD的对角线AC,BD交于点O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴22362423605AOES Sππ⨯⨯===阴影扇形,故答案为:45π.15. (2021•重庆市B)如图,在菱形ABCD中,对角线AC=12,BD=16,分别以点A,B,C,D为圆心,AB的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为96﹣100π.(结果保留π)【分析】先求出菱形面积,再计算四个扇形的面积即可求解.【解答】解:在菱形ABCD中,有:AC=12,BD=16.∴.∵∠ABC+∠BCD+∠CDA+∠DAB=360°.∴四个扇形的面积,是一个以AB的长为半径的圆.∴图中阴影部分的面积=×12×16﹣π×102=96﹣100π.故答案为:96﹣100π.16.(2021•湖北省十堰市)如图,在边长为4的正方形ABCD中,以AB为直径的半圆交对角线AC于点E,以C为圆心、BC长为半径画弧交AC于点F,则图中阴影部分的面积是_________.【答案】3π-6【解析】【分析】连接BE ,可得ABE △是等腰直角三角形,弓形BE 的面积=2π-,再根据阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积,即可求解.【详解】连接BE ,∵在正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,∴∠AEB =90°,即:AC ⊥BE ,∵∠CAB =45°,∴ABE △是等腰直角三角形,即:AE =BE ,∴弓形BE 的面积=211222242ππ⨯-⨯⨯=-, ∴阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积=2π-+2454360π⨯⨯-114422⨯⨯⨯=3π-6. 故答案是:3π-6.17. (2021•湖南省永州市)某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 .18.(2021•黑龙江省大庆市)一个圆柱形橡皮泥,底面积是12cm 2.高是5cm .如果这个橡皮泥的一半,把它捏成高为5cm 的圆锥,则这个圆锥的底面积是 cm 2;【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm 的圆锥,则圆锥的高为5cm ,故1303Sh , 即15=303S , 解得=18S (cm 2),故填:18.19. (2021•黑龙江省大庆市) 如图,作⊙O 的任意一条直经FC ,分别以F 、C 为圆心,以FO 的长为半径作弧,与⊙O 相交于点E 、A 和D 、B ,顺次连接AB 、BC 、CD 、DE 、EF 、F A ,得到六边形ABCDEF ,则⊙O 的面积与阴影区域的面积的比值为 ;16题图DBE A OF C【分析】可将图中阴影部分的面积转化为两个等边三角形的面积之和,设⊙O 的半径与等边三角形的边长为a ,分别表示出圆的面积和两个等边三角形的面积,即可求解【详解】连接OE ,OD ,OB ,OA ,由题可得:EF OF OE FA OA AB OB BC OC CD OD ==========,,,,,EFO OFA OAB OBC OCD ∴△△△△△△ODE 为边长相等的等边三角形∴可将图中阴影部分的面积转化为ODE 和OAB 的面积之和,如图所示:设⊙O 的半径与等边三角形的边长为a ,∴⊙O 的面积为22S r a ππ==等边OED 与等边OAB 的边长为a 234OAB a S S ∴==△OED △ 23=2OED OABa S S S ∴+=△△阴 ∴⊙O 的面积与阴影部分的面积比为2223=332S a S a ππ=阴故答案为:233π. 20. (2021•吉林省长春市)如图是圆弧形状的铁轨示意图,半径OA 的长度为200米,圆心角90AOB ∠=︒,则这段铁轨的长度 米,(铁轨的宽度忽略不计,结果保留π)【分析】根据圆的弧长计算公式l =,代入计算即可. 【解答】解:圆弧长是:=100π(米).故答案是:100π.21. (2021•绥化市)一条弧所对的圆心角为135°弧长等于半径为5cm 的圆的周长的3倍,则这条弧的半径为__________cm .【答案】40【解析】【分析】设出弧所在圆的半径,由于弧长等于半径为5cm 的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可.【详解】解:设弧所在圆的半径为r ,由题意得, 135253180r ππ⨯⨯=⨯⨯, 解得,r=40cm .22. (2021•江苏省无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=.