北师版八年级下数学第一章随堂练习72
北师大版八年级数学下册第一章三角形的证明测试题 (1)

2018年北师大版八年级数学下册1.1《等腰三角形》综合训练题一、选择题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35° B.40° C.45° D.50°3. 如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD 等于( )A.36° B.54° C.18° D.64°4. 如图,在△ABC中,AB=AC,AD平分∠BAC,则下列结论错误的是( )A.∠B=∠C B.AD⊥BCC.∠BAD=∠CAD=∠C D.BD=CD5. 如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C 的度数为( )A.35° B.45° C.55° D.60°6. 如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°7. 如图,在△ABC中,AD⊥BC,垂足为D,AD=BD=CD,则下列结论错误的是( )A.AB=AC B.AD平分∠BAC C.AB=BC D.∠BAC=90°8. 如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD =BD=BE,∠A=50°,则∠CDE的度数为( )A.50° B.51° C.51.5° D.52.5°9. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.210. 如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.10二、填空题11.如图,在△ABC中,∠1=∠2,BE=CD,AB=5,AE=2,则CE =____.12. 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D.(1)若∠BAC=80°,则∠BAD=____;(2)若AB+CD=12 cm,则△ABC的周长为____ cm.13. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.14. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.三、解答题15. 如图,在△ABC中,AB=AC,AD平分∠BAC,点M,N分别在边AB,AC上,AM=2MB,AN=2NC,求证:DM=DN.16. 如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB.AE=CE,求证:(1)△AEF≌△CEB;(2)AF=2CD.17. 如图,AB=AE,BC=DE,∠B=∠E,点F是CD的中点.求证:AF⊥CD.18. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y 与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.19. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)20. 如图,在△ABC中,AB=AC,∠BAC=90°,BD是∠ABC的平分线,CE⊥BD,垂足是E,BA和CE的延长线交于点F.(1) 在图中找出与△ABD全等的三角形,并证明你的结论;(2) 证明:BD=2EC.参考答案1.B2.A3.B4.C5.C6.D7.C8.D9.C 10.C11.3 12.40°24 13.20°14.12°15.证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,∴△AMD≌△AND(SAS),∴DM=DN.16.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.17.证明:如图,连接AC,AD,在△ABC和△AED中,∴△ABC≌△AED(SAS),∴AC=AD,∵点F是CD的中点,∴AF⊥CD.18.解:(1)如图所示,BD即为△ABC关于点B的伴侣分割线;(2)设BD为△ABC的伴侣分割线,分两种情况:①△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°-x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且90°≥y>45°;②△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°-x-y=y-90°,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°-x.综上所述,当y=90°-x,或y=90°+x,或x=45°且y>x且90°≥y>45°,或或y=135°-x时,△ABC存在伴侣分割线.19.解:满足条件的所有图形如图所示:共5个.20.证明:(1)△ABD≌△ACF.∵AB=AC,∠BAC=90°,∴∠FAC=∠BAC=90°,∵BD⊥CE,∠BAC=90°,∴∠ADB=∠EDC,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF(ASA). (2)∵△ABD≌△ACF,∴BD=CF,∵BD⊥CE,∴∠BEF=∠BEC,∵BD是∠ABC的平分线,∴∠FBE=∠CBE,∵在△FBE和△CBE中,∴△FBE ≌△CBE (ASA ), ∴EF=EC , ∴CF=2CE , ∴BD=2CE .北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
北师大版八年级数学下册第一二章提高练习(有答案)

第一二章提高练习解答题1.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)2.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.3.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.4.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.5.解不等式﹣≥x﹣,并把它的解集在数轴上表示出来.6.解不等式组:并将解集在数轴上表示.7.已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.8.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.9.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.10.已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.13.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.14.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.15.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.16.在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10cm,试求出△P AO的周长.(不用写过程,直接写出答案)(2)若AB=AC,∠BAC=110°,试求∠P AO的度数.(不用写过程,直接写出答案)(3)在(2)中,若无AB=AC的条件,你能求出∠P AO的度数吗?若能,请求出来;若不能,请说明理由.17.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.18.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.19.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?20.某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?22.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.23.如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.24.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.25.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.26.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;(3)当t为何值时,△BCP为等腰三角形?参考答案1.解:①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;③连接BF,则直线BF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于H,G两点;⑥连接GH交BF延长线于点P,则P点即为所求.2.解:①以A为圆心,以任意长为半径画圆,分别交铁路a和公路b于点B、C;②分别以B、C为圆心,以大于BC为半径画圆,两圆相交于点D,连接AD,则直线AD即为∠BAC的平分线③连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于E、F,连接EF,则直线EF即为线段MN的垂直平分线;④直线EF与直线AD相交于点O,则点O即为所求点.同法点O′也满足条件.故答案为O或O′处.3.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.4.解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.5.解:原不等式去分母得:2x﹣4﹣9x﹣15≥6x﹣4+2x,移项得:2x﹣9x﹣6x﹣2x≥﹣4+4+15,合并同类项的:﹣15x≥15,解得x≤﹣1.解集在数轴上表示为:6.解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.7.(1)证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∴BM=DM;(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.8.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∴110°+∠B+∠C=180°,∴x+y=70°.∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴∠EAD=∠B,∠F AC=∠C.∴∠DAF=∠BAC﹣(x+y)=110°﹣70°=40°.(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).9.解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.10.解:①根据y1=2y2,∴6﹣x=2×2+14x,解得:x=.②由y1比y2小﹣3,∴y1=y2﹣(﹣3),∴6﹣x=2+7x﹣(﹣3),解得:x=.③由y1与y2互为相反数,∴y1+y2=0,∴6﹣x+7x+2=0,解得:x=.11.解:,由①得:x>﹣,由②得:x<2a,则不等式组的解集为:﹣<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.12.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.13.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.14.证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.15.(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM,∴∠BMF+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.16.解:(1)∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴△P AO的周长=AP+PO+AO=BO+PO+OC=BC,∵BC=1Ocm,∴△P AO的周长10cm;(2)∵AB=AC,∠BAC=110°,∴∠B=∠C=(180°﹣110°)=35°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B=35°,∠CAO=∠C=35°,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=110°﹣35°﹣35°=40°;(3)能.理由如下:∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B,∠CAO=∠C,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=∠BAC﹣(∠B+∠C)=110°﹣70°=40°.17.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.18.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.19.解:(1)设甲种商品每件的进价是x元,乙两种商品每件的进y元.,解得:,答:甲种商品每件的进价是120元,乙两种商品每件的进100元;(2)设甲种商品可购进a件.(145﹣120)a+(120﹣100)(40﹣a)≥870解得:a≥14,答:甲种商品至少可购进14件.20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.21.解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.22.解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x)≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.23.解:(1)根据图象可得不等式2x﹣4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=﹣x+5;(3)把x=0代入y=﹣x+5得:y=5,所以点B(0,5),把y=0代入y=﹣x+5得:x=2,所以点A(5,0),把y=0代入y=2x﹣4得:x=2,所以点D(2,0),所以DA=3,所以四边形BODC的面积=.24.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.25.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.26.解:(1)△ABC中,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴t=12÷2=6(秒);(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴t=13÷2=6.5(秒),∴CP=AB=×10=5cm;(3)△BCP为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3(秒);如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4(秒)(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4(秒))②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12(cm),此时t =12÷2=6(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.。
1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1
欘
,
∴∠A
= 90°,
∠
B
=
1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.