故答案为:.23.(2021•山东省济宁市)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC 的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是﹣.【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△COD的面积和扇形BOD的面积,从而可以解答本题.【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.24.(2021•呼和浩特市)已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为__________.(用含π的代数式表示),圆心角为__________度.12π,21625.(2021•齐齐哈尔市)一个圆锥的底面圆半径为6cm,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为_____cm.【答案】9.【解析】【详解】试题分析:求得圆锥的底面周长,利用弧长公式即可求得圆锥的母线长:∵圆锥的底面周长为:2π×6=12π,∴圆锥侧面展开图的弧长为12π.设圆锥的母线长为R,∴24012180Rππ⨯=,解得R=9cm.考点:圆锥的计算.三、解答题1.(2021•湖北省黄冈市)如图,在Rt△ABC中,∠ACB=90°,AC分别相切于点E,F,BO平分∠ABC(1)求证:AB是⊙O的切线;(2)若BE=AC=3,⊙O的半径是1,求图中阴影部分的面积.【分析】(1)有切点则连圆心,证明垂直关系;无切点则作垂线,证明等于半径;(2)将不规则图形转化为规则图形间的换算.【解答】(1)证明:连接OE,OF,∵BO是∠ABC的平分线,∴OD═OE,OE是圆的一条半径,∴AB是⊙O的切线,故:AB是⊙O的切线.(2)∵BC、AC与圆分别相切于点E,∴OE⊥BC,OF⊥AC,∴四边形OECF是正方形,∴OE═OF═EC═FC═1,∴BC═BE+EC═4,又AC═3,∴S阴影═(S△ABC﹣S正方形OECF﹣优弧所对的S扇形EOF)═×()═﹣.故图中阴影部分的面积是:﹣.2.(2021•湖南省邵阳市)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【分析】(1)设∠BAC=n°.根据弧EF的两种求法,构建方程,可得结论.(2)根据S阴=•BC•AD﹣S扇形AEF求解即可.【解答】解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.3.(2021•江西省)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【分析】(1)先判断出∠CBE=∠D,再用等角的余角相等,即可得出结论;(2)①先判断出OC∥AB,再判断出BC∥OA,进而得出四边形ABCO是平行四边形,即可得出结论;②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD ,AC 与围成阴影部分的面积为S △AOC +S 扇形COD =S △ACD +S 扇形COD =××2×2+ =+π. 4. (2021•湖北省随州市)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)①如图1,P 是边长为a 的正ABC 内任意一点,点O 为ABC 的中心,设点P 到ABC 各边距离分别为1h ,2h ,3h ,连接AP ,BP ,CP ,由等面积法,易知()123123ABC OAB h h h S a S ++==△△,可得123h h h ++=_____;(结果用含a 的式子表示) ②如图2,P 是边长为a 的正五边形ABCDE 内任意一点,设点P 到五边形ABCDE 各边距离分别为1h ,2h ,3h ,4h ,5h ,参照①的探索过程,试用含a 的式子表示12345h h h h h ++++的值.(参考数据:8tan 3611≈°,11tan 548≈°)(3)①如图3,已知O 的半径为2,点A 为O 外一点,4OA =,AB 切O 于点B ,弦//BC OA ,连接AC ,则图中阴影部分的面积为______;(结果保留π)②如图4,现有六边形花坛ABCDEF ,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形ABCDG ,其中点G 在AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点G 的位置,并说明理由.