北师大版八年级下册数学同步课时练习题(全册分章节课时,含答案)

北师⼤版⼋年级下册数学同步课时练习题(全册分章节课时,含答案)北师⼤版⼋年级下册数学同步课时练习题第⼀章三⾓形的证明第⼆章1.1等腰三⾓形第1课时全等三⾓形和等腰三⾓形的性质01基础题知识点1全等三⾓形的性质与判定1.如图,△ABC≌△BAD.若AB=6,AC=4,BC=5,则AD的长为(B)A.4 B.5C.6 D.以上都不对2.如图,若能⽤AAS来判定△ACD≌△ABE,则需要添加的条件是(B)A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B3.(2016·成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.4.(2017·怀化)如图,AC=DC,BC=EC,请你添加⼀个适当的条件:AB=DE(答案不唯⼀),使得△ABC≌△DEC.5.如图,点B,E,C,F在同⼀条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.6.(2016·宜宾)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.证明:∵∠CAB=∠DBA,∠DAC=∠CBD,∴∠DAB=∠CBA.在△ADB和△BCA中,∠DBA =∠CAB ,AB =BA ,∠DAB =∠CBA ,∴△ADB ≌△BCA(ASA).∴AD =BC.7.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM ,∴∠BAD =∠NAM.在△BAD 和△NAM 中,AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS).∴∠B =∠ANM.知识点2 等腰三⾓形的性质8.若等腰三⾓形的顶⾓为50°,则它的底⾓度数为(D)A .40°B .50°C .60°D .65° 9.(2017·平顶⼭市宝丰县期末)等腰三⾓形的⼀边长为4,另⼀边长为5,则此三⾓形的周长为(D)A .13B .14C .15D .13或14 10.(2017·江西)如图1是⼀把园林剪⼑,把它抽象为图2,其中OA =OB.若剪⼑张开的⾓为30°,则∠A =75度.11.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D.若AB =6,CD =4,则△ABC 的周长是20.02 中档题12.如图,在△ABC 中,AD ⊥BC ,垂⾜为D ,AD =BD =CD ,则下列结论错误的是(C)A .AB =AC B .AD 平分∠BAC C .AB =BC D .∠BAC =90°13.(2017·朝阳市建平县期末)若等腰三⾓形的⼀个内⾓等于15°,则这个三⾓形为(D)A .钝⾓等腰三⾓形B .直⾓等腰三⾓形C .锐⾓等腰三⾓形D .钝⾓等腰三⾓形或锐⾓等腰三⾓形 14.(2016·泰安)如图,在△PAB 中,PA =PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK.若∠MKN =44°,则∠P 的度数为(D)A .44°B .66°C .88°D .92°15.如图,已知点A ,F ,E ,C 在同⼀直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE. (1)从图中任找两组全等三⾓形; (2)从(1)中任选⼀组进⾏证明.解:(1)答案不唯⼀,如:△ABE ≌△CDF ,△ABC ≌△CDA. (2)答案不唯⼀,如选择证明△ABE ≌△CDF ,证明如下:∵AF =CE ,∴AE =CF. ∵AB ∥CD ,∴∠BAE =∠DCF. ⼜∵∠ABE =∠CDF ,∴△ABE ≌△CDF(AAS).16.如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE.求证:(1)△AEF ≌△CEB ; (2)AF =2CD.证明:(1)∵AD ⊥BC ,CE ⊥AB ,∴∠AEF =∠CEB =∠ADC =90°.∴∠AFE +∠EAF =∠CFD +∠ECB =90°. ⼜∵∠AFE =∠CFD ,∴∠EAF =∠ECB.在△AEF 和△CEB 中,∠AEF =∠CEB ,AE =CE ,∠EAF =∠ECB ,∴△AEF ≌△CEB(ASA). (2)∵△AEF ≌△CEB ,∴AF =BC.在△ABC 中,AB =AC ,AD ⊥BC ,∴CD =BD ,BC =2CD.∴AF =2CD.03 综合题17.(1)如图1,在Rt △ABC 中,∠ACB =90°,点D ,E 在边AB 上,且AD =AC ,BE =BC ,求∠DCE 的度数; (2)如图2,在△ABC 中,∠ACB =40°,点D ,E 在直线AB 上,且AD =AC ,BE =BC ,则∠DCE =110°; (3)在△ABC 中,∠ACB =n °(0<n <180),点D ,E 在直线AB 上,且AD =AC ,BE =BC ,求∠DCE 的度数(直接写出答案,⽤含n 的式⼦表⽰).解:(1)∵AD =AC ,BC =BE ,∴∠ACD =∠ADC ,∠BCE =∠BEC. ∴∠ACD =(180°-∠A)÷2,∠BCE =(180°-∠B)÷2. ∵∠A +∠B =90°,∴∠ACD +∠BCE =180°-(∠A +∠B)÷2=180°-45°=135°. ∴∠DCE =∠ACD +∠BCE -∠ACB =135°-90°=45°. (3)①如图1,∠DCE =90°-12n °;②如图2,∠DCE =90°+12n °;③如图3,∠DCE =12n °;④如图4,∠DCE =12n °.第2课时等边三⾓形的性质01 基础题知识点1 等腰三⾓形相关线段的性质1.在△ABC 中,AB =AC ,BD ,CE 分别为边AC ,AB 上的中线.若BD =5,则CE =5. 2.证明:等腰三⾓形两腰上的⾼相等.解:已知:如图,在△ABC 中,AB =AC ,CE ⊥AB 于点E ,BD ⊥AC 于点D.求证:BD =CE.证明:∵CE ⊥AB 于点E ,BD ⊥AC 于点D ,∴∠AEC =∠ADB =90°. ⼜∵AC =AB ,∠A =∠A ,∴△ACE ≌△ABD(AAS).∴CE =BD.知识点2等边三⾓形的性质3.如图,△ABC是等边三⾓形,则∠1+∠2=(C)A.60°B.90°C.120°D.180°4.(2017·南充)如图,等边△OAB的边长为2,则点B的坐标为(D)A.(1,1) B.(3,1)C.(3,3) D.(1,3)5.如图,△ABC为等边三⾓形,AC∥BD,则∠CBD=120°.6.如图,等边△ABC中,AD为⾼,若AB=6,则CD的长度为3.7.等边△ABC的边长如图所⽰,则y=3.8.如图,l∥m,等边△ABC的顶点B在直线m上,延长AC,交直线m于点D.若∠1=20°,求∠2的度数.解:∵△ABC是等边三⾓形,∴∠ACB=60°.∴在△BCD中,∠CDB=∠ACB-∠1=60°-20°=40°.∵l∥m,∴∠2=∠CDB=40°.9.如图,△ABC和△ADE是等边三⾓形,AD是BC边上的中线.求证:BE=BD.证明:∵△ABC 和△ADE 是等边三⾓形,AD 为BC 边上的中线,∴AE =AD ,AD 为∠BAC 的平分线.∴∠CAD =∠BAD =30°. ∴∠BAE =∠BAD =30°. 在△ABE 和△ABD 中,AE =AD ,∠BAE =∠BAD ,AB =AB ,∴△ABE ≌△ABD(SAS).∴BE =BD.02 中档题10.下列说法:①等边三⾓形的每⼀个内⾓都等于60°;②等边三⾓形三条边上的⾼都相等;③等腰三⾓形两底⾓的平分线相等;④等边三⾓形任意⼀边上的⾼与这条边上的中线互相重合;⑤等腰三⾓形⼀腰上的⾼与这条腰上的中线互相重合.其中正确的有(D)A .1个B .2个C .3个D .4个11.如图,△ABC 是等边三⾓形,AD ⊥BC ,垂⾜为D ,点E 是AC 上⼀点,且AD =AE ,则∠CDE 等于(C)A .30°B .20°C .15°D .10°12.如图,已知△ABC 是等边三⾓形,点B ,C ,D ,E 在同⼀直线上,且CG =CD ,DF =DE ,则∠E =15度.13.如图,在等边△ABC 中,点D ,E 分别是边AB ,AC 的中点,CD ,BE 交于点O ,则∠BOC 的度数是120°.14.如图,已知等边△ABC 纸⽚,点E 在AC 边上,点F 在AB 边上,沿EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC ,则∠EFD =45°.解:∵△ABC 是等边三⾓形,BF 是△ABC 的⾼,∴∠ABO =12∠ABC =30°,AB =AC.∵AE =AC ,∴AB =AE. ∵AO 为∠BAE 的平分线,∴∠BAO =∠EAO.在△ABO 和△AEO 中,AB =AE ,∠BAO =∠EAO ,AO =AO ,∴△ABO ≌△AEO(SAS).∴∠E =∠ABO =30°.16.如图,△ABC 为等边三⾓形,点M 是线段BC 上任意⼀点,点N 是线段CA 上任意⼀点,且BM =CN ,BN 与AM 相交于点Q. (1)求证:AM =BN ; (2)求∠BQM 的度数.解:(1)证明:∵△ABC 为等边三⾓形,∴∠ABC =∠C =∠BAC =60°,AB =BC. 在△AMB 和△BNC 中,AB =BC ,∠ABM =∠C ,BM =CN ,∴△AMB ≌△BNC(SAS).∴AM =BN. (2)∵△AMB ≌△BNC ,∴∠MAB =∠NBC.∴∠BQM =∠MAB +∠ABQ =∠NBC +∠ABQ =∠ABC =60°.03 综合题17.已知,如图所⽰,P 为等边△ABC 内的⼀点,它到三边AB ,AC ,BC 的距离分别为h 1,h 2,h 3,△ABC 的⾼AM =h ,则h 与h 1,h 2,h 3有何数量关系?写出你的猜想并加以证明.解:猜想:h 1+h 2+h 3=h. 证明如下:连接PA ,PB ,PC. ∵S △PAB =12AB·h 1,S △PAC =12AC·h 2,S △PBC =12BC·h 3,S △ABC =12BC·h ,S △PAB +S △PAC +S △PBC =S △ABC ,∴12AB·h 1+12AC·h 2+12BC·h 3=12BC·h. ∵△ABC 是等边三⾓形,∴AB =AC =BC. ∴h 1+h 2+h 3=h.