(1)125,1;(23;②5516a ;(3)①23π;②见解析. 【分析】(1)根据等积法解得直角三角形斜边上的高的长,及利用内切圆的性质解题即可; (2)①先求得边长为a 的正ABC 的面积,再根据()123123ABC OAB h h h S a S ++==△△解题即可;②设点O 为正五边形ABCDE 的中心,连接OA ,OB ,过O 作OQ AB ⊥于Q ,先由正切定义,解得OQ 的长,由①中结论知,5OAB ABCDE S S =五边形△,继而得到()123451115tan 54222a h h h h h a a ++++=⨯⨯°,据此解题; (3)①由切线性质解得30OAB ∠=︒,再由平行线性质及等腰三角形性质解得60COB ∠=︒,根据平行线间的距离相等,及同底等高或等底同高的两个三角形面积相等的性质,可知图中阴影部分的面积等于扇形OBC 的面积,最后根据扇形面积公式解题;②连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,根据DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△,据此解题.【详解】解:(1)直角三角形的面积为:13462⨯⨯=, 22345+=,设直角三角形斜边上的高为h ,则1562h ⨯⋅= 125h ∴= 设直角三角形内切圆的半径为r ,则11(345)3422++=⨯⨯ 1r ∴=,故答案为:125,1; (2)①边长为a 的正ABC 底边的高为32a ,面积为:2133224OAB a S a a =⋅⋅=△ ()123232431ABC OAB h h h S S a a =++==△△ 123h h h =∴++32a , 故答案为:32a ; ②类比①中方法可知()1234512ABCDE a h h h h h S ++++=五边形, 设点O 为正五边形ABCDE 的中心,连接OA ,OB ,由①得5OAB ABCDE S S =五边形△,过O 作OQ AB ⊥于Q ,()1180521085EAB ∠=⨯⨯-=°°, 故54OAQ ∠=°,1tan 54tan 542OQ AQ a =⨯=°°,故()123451115tan 54222a h h h h h a a ++++=⨯⨯°,从而得到: 12345555tan 54216h h h h h a a ++++=≈°. (3)①AB 是O 的切线,OB AB ∴⊥90OBA ∴∠=︒2,4OB OA30OAB ∴∠=︒60AOB ∴∠=︒//BC OA60AOB OBC ∴∠=∠=︒OC OB =60OBC OCB ∴∠=∠=︒60COB ∴∠=︒过点O 作OQ BC ⊥//BC OA ,OQ ∴是COB ABC 、的高,ABC OCB S S ∴=26060423603603OBC r S S πππ⨯⨯∴====阴影部分扇形 故答案为:23π; ②如图,连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,则点G 即为所求,连接DG ,∵DEF ABCDEF ABCDF S S S =+六边形五边形△,∵//EG DF ,∴DEF DGF S S =△△,∴DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△.5. (2021•襄阳市) 如图,直线AB 经过O 上的点C ,直线BO 与O 交于点F 和点D ,OA 与O 交于点E ,与DC 交于点G ,OA OB =,CA CB =.(1)求证:AB 是O 的切线; (2)若//FC OA ,6CD =,求图中阴影部分面积.【答案】(1)见解析;(2)332π2-6. (2021•贵州省贵阳市)如图,在⊙O 中,AC 为⊙O 的直径,AB 为⊙O 的弦,点E 是的中点,过点E 作AB 的垂线,交AB 于点M ,交⊙O 于点N ,分别连接EB ,CN .(1)EM 与BE 的数量关系是 BE =EM ; (2)求证:=; (3)若AM =,MB =1,求阴影部分图形的面积.【分析】(1)证得△BME是等腰直角三角形即可得到结论;(2)根据垂径定理得到∠EMB=90°,进而证得∠ABE=∠BEN=45°,得到=,根据题意得到=,进一步得到=;(3)先解直角三角形得到∠EAB=30°,从而得到∠EOB=60°,证得△EOB是等边三角形,则OE=BE=,然后证得△OEB≌△OCN,然后根据扇形的面积公式和三角形面积公式求得即可.