第3课时等腰三⾓形的判定与反证法01 基础题知识点1 等腰三⾓形的判定1.在△ABC 中,已知∠B =∠C ,则(B)A .AB =BC B .AB =AC C .BC =ACD .∠A =60°2.如图,在△ABC 中,AD 平分外⾓∠EAC ,且AD ∥BC ,则△ABC ⼀定是(C)A .任意三⾓形B .等边三⾓形C .等腰三⾓形D .直⾓三⾓形3.如图,AC ,BD 相交于点O ,∠A =∠D ,如果请你再补充⼀个条件,使得△BOC 是等腰三⾓形,那么你补充的条件不能是(C)A .OA =ODB .AB =CDC .∠ABO =∠DCOD .∠ABC =∠DCB4.(易错题)下列能判定△ABC为等腰三⾓形的是(B)A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为105.如图,已知OC平分∠AOB,CD∥OB.若OD=3 cm,则CD=3cm.6.如图,在△ABC中,AD⊥BC于D,若添加下列条件中的⼀个:①BD=CD;②AD平分∠BAC;③AD=BD.其中能使△ABC成为等腰三⾓形的有①②.7.已知:如图,AB=BC,DE∥AC,求证:△DBE是等腰三⾓形.证明:∵AB=BC,∴∠A=∠C.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C.∴∠BDE=∠BED.∴BD=BE.∴△DBE是等腰三⾓形.知识点2反证法8.(2017·西安期中)⽤反证法证明命题“⼀个三⾓形中不能有两个⾓是直⾓”第⼀步应假设⼀个三⾓形中有两个⾓是直⾓.9.⽤反证法证明:等腰三⾓形的底⾓必定是锐⾓.已知:等腰△ABC,AB=AC.求证:∠B,∠C必定是锐⾓.证明:①假设等腰三⾓形的底⾓∠B,∠C都是直⾓,即∠B+∠C=180°,则∠A+∠B+∠C=180°+∠A>180°,这与三⾓形内⾓和等于180°⽭盾;②假设等腰三⾓形的底⾓∠B,∠C都是钝⾓,即∠B+∠C>180°,则∠A+∠B+∠C>180°,这与三⾓形内⾓和等于180°⽭盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐⾓.故等腰三⾓形的底⾓必定为锐⾓.10.⽤反证法证明:已知直线a∥c,b∥c,求证:a∥b.证明:假设a与b相交于点M,则过M点有两条直线平⾏于直线c,这与“过直线外⼀点平⾏于已知直线的直线有且只有⼀条”相⽭盾,所以假设不成⽴,即a∥b.02中档题11.(2017·郑州⽉考)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB,AC于点D,E.若BD+CE=5,则线段DE的长为(A)A.5 B.6 C.7 D.812.已知△ABC中,AB=AC,求证:∠B<90°.若⽤反证法证这个结论,应⾸先假设∠B≥90°.13.如图,在⼀张长⽅形纸条上任意画⼀条截线AB,将纸条沿截线AB折叠,所得到△ABC的形状⼀定是等腰三⾓形.14.某轮船由西向东航⾏,在A处测得⼩岛P的⽅位是北偏东70°,⼜继续航⾏7海⾥后,在B处测得⼩岛P的⽅位是北偏东50°,则此时轮船与⼩岛P的距离BP=7海⾥.15.(2017·内江)如图,AD平分∠BAC,AD⊥BD,垂⾜为点D,DE∥AC.求证:△BDE是等腰三⾓形.证明:∵DE∥AC,∴∠DAC=∠EDA.∵AD平分∠BAC,∴∠DAC=∠EAD.∴∠EAD=∠EDA.∵AD⊥BD,∴∠EAD+∠B=90°,∠EDA+∠BDE=90°.∴∠B=∠BDE.∴△BDE是等腰三⾓形.16.如图,在等边△ABC 中,BD 平分∠ABC ,延长BC 到E ,使CE =CD ,连接DE. (1)成逸同学说:BD =DE ,她说得对吗?请你说明理由;(2)⼩敏同学说:把“BD 平分∠ABC ”改成其他条件,也能得到同样的结论,你认为应该如何改呢?解:(1)BD =DE 是正确的.理由:∵△ABC 为等边三⾓形,BD 平分∠ABC ,∴∠DBC =12∠ABC =30°,∠ACB =60°.∴∠DCE =180°-∠ACB =120°. ⼜∵CE =CD ,∴∠E =30°. ∴∠DBC =∠E. ∴BD =DE.(2)可改为:BD ⊥AC(或点D 为AC 中点).理由:∵BD ⊥AC ,∴∠BDC =90°. ∴∠DBC =30°.由(1)可知∠E =30°,∴∠DBC =∠E. ∴BD =DE.03 综合题17.如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(D 不与B ,C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E. (1)当∠BDA =115°时,∠EDC =25°,∠DEC =115°;点D 从B 向C 运动时,∠BDA 逐渐变⼩(填“⼤”或“⼩”); (2)当DC 等于多少时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 可以是等腰三⾓形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.解:(2)当DC =2时,△ABD ≌△DCE. 理由:∵∠C =40°,∴∠DEC +∠EDC =140°. ⼜∵∠ADE =40°,∴∠ADB +∠EDC =140°. ∴∠ADB =∠DEC. ⼜∵AB =DC =2,∴△ABD ≌△DCE(AAS).(3)可以,∠BDA 的度数为110°或80°. 理由:当∠BDA =110°时,∠ADC =70°. ∵∠C =40°,∴∠DAC =180°-∠ADC -∠C =180°-70°-40°=70°. ∴∠AED =180°-∠DAC -∠ADE =180°-70°-40°=70°. ∴∠AED =∠DAE.∴AD=ED.∴△ADE是等腰三⾓形.当∠BDA=80°时,∠ADC=100°.∴∠DAC=180°-∠ADC-∠C=180°-100°-40°=40°.∴∠DAE=∠ADE.∴AE=DE.∴△ADE是等腰三⾓形.第4课时等边三⾓形的判定01基础题知识点1等边三⾓形的判定1.△ABC中,AB=AC,∠A=∠C,则△ABC是(B)A.等腰三⾓形B.等边三⾓形C.不等边三⾓形D.不能确定2.下列说法不正确的是(D)A.有两个⾓分别为60°的三⾓形是等边三⾓形B.顶⾓为60°的等腰三⾓形是等边三⾓形C.底⾓为60°的等腰三⾓形是等边三⾓形D.有⼀个⾓为60°的三⾓形是等边三⾓形3.如图,在△ABC中,AB=BC=6,∠B=60°,则AC等于(B)A.4 B.6 C.8 D.104.如图,将两个完全相同的含有30°⾓的三⾓板拼接在⼀起,则拼接后的△ABD的形状是等边三⾓形.5.如图,已知OA=a,P是射线ON上⼀动点,∠AON=60°,当OP=a时,△AOP为等边三⾓形.6.如图,点D,E在线段BC上,BD=CE,∠B=∠C,∠ADB=120°,求证:△ADE为等边三⾓形.证明:∵∠B=∠C,∴AB=AC.⼜∵BD=CE,∴△ABD≌△ACE(SAS).∴AD=AE.⼜∵∠ADB=120°,∴∠ADE=60°.∴△ADE为等边三⾓形.知识点2 含30°⾓的直⾓三⾓形的性质 7.(2017·平顶⼭市宝丰县期中)在Rt △ABC 中,∠C =90°,∠A =30°,BC =9,则AB =18. 8.(2017·郑州⽉考)如图,∠C =90°,∠ABC =75°,∠CDB =30°.若BC =3 cm ,则AD =6cm.9.如图,这是某超市⾃动扶梯的⽰意图,⼤厅两层之间的距离h =6.5⽶,⾃动扶梯的倾⾓为30°,若⾃动扶梯运⾏速度为v =0.5⽶/秒,则顾客乘⾃动扶梯上⼀层楼的时间为26秒.10.如图,铁路AC 与铁路AD 相交于车站A ,B 区在∠CAD 的平分线上,且距车站A 为20千⽶,∠DAC =60°,则B 区距铁路AC 的距离为10千⽶.11.如图,在△ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D ,BC =8 cm ,求AD 的长.解:∵∠ACB =90°,∠A =30°,BC =8 cm ,∴∠B =60°,AB =2BC =16 cm. ⼜∵CD ⊥AB 于D ,∴∠BDC =90°. ∴∠DCB =30°. ∴DB =12BC =4 cm.∴AD =AB -DB =12 cm.02 中档题12.在下列三⾓形中:①三边都相等的三⾓形;②有⼀个⾓是60°且是轴对称图形的三⾓形;③三个外⾓(每个顶点处各取1个外⾓)都相等的三⾓形;④⼀腰上的中线也是这条腰上的⾼的等腰三⾓形.其中是等边三⾓形的有(D)A .①②③B .①②④C .①③D .①②③④13.如图,折叠直⾓三⾓形纸⽚的直⾓,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30°,则BD 的长是(B)A .1B .2 C. 3 D .2 314.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三⾓形是(D)A .直⾓三⾓形B .钝⾓三⾓形C .等腰三⾓形D .等边三⾓形15.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN.若MN =2,则OM =(C)A .3B .4C .5D .616.如图,△ABC 是等边三⾓形,D ,E ,F 分别是AB ,BC ,CA 边上⼀点,且AD =BE =CF ,则△DEF 的形状是等边三⾓形.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AD 是BC 边的中线,点E ,F 分别是AB ,AC 的中点,连接DE ,DF.(1)求证:△AED 是等边三⾓形;(2)若AB =2,则四边形AEDF 的周长是4.证明:∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°. ∵AD 是BC 边的中线,∴AD ⊥BC.∴∠BAD =60°. ∴AD =12AB.∵点E 为AB 的中点,∴AE =12AB.∴AE =AD.∴△ADE 是等边三⾓形.03 综合题18.在四边形ABCD 中,AB =BC =CD =DA ,∠B =∠D =60°,连接AC.(1)如图1,点E ,F 分别在边BC ,CD 上,且BE =CF.求证:①△ABE ≌△ACF ;②△AEF 是等边三⾓形;(2)若点E 在BC 的延长线上,则在直线CD 上是否存在点F ,使△AEF 是等边三⾓形?请证明你的结论(图2备⽤).解:(1)证明:①∵AB =BC ,∠B =60°,∴△ABC 是等边三⾓形.∴AB =AC. 同理,△ADC 也是等边三⾓形,∴∠B =∠ACF =60°.⼜∵BE =CF ,∴△ABE ≌△ACF(SAS).②∵△ABE ≌△ACF ,∴AE =AF ,∠BAE =∠CAF. ∵∠BAE +∠CAE =60°,∴∠CAF +∠CAE =60°,即∠EAF =60°.∴△AEF 是等边三⾓形. (2)存在.证明:在CD 延长线上取点F ,在BC 延长线上取点E ,使CF =BE ,连接AE ,EF ,AF. 与(1)①同理,可证△ABE ≌△ACF ,∴AE =AF ,∠BAE =∠CAF.∴∠BAE -∠CAE =∠CAF -∠CAE. ∴∠BAC =∠EAF =60°. ∴△AEF 是等边三⾓形.(注:若在CD 延长线上取点F ,使CE =DF 也可)⼩专题(⼀) 等腰三⾓形中常见的数学思想类型1 ⽅程思想1.如图,在△ABC 中,AB =AC ,BC =BD =ED =EA ,求∠A 的度数.解:设∠A =x °,∵BC =BD =ED =EA ,∴∠ADE =∠A =x °. ∴∠DEA =∠DBE =2x °. ∴∠BDC =∠C =3x °. ∵AB =AC ,∴∠C =∠ABC =3x °.在△ABC 中,∠A +∠C +∠ABC =180°,即x +3x +3x =180. ∴x =1807.∴∠A 为180°7.类型2 分类讨论思想2.如图,在Rt △ABC 中,∠ACB =90°,AB =2BC ,在直线BC 或AC 上取⼀点P ,使得△PAB 为等腰三⾓形,则符合条件在点P 共有(B)A .7个B .6个C .5个D .4个。
2022年必考点解析北师大版八年级数学下册第一章三角形的证明专项训练试题(无超纲)

北师大版八年级数学下册第一章三角形的证明专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是假命题的是( )A .直角三角形两锐角互余B .有三组对应角相等的两个三角形全等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等2、如图,Rt △ABC 中,∠B =90︒,点P 在边AB 上,CP 平分∠ACB ,PB =3cm ,AC =10cm ,则△APC 的面积是( )A .15cm 2B .22.5cm 2C .30cm 2D .45cm 23、如图,△AAA 是等边三角形,D 是BC 边上一点,DE AC ⊥于点E .若3EC =,则DC 的长为( )A.4 B.5 C.6 D.74、下列三个数为边长的三角形不是直角三角形的是()A.3,3,B.4,8,C.6,8,10 D.5,5,5、如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点D,过点C作CG⊥AB于点G,交AD于点E,过点D作DF⊥AB于点F.下列结论:①∠B=∠ACG;②CE=DF;③∠CED=∠CDE;④S△AEC:S△AEG=AC:AG.上述结论中正确的个数是()A.4个B.3个C.2个D.1个6、下列四组数据中,不能..作为直角三角形的三边长的是()A.5,13,12 B.6,8,10 C.9,12,15 D.3,4,67、等腰三角形周长为17cm,其中一边长为5cm,则该等腰三角形的腰长为()A.6cm B.7cm C.5cm或6cm D.5cm8、有两边相等的三角形的两边长为4cm ,5cm ,则它的周长为( )A .8cmB .14cmC .13cmD .14cm 或13cm9、如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣B . 5CD .20﹣10、一个三角形三个内角的度数分别是x ,y ,z .若2||()0x y x y z -++-=,则这个三角形是( )A .等腰三角形B .等边三角形C .等腰直角三角形D .不存在第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的 _____.2、如图,AB =BE ,∠DBC =12∠ABE ,BD ⊥AC ,则下列结论正确的是:_____.(填序号)①BC 平分∠DCE ;②∠ABE +∠ECD =180°;③AC =2BE +CE ;④AC =2CD ﹣CE .3、如图,在△ABC中,AB=AC,∠A=36°,点D在AC上,且BD=BC,则∠BDC=_______.4、如图1,△AA1A1是边长为2的等边三角形;如图2,取AA1的中点A2,画等边△AA2A2,连接A1A2;如图3,取AA2的中点3C,画等边△AA3A3,连接A2A3;如图4,取AA3的中点A4,画等边△AA4A4,连接A3A4,则A3A4的长为________.按照此规律一直画下去,则A A A A+1的长为________(用含A的式子表示).……5、已知直角三角形△ABC的三条边长分别为3,4,5,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画___条.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.2、如图,△AAA和△AAA是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证AA=AA.3、已知∠POQ=120°,点A,B分别在OP,OQ上,OA<OB,连接AB,在AB上方作等边△ABC,点D 是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)连接OC,求证:∠COP=∠COQ;(3)连接CD,CD交OP于点F,请你写出一个∠DAB的值,使CD=OB+OC一定成立,并证明4、如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.5、(1)如图①,已知点A(-2,3),B(-4,-1),C(-1,-2)①在坐标系中画出△ABC关于y轴对称的△A′B′C′(不写画法);②写出点C′的坐标;(2)如图②,已知∠AOB,求作:∠AOB的平分线.(要求尺规作图,保留作图痕迹,不写作法)图②-参考答案-一、单选题1、B【分析】根据直角三角形的性质,全等三角形的判定方法,平行线的性质,角平分线的性质逐项分析.【详解】A.直角三角形两锐角互余,正确,是真命题;B.有三组对应角相等的两个三角形,因为它们的边不一定相等,所以不一定全等,故错误,是假命题;C.两直线平行,同位角相等,正确,是真命题;D.角平分线上的点到角两边的距离相等,正确,是真命题;故选B .【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.2、A【分析】过点P 作PD ⊥AC 于D ,由角平分线的性质可得PD =PB =3cm ,然后利用三角形面积公式求解即可.【详解】解:如图所示,过点P 作PD ⊥AC 于D ,∵CP 平分∠ACB ,∠B =90°,PD ⊥AC ,∴PD =PB =3cm , ∴2115cm 2ACP S AC PD =⋅=△, 故选A .【点睛】本题主要考查了角平分线的性质,三角形面积,熟知角平分线上的点到角两边的距离相等是解题的关键.3、C【分析】先求解60,30,C EDC 可得2,CD CE 从而可得答案.【详解】 解: ABC 是等边三角形,60,C ∴∠=︒DE AC ⊥,90,906030,DEC EDC3,CE =2 6.CD CE 故选C【点睛】本题考查的是等边三角形的性质,三角形的内角和定理的应用,含30的直角三角形的性质,掌握“直角三角形中,30所对的直角边等于斜边的一半”是解本题的关键.4、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断.【详解】解:A 、32+32=(2,能构成直角三角形,故此选项不合题意;B、42+(2=82,能构成直角三角形,故此选项不符合题意;C、62+82=102,能构成直角三角形,故此选项不合题意;D、52+52≠(2,不能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5、A【分析】由CG⊥AB于点G得到∠CAB+∠ACG=90°,然后由∠C=90°得到∠CAB+∠B=90°,从而得到∠B=∠ACG,①正确;由AD平分∠BAC得到∠CAD=∠BAD,从而得到∠CDE=90°﹣∠CAD,由CG⊥AB得到∠AEG=90°﹣∠BAD,从而得到∠AEG=∠CDE,然后结合对顶角相等得到∠CED=∠CDE,③正确;然后得到CE=CD,再由AD平分∠BAC,∠C=90°,DF⊥AB得到CD=DF,即可得到CE=DF,②正确;过点E作EH⊥AC于点H,则EH=EG,然后得到S△AEC=12AC EH⋅=12AC EG⋅,S△AEG=1•2AG EG,从而得到S△AEC:S△AEG=AC:AG,④正确.【详解】解:∵CG⊥AB,∴∠CGA=90°,∴∠CAB+∠ACG=90°,∵∠C=90°,∴∠CAB+∠B=90°,∴∠B=∠ACG,故①正确;∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠C=90°,∠CGA=90°,∴∠CDE=90°﹣∠CAD,∠AEG=90°﹣∠BAD,∴∠AEG=∠CDE,∴∠CED=∠CDE,故③正确;∴CE=CD,∵AD平分∠BAC,∠C=90°,DF⊥AB,∴CD=DF,∴CE=DF,故②正确;如图,过点E作EH⊥AC于点H,则EH=EG,∴S△AEC=12AC EH⋅=12AC EG⋅,∵S△AEG=1•2AG EG,∴S△AEC:S△AEG=AC:AG,故④正确;∴正确的个数是4个,故选:A.【点睛】本题考查了三角形的内角和定理、角平分线的性质定理、等腰三角形的性质,解题的关键是熟知直角三角形的两个锐角互余.6、D【分析】根据勾股定理的逆定理进行判断即可.【详解】解:A、222+=,故A不符合题意.51213B、222+=,故B不符合题意.6810C、22291215+=,故C不符合题意.D、222+≠,故D符合题意.346故选:D.