【解答】解:(1)∵AC为⊙O的直径,点E是的中点,∴∠ABE=45°,∵AB⊥EN,∴△BME是等腰直角三角形,∴BE=EM,故答案为BE=EM;(2)连接EO,AC是⊙O的直径,E是的中点,∴∠AOE=90°,∴∠ABE=∠AOE=45°,∵EN⊥AB,垂足为点M,∴∠EMB=90°∴∠ABE=∠BEN=45°,∴=,∵点E是的中点,∴=,∴=,∴﹣=﹣,∴=;(3)连接AE,OB,ON,∵EN⊥AB,垂足为点M,∴∠AME=∠EMB=90°,∵BM=1,由(2)得∠ABE=∠BEN=45°,∴EM=BM=1,又∵BE=EM,∴BE=,∵在Rt△AEM中,EM=1,AM=,∴tan∠EAB==,∴∠EAB=30°,∵∠EAB=∠EOB,∴∠EOB=60°,又∵OE=OB,∴△EOB是等边三角形,∴OE=BE=,又∵=,∴BE=CN,∴△OEB≌△OCN(SSS),∴CN=BE=又∵S扇形OCN==,S△OCN=CN•CN=×=,∴S阴影=S扇形OCN﹣S△OCN=﹣.7. (2021•湖北省黄石市)如图,PA 、PB 是O 的切线,A 、B 是切点,AC 是O 的直径,连接OP ,交O 于点D ,交AB 于点E .(1)求证://BC OP ;(2)若E 恰好是OD 的中点,且四边形OAPB 的面积是163,求阴影部分的面积; (3)若1sin 3BAC ∠=,且23AD =,求切线PA 的长.【答案】(1)见解析;(2)823π-;(3)2【解析】【分析】(1)证明∠POB =∠CBO ,根据“内错角相等,两直线平行”即可证明结论; (2)证明△AOD 是等边三角形得∠AOD =60°,设OA =R ,求出AE 3R ,AB 3R ,PO =2R ,根据四边形OAPB 的面积是163R ,再利用AOB AOB S S S ∆=-阴影扇形求解即可;(3)利用1sin 3BAC ∠=设出BC =m ,则AC =3m ,分别求出2AE m =,DE =m ,在Rt △AED 中运用勾股定理列方程,求出m 的值,再证明∠APO =∠BAC ,利用1sin 3BAC ∠=求出P A 的长.【详解】解:(1)证明:∵PA PB ,是O 的切线 ∴PO AB ⊥,即90OEB ∠=︒∴90EOB OBE ∠+∠=︒∵AC 是O 的直径∴∠ABC =90°90EBO CBO ∠+∠=︒∴EOB CBO ∠=∠∴//BC OP(2)∵E 是OD 的中点,且AB ⊥OD ,∴AO =AD ,又AO =OD∴△AOD 是等边三角形∴∠AOD =60°∵P A 是O 的切线,OA 是O 的半径,∴∠OAP =90°∴∠APO =30°∴PO =2AO在Rt AOE ∆中,∠AOE =60°∴∠OAE =30°设OA =R ,则2R OE =∴2AE R =∴2,22AB AE PO AO R ====∵四边形OAPB 的面积是∴16AB PO =2163R =解得,R (负值舍去)∴AB OE ==∵60AOD ∠=︒∴120AOB ∠=︒∴1=82AOBAOB S S S π∆-=-⨯=-阴影扇形 (3)∵90ABC ∠=︒∴1sin 3BAC BC AC ∠== 故设BC =m ,则AC =3m ,∴32AO m = ∵OE //BC∴1122OE BC m == 3122DE OD OE m m m =-=-= 在Rt △AEO 中,222AE AO OE m =-=在Rt △AED 中,222AE DE AD +=∴222(2)(23)m m +=∴2m = (负值舍去)∴22AE =∵90,90OAE AOE APO AOE ∠+∠=︒∠+∠=︒∴OAE APO ∠=∠1sin sin 3APO BAC ∠=∠= ∴13AE PA = ∴ 362PA AE ==8. (2021•四川省达州市)如图,AB 是⊙O 的直径,C 为⊙O 上一点(C 不与点A ,B 重合),BC ,过点C 作CD ⊥AB ,点D 落在点E 处得△ACE ,AE 交⊙O 于点F .(1)求证:CE 是⊙O 的切线;(2)若∠BAC =15°,OA =2,求阴影部分面积.【分析】(1)连接OC ,求得∠ACO =∠EAC ,根据内错角相等两直线平行得到OC ∥AE ,进。
2021年中考压轴题--圆含答案

中考压轴题(一)--------与圆有关压轴题欧阳光明(2021.03.07)1.如图,在M中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积;(4)在(2)中的抛物线上是否存在一点P ,使PAB △和ABC △相似?若存在,求出点P 的坐标;若不存在,请说明理由.[解](1)如图(1),连结MA MB ,. 则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+.1OC MC MO =-=,OB(01)C B ∴-,,.113c a ∴=-=,2113y x ∴=-.xx(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M与y 轴的交点,如图1.211143cm 222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,303ABABC BC∠==,,ABC PAB∴△∽△等价于302336PAB PB AB PA PB ∠=====,,. 设()P x y ,且x >,则cos3033323x PA AO =-=-=·,sin303y PA ==·.又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△.由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=,∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将(30)(01)A M -,,,代入,解得31.k b ⎧=⎪⎨⎪=⎩,∴直线AM 的解析式yxBCAMP图2O为1y =+.解方程组21113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得P .又tan PBx ∠=,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P ,它的坐标为或(-. 方法3: 如图3,ABC △为等腰三角形,且ABBC=()P x y ,则 图3ABC PAB △∽△等价于PB AB ==6PA ==.当0x >时,得 6.解得P .又P 的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P ,它的坐标为或(-. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考必备-圆选填压轴分类汇编A 类:面积问题技巧:多连半径,探讨线段,角度关系,以角导边1.(2017·湖北省中考模拟)如图,在Rt △AOB 中,∠AOB=90°,OA=2,OB=1,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、 ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( ) A .πB .5π+C .144π- D .104π- 2.(2020·河北省初三期末)如图,以等边ABC ∆的一边AB 为直径的半圆O 交AC 于点D ,交BC 于点E ,若4AB =,则阴影部分的面积是( )A.B.CD .23.(2021·浙江省初三二模)如图,已知矩形ABCD 的周长为16,E 和F 分别为ABC ∆和ADC ∆的内切圆,连接AE ,CE ,AF ,CF ,EF ,若37AECF ABCDS S =四边形矩形,则EF 的长为( ) A.B.C.D.4.(2020·柘城县实验中学初三二模)如图,点O 为Rt ABC 的斜边AB 的中点,90C ∠=︒,30A ∠=︒,以点O 为旋转中心顺时针旋转ABC 得到111A B C △,若2BC =,当11BC AC ∥时,图中弧1BC 所构成的阴影部分面积为(). A.33π-B.33π+C.66π-D.66π+5.(2020·湖北省初三二模)如图,在Rt ABC 中,90C ∠=︒,6AB =,AD 是BAC ∠的平分线,经过A ,D 两点的圆的圆心O 恰好落在AB 上,O 分别与AB 、AC 相交于点E 、F .若圆半径为2.则阴影部分面积( ). A .13πB .43πC .23π D3- 6.(2020·山西省初三月考)如图,在Rt ABC中,90,30,ACB A BC ∠=︒∠=︒=以直角边AC 为直径作O交AB 于点D ,则图中阴影部分的面积是( ) A.3πB.3πC.6π-D.6π7.(2020·山东大学附属中学初三月考)如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为DG ,若AB =2,BC =4,则阴影部分的面积为( )A .2πB .83π C .43π+D .43π+8.(2020·合肥一六八中学初三一模)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ,B 、E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为( )A .9π B C 32π- D 23π-9.