【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键.7、C【分析】分为两种情况:5cm是等腰三角形的腰或5cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】若5cm为等腰三角形的腰长,则底边长为17﹣5﹣5=7(cm),5+5>7,符合三角形的三边关系;若5cm为等腰三角形的底边,则腰长为(17﹣5)÷2=6(cm),此时三角形的三边长分别为6cm,6cm,5cm,符合三角形的三边关系;∴该等腰三角形的腰长为5cm或6cm,故选:C.【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.8、D【分析】有两边相等的三角形,是等腰三角形,两边分别为5cm 和4cm ,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm ;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm .综上所述,该等腰三角形的周长是13cm 或14cm .故选:D .【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.9、A【分析】过点A 作AF ⊥BC 于点F ,由题意易得2BF CF ==,再根据点D ,E 是边BC 的两个黄金分割点,可得2BE CD ===,根据勾股定理可得AF =28DE DF ==,然后根据三角形的面积计算公式进行求解.【详解】解:过点A 作AF ⊥BC 于点F ,如图所示:∵3AB AC ==,4BC =,∴2BF CF ==,∴在Rt △AFB 中,AF∵点D ,E 是边BC 的两个黄金分割点,∴2BE CD BC ===,∵4EF BE BF =-=,4DF CD CF =-=,∴DF =EF ,∴28DE DF ==,∴()1181022ADE S DE AF ===-△ 故选:A【点睛】 本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键.10、C【分析】根据绝对值及平方的非负性可得x y =,x y z +=,再由三角形内角和定理将两个式子代入求解可得45x =︒,290x =︒,即可确定三角形的形状.【详解】 解:()20x y x y z -++-=,∴0x y -=且0x y z +-=,∴x y =,x y z +=,∴2z x =,∵180x y z ++=︒,∴2180x x x ++=︒,解得:45x =︒,290x =︒,∴三角形为等腰直角三角形,故选:C .【点睛】题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.二、填空题1、角平分线【分析】根据角平分线的判定可知.【详解】解:根据角平分线的判定可知:平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的角平分线,故答案为:角平分线.【点睛】本题考查了角平分线的判定,解题关键是明确在角的内部(包括顶点)到角的两边距离相等的点在这个角的平分线上.2、①②④【分析】根据已知∠DBC=1∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为2半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【详解】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∠FBC,∴DF=DC,∠DBC=∠DBF=12∵∠DBC=1∠ABE,2∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.【点睛】本题主要是考查了全等三角形的判定和性质、角平分线的性质,综合运用全等三角形的判定和性质以及角平分线的性质,是求解该类问题的关键.3、72°72度【分析】根据AB=AC求出∠ACB,利用BD=BC,求出∠BDC的度数.【详解】解:∵AB=AC,∠A=36°,∴1(180)722ABC ACB A∠=∠=︒-∠=︒,∵BD=BC,∴∠BDC=∠ACB=72°,故答案为:72°.【点睛】此题考查了等腰三角形的性质:等边对等角,熟记性质是解题的关键.4【分析】过点C2作C2D⊥B1B2于点D,根据锐角三角函数的定义得出B1D的长,进而得出B1B2的长,同理可得出B2B3的长,找出规律即可得出结论.【详解】解:如图(2),过点C2作C2D⊥B1B2于点D,∵△AB1C1是边长为1的等边三角形,C2是AB1的中点,∴B1C2=B2C2=1.2∵△AB2C2是等边三角形,∴∠B1C2B2=120°,B1C2=B2C2,∴∠DB1C1=∠DB2C2=30°,∴B1D=B1C2•cos30°=12∴B1B2=2B1D同理可得,B2B3,B3B4∴B n B n+1【点睛】本题考查的是等边三角形的性质,根据题意作出辅助线,求出B1B2的长,找出规律是解答此题的关键.5、6【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【详解】解:如图所示:当BC2=CC2,AC1=AC,BC=BC3,BC=CC4,BC=CC5,C6A=C6B都能得到符合题意的等腰三角形.故答案为:6.【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、解答题1、(1)6;(2)20°.【分析】(1)由DM和EN分别垂直平分AB和AC,推出AD=BD,EA=EC,可得AD+DE+EA=6,由此得到答案;(2)根据AD=BD,EA=EC,求出∠B+∠C=80°,即∠BAD+∠EAC=80°,再由∠DAE=∠BAC-(∠BAD+∠EAC)计算可得度数.(1)解:∵DM 和EN 分别垂直平分AB 和AC ,∴AD =BD ,EA =EC ,∵△ADE 的周长为6,∴AD +DE +EA =6.∴BD +DE +EC =6,即BC =6;(2)解:∵DM 和EN 分别垂直平分AB 和AC ,∴AD =BD ,EA =EC ,∴∠B =∠BAD ,∠C =∠EAC .∵∠BAC =100°,∴∠B +∠C =180°-∠BAC=180°-100°=80°,即∠BAD +∠EAC =80°.∴∠DAE=∠BAC-(∠BAD +∠EAC )=100°-80°=20°.【点睛】此题考查了线段垂直平分线的性质,等边对等角求角的度数,熟记线段垂直平分线的性质是解题的关键.2、见解析【分析】由ABC ∆和ADE ∆是顶角相等的等腰三角形,得出BAC DAE ∠=∠知AB AC =、AD AE =、BAD CAE ∠=∠,证ABD ACE ∆≅∆即可得证.【详解】解:ABC ∆和ADE ∆是顶角相等的等腰三角形,得出BAC DAE ∠=∠,AB AC∴=,AD AE=,BAD CAE∠=∠,在ABD∆和ACE∆中,AB ACBAD CAEAD AE=∠=∠=⎧⎪⎨⎪⎩,()ABD ACE SAS∴∆≅∆,BD CE∴=.【点睛】本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.3、(1)见解析;(2)见解析;(3)∠DAB=150°,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,∠ACB=60°由同角的补角相等得∠CAO=∠CBE,由SAS证得△CAO和△CBE全等,即可得证;(3)由∠DAB=150°,DA=AB,得∠ADB=∠ABD=15°,由等边三角形性质,可得∠CAB=∠CBA=∠ACB =60°,故∠CAD=150°,由等边对等角得∠ADC=∠ACD=15°,由此∠DBC=∠DCB=75°,由等角对等边得DB=DC再由∠POQ=120°,∠BDC=30°,得∠DFO=90°,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ上截取BE=AO,连接CE,∵△ABC为等边三角形,∴CA=CB,∠ACB=60°∵∠POQ=120°,∴∠CAO+∠CBO=180°∵∠CBO+∠CBE=180°,∴∠CAO=∠CBE,在△CAO和△CBE中,CA CBCAO CBE AO BE=⎧⎪∠=∠⎨⎪=⎩,∴△CAO≌△CBE(SAS),∴CO=CE,∠COA=∠CEB,∴∠COE=∠CEB,∴∠COP=∠COQ;(3)∠DAB=150°,如图:∵∠DAB=150°,DA=AB,∴∠ADB=∠ABD=15°∵△ABC为等边三角形,∴∠CAB=∠CBA=∠ACB=60°,∴∠CAD=150°,∵AD=AC,∴∠ADC=∠ACD=15°,∴∠DBC=∠DCB=75°,∴DB=DC,∵∠POQ=120°,∠BDC=30°,∴∠DFO=90°∵AD=AC,∴DF=FC∴DO=OC∵DB=DO+OB,∴DB=CO+OB,∴CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.4、见解析【分析】连接FC,由等腰三角形的性质可得BF=FC;再由AF=FC,即可得AF=BF.连接FC,如图∵AB=AC,AD平分∠BAC∴AD⊥BC,BD=CD∴AD是BC的垂直平分线∴BF=FC∵FE是AC的垂直平分线∴AF=FC∴AF=BF【点睛】本题考查了等腰三角形的性质,线段垂直平分线的判定与性质,由FE是AC的垂直平分线想到连接FC是关键.5、(1)①见解析;②点C′的坐标(1,-2);(2)见解析【分析】(1)①根据两点关于y轴对称,纵不变,横相反,确定各自的对称点坐标,后坐标系中,描点,依次连接构造三角形即可;②根据C(-1,-2),纵坐标不变,横坐标变成相反数写出即可;(2)按照角的平分线尺规作图要求,规范画图即可.(1)①∵点A(-2,3),B(-4,-1),C(-1,-2),∴根据两点关于y轴对称,纵不变,横相反,它们各自的对称点坐标分别为A'(2,3),B'(4,-1),C'(1,-2),画图如下:则△A′B′C′即为所求;②根据C(-1,-2),纵坐标不变,横坐标变成相反数,∴C'(1,-2);(2)如图:射线OC即为所作:【点睛】本题考查了坐标系中的对称问题,角的平分线尺规作图,熟练掌握对称点坐标的确定方法是解题的关键.。
北师大版数学八年级下册 第一章 精选练习题含答案