(2020·山西省初三零模)如图,在O 的内接正方形ABCD 中,AB =,以点A 为圆心,AD 长为半径车弧,得到BD ,则图中阴影部分的面积为( ) A .1B .12π- C .1π-D .22π-10.(2020·泰安市黄前中学初三一模)如图,菱形ABCD 的边长为2,∠A=60°,以点B 为圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为( )A 2πB πC 2πD .2π+11.(2020·内蒙古自治区初三三模)如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A ,点C ,交OB 于点D ,若3OA =,则阴影部分的面积为_____.12.(2020·山东省初三一模)如图,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若=OA _____.13.(2020·浙江省初三一模)如图,在△ABC 中,∠ACB =90°,D 是BC 边上的点,CD =2,以CD 为直径的⊙与AB 相切于点E .若弧DE 的长为13π,则阴影部分的面积_____.(保留π) 14.(2020·东莞市横沥中学初三二模)如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是_____.15.(2020·广东华侨中学初三其他)如图,如图,在菱形ABCD 中,2AB =,60DAB ∠=︒,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为CC ,则图中阴影部分的面积为_________. 16.(2020·山东省初三二模)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留π) 17.(2020·郑州市第八中学初三其他)如图所示,在Rt △ABC 中,90ACB ∠=︒,30BAC ∠=︒,2BC =,将三角形绕着BC 的中点O 逆时针旋转60︒,点A 的对应点为E ,则图中阴影部分的面积为______. 18.(2019·河南省河南师大附中初三其他)如图,ABC 的内切圆O 与BC,CA,AB 分别相切于点,,D E F ,且5,13AB BC ==,12CA =,则阴影部分的面积为_______ (结果保留π).19.(2020·浙江省初三其他)如图,在菱形ABCD 中,160AB DAB =∠=︒,,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为'CC ,则图中阴影部分的面积为________.20.(2020·广西壮族自治区初三学业考试)如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__.(结果保留)πB 类:最值问题技巧:善于添辅助线围三角形,三边关系求解。
必要时添加辅助圆21.(2020·合肥市第四十八中学初三一模)如图,等腰Rt ABC ∆的一个锐角顶点A 是O 上的一个动点,90ACB ∠=︒,腰AC 与斜边AB 分别交O 于点,E D ,分别过点,D E 作O 的切线交于点F ,且点F 恰好是腰BC 上的点,连接,,OC OD OE ,若O 的半径为4,则OC 的最大值为:( )A .2B .2C .6D .822.(2020·山东省初三二模)如图,在平面直角坐标系中,已知点A (0,1)、点B (0,1+t )、C (0,1﹣t )(t >0),点P 在以D (3,5)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t 的最小值是( ) A .3B .4C .5D .623.(2020·广东省初三其他)如图,AB 是半圆O 的直径,4AB =,点C ,D 在半圆上,OC AB ⊥,2BD CD =,点P 是OC 上的一个动点,则BP DP +的最小值为( )A .B .C .2D .24.(2020·山东省初三二模)如图,矩形ABCD 中,AB =2,AD =3,点E 、F 分别为AD 、DC 边上的点,且EF =2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为( )A .3B .4C .D .525.(2020·山东省初三一模)如图,P 为⊙O 内的一个定点,A 为⊙O 上的一个动点,射线AP 、AO 分别与⊙O 交于B 、C 两点.若⊙O 的半径长为3,OP BC 的最大值为( )A .B .3CD .26.