第一章三角形的证明1.1 全等三角形和等腰三角形的性质1.如图所示,BA⊥CA,AB∥CD,AB=CE,AC=CD,则△ABC≌,理由是,所以∠ABC=,∠ACB=,由此可知BC与DE的位置关系为.2.如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= .3. 如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为 .4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为 .5.如图,AD、CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°则∠ACE的度数是 .6. 如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7. 如图所示为农村居民住宅侧面截面图,屋坡AF、AG分别架在墙体的点B、点C处,且AB=AC,侧面四边形BDEC为长方形.若测得∠FAG=110°,则∠FBD等于( )A.35° B.40° C.55° D.70°8.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )A.BC=EC B.EC=BE C.BC=BE D.AE=EC9.若实数m、n满足等式|m-2|+n-4=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是( )A.12 B.10 C.8 D.610. 如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD11. 如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是( )A.70° B.55° C.50° D.40°12. 已知等腰三角形的一个外角等于100°,则等腰三角形的顶角为( ) A.80°或20° B.70°或55° C.60°或50° D.50°或40°13. 如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为( )A.70° B.72° C.80° D.85°12.在△ABC中,AB=AC,且BC=8 cm,BD是腰AC的中线,△ABC的周长分为两部分,已知它们的差为2 cm,则等腰三角形的腰长为( )A. 15cm或3cmB. 12cm或5cmC. 12cm或6cmD. 10cm或6cm15. 如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.16. 如图,点D、E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.17. 如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE.求∠A的度数.18. 如图,点D、E在△ABC的边BC上,连接AD、AE.①AB=AC;②AD=AE;③BD=CE.以这三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后再证明).答案;1. △CED SAS ∠CED ∠CDE2. 互相垂直3. 40°4. 40°5. 35°6. D7. C8. C9. D 10. D 11. D 12. A 13. B 14. D15. 解:∵AB =AC ,∠A =40°,∴∠ABC =∠C =180°-∠A2=70°,∵BD 是∠ABC 的平分线,∴∠DBC =12∠ABC =35°,∴∠BDC =180°-∠DBC -∠C =75°.16. 证明:∵AB =AC ,∴∠C =∠B(等边对等角),在△ABD 和△ACE 中,AB =AC ,∠B =∠C ,BD =CE ,∴△ABD ≌△ACE(SAS),∴AD =AE(全等三角形的对应边相等).17. 解:设∠A =x°,∵AD =BE =DE ,∴∠EDB =12x°,∵AC =AB ,∴∠C =90°-12x°,∵BC =BD ,∴∠CDB =90°-12x°,∴∠EDC =12x°+90°-12x°=90°,∴∠A =45°.18. (1) ①②⇒③;①③⇒②;②③⇒①(2) 解:选择①③⇒②,证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,AB =AC ,∠B =∠C ,BD =CE ,∴△ABD ≌△ACE ,∴AD =AE.1.2直角三角形一.选择题1.下列可使两个直角三角形全等的条件是( ) A .一条边对应相等 B .两条直角边对应相等 C .一个锐角对应相等 D .两个锐角对应相等2.已知直角三角形ABC ,有一个锐角等于50°,则另一个锐角的度数是( ). A . 30° B . 40° C . 45° D . 50°3.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是( ) A .1 B .2 C .3 D .44.如图,AB ⊥BC 于点B ,AD ⊥DC 于点D ,若CB =CD ,且∠1=30°,则∠BAD 的度数是( )A .90°B .60°C .30°D .15° 5.下列命题中,逆命题不正确的是( )A . 两直线平行,同旁内角互补B . 直角三角形的两个锐角互余C . 全等三角形对应角相等D . 直角三角形斜边上的中线等于斜边的一半 6.下列性质中,等腰三角形具有而直角三角形不一定具有的是( ) A .任意两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C.至少有两个角是锐角D.内角和等于180°7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2 km,则M,C两点间的距离为( )A.0.5 km B.0.6 km C.0.9 km D.1.2 km8.直角三角形两个锐角平分线相交所成的钝角的度数为( )A.120°B.135°C.150°D.120°或135°9.如图,AD是Rt△ABC斜边BC上的高,将△ACD沿AD所在的直线折叠,点C恰好落在BC的中点E处,则∠B等于()A. 25° B. 30° C. 45° D. 60°10.下列命题为假命题的是()A.若a=b,则a﹣2019=b﹣2019 B.若a=b,则C.若a>b,则a2>ab D.若a<b,则a﹣2c<b﹣2c二.填空题11.命题“在同一个三角形中,等角对等边”的逆命题是________.12.如图,D为Rt△ABC斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC 于点E,若AE=12 cm,则DE=_________cm.13.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)14.用直尺和圆规作△ABC,使BC=a,AC=b(a>b),∠B=30°,若这样的三角形能作两个,则a,b间满足的关系式是________.15.命题“两直线平行,同旁内角相等”是命题(填“真”或“假”).16.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=__________时,△ABC与△QPA全等.17.举一个能证明命题“若x,y都是实数,则+≠”是假命题的反例:.18.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是________(不包括5).三.解答题19.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F,那么CE=DF吗?请说明理由.20.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?21.如图,在△ABC中,AC>AB,AD平分∠BAC,点D到点B与点C的距离相等,过点D作DE⊥BC于点E.(1)求证:BE=CE;(2)请直接写出∠ABC,∠ACB,∠ADE三者之间的数量关系;(3)若∠ACB=40°,∠ADE=20°,求∠DCB的度数.22.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.23.边长为6的等边△ABC中,点P从点A出发沿射线AB方向移动,同时点Q从点B出发,以相同的速度沿射线BC方向移动,连接AQ、CP,直线AQ、CP相交于点D.(1)如图①,当点P、Q分别在边AB、BC上时,①连接PQ,当△BPQ是直角三角形时,AP等于________;②∠CDQ的大小是否随P,Q的运动而变化?如果不会,请求出∠CDQ的度数;如果会,请说明理由;________(2)当P、Q分别在边AB、BC的延长线上时,在图②中画出点D,并直接写出∠CDQ的度数.24.按要求完成下列各小题.(1)将命题“两个钝角的和一定大于180°”写成“如果…那么…”的形式,并判断该命题是真命题还是假命题;(2)判断命题“若a2>b2,则a>b”是真命题还是假命题,若是真命题,则举一个满足命题的例子;若是假命题,则举一个反例.25.如图,在Rt △ABC 中,∠ACB =90°,M 是边AB 的中点,CH ⊥AB 于点H ,CD 平分∠ACB .(1)求证:∠1=∠2.(2)过点M 作AB 的垂线交CD 的延长线于点E ,连结AE ,BE .求证:CM =EM .答案提示1.B. 2.B. 3.A .②正确.4.B. 5.C . 6.B .7.D.8.B.9.B. 10.C .11.在同一个三角形中,等边对等角. 12.12.13.AB =DC (答案不唯一).14.a <b <a . 15.假. 16.5或10.17.x =1,y =﹣4(答案不唯一).18.9或13或4919. 解:CE =DF .理由如下:在Rt △ABC 和Rt △BAD 中,⎩⎨⎧BC =AD ,AB =BA ,∴Rt △ABC ≌Rt △BAD(HL),∴AC =BD ,∠CAB =∠DBA .在△ACE 和△BDF 中,⎩⎨⎧∠CAB =∠DBA ,∠AEC =∠BFD =90°,AC =BD ,∴△ACE ≌△BDF(AAS),∴CE =DF .20.解:连接BD在Rt△ABD中,BD2=AB2+AD2=32+42=52 ,在△CBD中,CD2=132 ,BC2=122 ,而122+52=132 ,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC= AD·AB+ DB· BC= ×4×3+ ×5×12=36所以需费用36×200=7200(元)21.解:(1)证明:∵DB=DC,DE⊥BC,∴CE=BE(三线合一).(2)结论:∠ABC-∠ACB=2∠ADE.点拨:作BF⊥AD于点F,交AC于点G,求出∠ABG=∠BGA,∠ADE=∠CBG.(3)作DM⊥AC于点M,DN⊥AB的延长线于点N,图略.∵∠DAN=∠DAM,DM⊥AC,DN⊥AB,∴DM=DN,∵DB=DC,∴Rt△DBN≌Rt△DCM(HL),∴∠BDN=∠CDM,∴∠CDB=∠MDN,∵∠CAB+∠MDN=180°,∴∠CDB+∠CAB=180°,∵∠ACB=40°,∠ADE=20°,∠ABC-∠ACB=2∠ADE,∴∠ABC=80°.∴∠CAB=180°-80°-40°=60°,∴∠CDB=120°,∴∠EDB=∠EDC=60°,∴∠DCB=90°-∠EDC=30°.22.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.23.(1)2或4;解:∠CDQ的大小不变∵P、Q用时出发,速度相同,所以AP=BQ,∵△ABC是等边三角形,∴BA=AC,∠B=∠CAP=60°,在△ABQ和△CAP中,BA=AC,∠B=∠APC,BQ=AP,∴△ABQ≌△CAP,∴∠BAQ=∠ACP,∴∠CDQ=∠DAC+∠ACP=∠DAC+∠BAQ=∠CAB=60°;(2)解:如图4,∠CDQ=120°,理由如下:∵△ABC是等边三角形,∴BA=AC,∠ABC=∠CAP=60°,在△ABQ和△CAP中,BA=AC,∠ABQ=∠CAP,BQ=AP,∴△ABQ≌△CAP,∴∠Q=∠P,∵∠P+∠BCP=60°,∴∠Q+∠DCQ=60°,∴∠CDQ=120°.24.解:(1)如果两个角是钝角,那么这两个角的和一定大于180°,真命题;(2)假命题,反例:a=﹣2,b=﹣1.25.解:(1)∵∠ACB=90°,∴∠BCH+∠ACH=90°.∵CH⊥AB,∴∠CAH+∠ACH=90°,∴∠CAH=∠BCH.∵M是斜边AB的中点,∴CM=AM=BM,∴∠CAM=∠ACM.∴∠BCH=∠ACM.∵CD平分∠ACB,∴∠BCD=∠ACD,∴∠BCD-∠BCH=∠ACD-∠ACM,即∠1=∠2.(2)∵CH⊥AB,ME⊥AB,∴ME∥CH,∴∠1=∠MED.∵∠1=∠2,∴∠2=∠MED,∴CM=EM.1.3线段的垂直平分线一.选择题1.如图,∠B=35°,CD为AB的垂直平分线,则∠ACE=()A.55°B.60°C.70°D.80°2.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC =2,则BC的长为()A.4B.6C.8D.103.如图,△ABC的边长AB=8cm,AC=10cm,BC=4cm,作BC的垂直平分线交AC于D,则△ABD的周长为()A.18cm B.14cm C.20cm D.12cm4.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处5.如图,已知△ABC的三条内角平分线相交于点I,三边的垂直平分线相交于点O.若∠BOC=148°,则∠BIC=()A.120°B.125°C.127°D.132°6.如图,在△ABC中,∠A=30°,∠C=110°,AB的垂直平分线交AB于点D,交边AC于点E,则∠EBC的度数是()A.10°B.15°C.20°D.25°7.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°8.如图,△ABC中,∠B=90°,边AC的垂直平分ED,交AC于点D,交BC于点E,已知∠C=36°,则∠BAE的度数为()A.16°B.17°C.18°D.19°9.如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知△CDE的面积比△CDB的面积小4,则△ADE的面积为()A.4B.3C.2D.110.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.15°B.20°C.25°D.30°二.填空题(共5小题)11.如图,在△ABC中,点O是BC、AC的垂直平分线的交点,OB=5cm,AB=8cm,则△AOB的周长是cm.12.如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=.13.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD,若AC=9,BC=5,则△BDC的周长是.14.如图,△ABC中,∠A=68°,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则∠EDF=度.15.如图,在锐角△ABC中、∠A=80°,DE和DF分别垂直平分边AB、AC,则∠DBC的度数为°.三.解答题16.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为14cm,AC=6cm,求DC长.17.如图,在Rt△ABC中,∠A=90°,DE是BC的垂直平分线,交AC于点E,连接BE,∠CBE=2∠ABE,求∠C的度数.18.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAD+∠CAE=60°,求∠BAC的度数.参考答案一.选择题1.解:∵CD为AB的垂直平分线,∴AC=BC,∴∠B=∠A=35°∴∠ACE=∠B+∠A=70°.故选:C.2.解:∵DE是线段AB的垂直平分线,∴DA=DB,∵△ADC的周长为10,∴AC+DC+AD=10,∴AC+CD+BD=AC+BC=10,∵BC﹣AC=2,∴BC=6,故选:B.3.解:∵BC的垂直平分线交AC于D,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=8+10=18(cm),故选:A.4.解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.5.解:连接OA,∵∠BOC=148°,∴∠OBC+∠OCB=180°﹣∠BOC=32°,∵O是三边的垂直平分线的交点,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBA+∠OCA=(180°﹣32°)÷2=74°,∴∠ABC+∠ACB=74°+32°=106°,∵△ABC的三条内角平分线相交于点I,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠BIC=180°﹣∠IBC﹣∠ICB=180°﹣(∠ABC+∠ACB)=127°,故选:C.6.解:∵AB的垂直平分线交AB于点D,交边AC于点E,∴∠ABE=∠A=30°,∵∠A=30°,∠C=110°,∴∠ABC=180°﹣30°﹣110°=40°,∴∠EBC=40°﹣30°=10°,故选:A.7.解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.8.解:在Rt△ABC中,∠B=90°,∠C=36°,∴∠BAC=90°﹣36°=54°,∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C=36°,∴∠BAE=∠BAC﹣∠CAE=18°,故选:C.9.解:由尺规作图可知,MN是线段AB的垂直平分线,∴点D是AB的中点,∴S△ADC=S△BDC,∵S△BDC﹣S△CDE=4,∴S△ADC﹣S△CDE=4,即△ADE的面积为4,故选:A.10.解:∵AB边的垂直平分线交AB于点D,AC边的垂直平分线交AC于点F,∴AG=CG,AE=BE,∴∠C=∠CAG,∠B=∠BAE,∴∠BAE+∠CAG=∠B+∠C=180°﹣∠BAC=100°,∴∠EAG=∠BAE+∠CAG﹣∠BAC=100°﹣80°=20°,故选:B.二.填空题(共5小题)11.解:∵点O是BC、AC的垂直平分线的交点,∴OA=OB=5cm,∴△AOB的周长=OA+OB+AB=18(cm),故答案为:18.12.解:∵DE是AC的垂直平分线,∴AD=DC,∴BC=BD+DC=BD+DA,∵AB=4,△ABD的周长为12,∴BC=12﹣4=8.故答案为:8.13.解:∵MN是线段AB的垂直平分线,∴△BDC的周长=BC+CD+DB=BC+CD+DA=BC+AC=14,故答案为:14.14.解:∵BD、CD的垂直平分线分别交AB、AC于点E、F,∴EB=ED,FD=FC,∴∠EDB=∠B,∠FDC=∠C,∴∠EDB+∠FDC=∠B+∠C,∵∠EDF=180°﹣(∠EDB+∠FDC),∠A=180°﹣(∠B+∠C),∴∠EDF=∠A=68°.故答案为68.15.解:连接DA、DC,∵∠BAC=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵DE和DF分别垂直平分边AB、AC,∴DA=DB,DA=DC,∴DB=DC,∠DBA=∠DAB,∠DAC=∠DCA,∴∠DBA+∠DCA=∠DAB+∠DAC=80°,∴∠DBC=∠DBC=×(100°﹣80°)=10°,故答案为:10.三.解答题16.(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为14cm,∴AB+BC+AC=14(cm),∴AB+BC=8(cm),∵AB=EC,BD=DE,∴DC=DE+EC=(AB+BC)=4(cm).17.解:∵DE是BC的垂直平分线,∴EB=EC,∴∠CBE=∠C,∵∠CBE=2∠ABE,∴∠ABE=∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C+∠C+∠C=90°,∴∠C=36°.18.解:(1)∵边AB、AC的垂直平分线分别交BC于D、E,∴DA=DB,EA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5;(2)∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠B+∠C=∠DAB+∠EAC=60°,∴∠BAC=120°.。
北师版八年级数学下册作业课件(BS) 第一章 三角形的证明 专题课堂 三角形的证明

3.(嘉兴中考)如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB, DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.