(2020·北京海淀区101中学温泉校区初三其他)如图,抛物线2815y x x =-+与x 轴交于A 、B 两点,对称轴与x 轴交于点C ,点(0,2)D -,点(0,6)E -,点P 是平面内一动点,且满足90DPE ∠=︒,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( ).A .3B C .72D .527.(2019·河南省初三月考)如图所示,在DEF 中,10,6,8,EF DF DE ===以EF 的中点O 为圆心,作半圆与DE 相切,点A B 、分别是半圆和边DF 上的动点,连接,AB 则AB 的最大值与最小值的和是( )A .6B .1C .322D .928.(2020·江苏省初三学业考试)如图,AB 是半圆O 的直径,点D 在半圆O 上,AB =,4=AD ,C 是弧BD 上的一个动点,连接AC ,过D 点作DH AC ⊥于H ,连接BH ,在点C 移动的过程中,BH 的最小值是( )A .6B .2C .2D .729.(2019·山东省初三二模)如图,直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点P 是以C (﹣1,0)为圆心,1为半径的圆上一点,连接PA ,PB ,则△PAB 面积的最小值是( ) A .5B .10C .15D .2030.(2020·湖北省初三其他)如图,在等腰直角∆ABC 中,斜边 AB 的长度为 8,以 AC 为直径作圆,点P 为半圆上的动点,连接 BP ,取 BP 的中点 M ,则CM 的最小值为( )A .B .CD .31.(2020·西安市铁一中学初三二模)如图,在矩形ABCD 中,1AB =,AD =E 为BC 边上一动点,F 、G 为AD 边上两个动点,且45FEG ∠=︒,则线段FG 的长度最大值为__________.32.(2020·山东省初三其他)如图,在Rt △ABC 中,∠C =90°,AC =4,AB =5,在线段AC 上有一动点P (P 不与C 重合),以PC 为直径作⊙O 交PB 于Q 点,连AQ ,则AQ 的最小值为___________、33.(2020·江苏省初三一模)如图,在ABC ∆中,10AB =,8AC =,6BC =,经过点 C 且与边 AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是__________. 34.(2019·武汉外国语学校初三月考)如图所示,AB =6,AC =3,∠BAC =60°,为⊙O 上的一段弧,且∠BOC =60°,分别在、线段AB 和AC 上选取点P 、E 、F ,则PE +EF +FP 的最小值为__________35.(2019·湖北省初三月考)如图,在平面直角坐标系中,等边AOB ∆的边OB 在x 轴正半轴上,点()3,A a ,0a >,点D 、E 分别从B 、O 出发以相同的速度向O 、A 运动,连接AD 、BE 交于点F ,M 是y 轴上一点,则FM 的最小值为______. 36.(2019·盐城市泽夫初级中学初三月考)如图,已知正方形ABCD 的边长为4,以点A 为圆心,2为半径作圆,点E 是⊙A 上的任意一点,将点E 绕点D 按逆时针方向转转90°得到点F ,连接AF 、DF ,则1AF DF 2+的最小值是__. 37.(2019·江苏省中考模拟)平面直角坐标系中,点A 、B 的坐标分别为(4,0)、(0,4),点D 为OB 上任意一点,连接AD ,以OD 为直径的圆交AD 于点E ,则当线段BE 的长最短时E 的坐标为_____.38.(2020·吉林省初三其他)如图,在△ABC 中,∠C =45°,∠B =60°,BC +1,点P 为边AB 上一动点,过点P 作PD ⊥BC 于点D ,PE ⊥AC 于点E ,则DE 的最小值为_____. 39.(2020·重庆初一期末)如图,在平面直角坐标系中,以点A (0,2)为圆心,2为半径的圆交y 轴于点B .已知点C (2,0),点D 为⊙A 上的一动点,以CD 为斜边,在CD 左侧作等腰直角三角形CDE ,连结BC ,则△BCE 面积的最小值为_____.40.(2020·北京市八一中学初三月考)如图,O 的半径为2.弦2AB =,点P 为优弧AB 上一动点,AC AP⊥交直线PB 于点C ,则ABC 的最大面积是__________________.参考答案1.D2.C3.B4.A5.C6.C7.D8.D9.A10.A11.3 4π12π+133π-14.23π15.π+616.23π17.136π18.262π-19.3 42π20.π.21.A 22.B 23.A 24.B 25.A26.C27.D28.A29.A30.C31.232.√73−3233.4.834.935.6-36.537.2⎛⎝3839.4.401 / 6。