证明:∵DE⊥AB,DF⊥BC,垂足分别为点 E,F, ∴∠AED=∠CFD=90°,∵D 为 AC 的中点,∴AD=CD, 在 Rt△ADE 和 Rt△CDF 中,ADDE==DCFD,,∴Rt△ADE≌Rt△CDF(HL), ∴∠A=∠C,∴BA=BC,∵AB=AC, ∴AB=BC=AC,∴△ABC 是等边三角形
6.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E, 交AC于点D,若AB=6,AC=9,则△ABD的周长是_____1.5
7.如图所示,D为锐角∠ABC内一点,点M在边BA上,点N在边BC上, 且DM=DN,∠BMD+∠BND=180°. 求证:BD平分∠ABC.
证明:作DE⊥AB,DF⊥BC,E,F为垂足,可证△DEM≌△DFN, 则∴DE=DF,∴BD平分∠ABC
证明:∵AB=AC,D是BC的中点,∴∠BAD=∠CAD, ∵∠EAB=∠BAD,∴∠EAB=∠CAD,在△AEB和△AFC中, AE=AF,∠EAB=∠FAC,AB=AC, ∴△AEB≌△AFC(SAS),∴BE=CF
例2 如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分 ∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,求BC的长.
1.如图,在等腰 Rt△ABC 中,∠ABC=90°,AB=CB=2, 点 D 为 AC 的中点,点 E,F 分别是线段 AB,CB 上的动点, 且∠EDF=90°,若 ED 的长为 m, 则△BEF 的周长是(__2_m__+__2_) (用含 m 的代数式表示).
2.如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD, AE交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF. 求证:BE=CF.
北师大版八年级数学下册第一章有理数1.4-1.6练习题及答案

北八(下)第一章1.4-1.6章节水平测试题一、填空题:(每题3分,共24分)1.已知不等式7)1(68)2(5+-<+-x x 的最小整数解为方程42=-ax x 解,则a 值是 .2.已知)1(645)25(3+-<++x x x ,化简xx --+11= .3.a 取正整数 时,方程73-=a x 的解是负整数.4.k 为整数 时,方程425+-=-x k x 的解在1和3之间.7.如果三角形的三边长分别是 3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________.8.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.二、选择题:(每题3分,共24分)9.不等式3(x -2)≤x +4的非负整数解有几个( ) A .4 B .5 C .6D .无数个10.不等式4x -41141+<x 的最大的整数解为( ) A .1B .0C .-1D .不存在A .5B .4C .3D .无数个A .a =3 b =5B .a =-3 b =-5C .a =-3 b =5D .a =3 b =-513.若方程4152435-=-m m x 的解是非正数,则m 的取值范围是( ). A 3m ≤ B 2m ≤ C 3m ≥ D 2m ≥14.七年级(3)班同学假日外出游玩,要拍合影留念,若一张彩色底片要0.57,冲印一张要0.35元,每人预定要一张,花钱不超过0.45元,则参加合影的同学至少有( )个人?A 5 B.6 C.7 D.815.如果关于x 、y 的方程组⎩⎨⎧=+=-a y x y x 53102的解满足x >0且y <0,则实数a 的取值范围是( ).A2<a<3 B-3<a<2 C-2<a <3 D-3<a<-216.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y 1元,国营出租车公司收费为y 2元,观察下列图象可知,当x( )时,选用个体车较合算.A. x<1500B. x=1500C. x>1200D. x >1500 三、解答题:(共30分)17(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)612312531+-≥--x x (2)18.(10分)已知5x -2y =6,当x 满足6≤7x -1<13时,请确定y 的取值范围.19.(10分)如果方程组,⎩⎨⎧-=++=+m y x m y x 13313的解满足x +y >0,求m 的取值范围,并把m 的值表示在数轴上. 是多少?四、综合探究题:(22分)20.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需调往A 县10辆,调至B 县8辆,已知从甲仓库调往A 县和B 县的费用分别40元和80元;从乙仓库调往A 县和B 县的费用分别为30元和50元.(1)设从乙仓库调往A 县农用车x 辆.求总运费y 与x 的函数关系式. (2)若要求总运费不超过900元.问共有几种调配方案? (3)求出总运费最低的调运方案,最低运费是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版八年级下数学第一章随堂练习72
一、选择题(共5小题;共25分)
1. 下列说法中,正确的是
A. 每一个命题都有逆命题
B. 假命题的逆命题一定是假命题
C. 每一个定理都有逆定理
D. 假命题没有逆命题
2. 如图,在上,点在上,,,则的度数为
A. B. C. D.
3. 由下列线段,,能组成直角三角形的是
A. ,,
B. ,,
C. ,,
D. ,,
4. 利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设
A. 四边形中至多有一个内角是钝角或直角
B. 四边形中所有内角都是锐角
C. 四边形的每一个内角都是钝角或直角
D. 四边形中所有内角都是直角
5. 如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,
于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线
交边于点,若,,则的面积是
A. B. C. D.
二、填空题(共4小题;共20分)
6. 在中,,,那么.
7. 如图,已知中,,,垂直平分交于,垂足
为,若,则.
8. 命题"两直线平行,内错角相等"的逆命题是.
9. 等腰三角形的底边长为,一腰上的中线将这个三角形分成上下两部分,这两部分的长度之
差为,则这个等腰三角形的腰长为.
三、解答题(共4小题;共52分)
10. 如图所示,是的平分线,于,于,且.求
证:.
11. 利用线段垂直平分线性质定理及其逆定理证明以下命题.已知:如图,,
,点在上.求证:.
12. 如图,已知四边形中,,点是中点,点是
中点.
(1)求证:;
(2)过点作于点,如果平分,求证:.
13. 如图,在中,,点,,分别在三边上,且,,
为的中点.求证:垂直平分 .
答案
第一部分
1. A
2. B
3. D 【解析】A、,不能组成直角三角形,故此选项错误;
B、,不能组成直角三角形,故此选项错误;
C、,不能组成直角三角形,故此选项错误;
D、,能组成直角三角形,故此选项正确.
4. B 【解析】用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.
5. B
【解析】作于,如图,
由作法得平分,
,,
,
.
故选:B.
第二部分
6.
7.
【解析】连接,
中,,,
,
垂直平分,
,
,
,
,
,
.
8. 内错角相等,两直线平行
9. 或
第三部分
10. 证明略.
11. 连接.
,
点在线段的垂直平分线上.
,
点在线段的垂直平分线上,
是线段的垂直平分线(两点确定一条直线).点在上,
.
12. (1),点是中点,
,,
,
点是中点,
.
(2)设,交于点,
,,
,
,
,
,
,
平分,
,
,
,
,
,
,
.
13. 如图所示,连接, .
,,,
.
.
为的中点,
.
又,
.
.
垂直平分 .。