第五章 胶体的稳定性(精心制作)解析
合集下载
第五章 胶体的稳定性

文献中除特别指明外给出的表面张力数据都是在一定温度下的平衡状态 的数值,因此,静态法测出的数据更为可靠。躺滴法是完全静态法,毛细 升高法一般也归静态法,但通常应用时将液面升到较高位置,再使其缩 回至平衡高度,故形成的气液表面相对新鲜。滴重和滴体积法是半静态 法,相对达到平衡时间较短,测定数据常随液滴形成时间长短而略有变 化。
2 p p pl gh r 2 72 103 3 2 10 9.8 3 10 0.3 103 / 2 1254 N / m2
Page
18
例5
用滴重法测定一有机液体的表面张力,滴管外径为0.006m,内径为0.0002m。 今测得20滴液体重量为0.0008kg,液体的密度为950kg/m3,液体可润湿管端。 用适当的校正因子计算表面张力。
(ƒ为校正系数,是V/r3的函数,校正因子F= 1/2πƒ )
测定方法:用读数显微镜测准管端外直径r ;由滴出体积 和计数得每一液滴V或重量W ;计算V/r3的值从表查F 。求 σ= (ρ·V·g / r)F ( ρ液体密度)
Page
5
挂环法
①公式:F=mg=2πR'σ+2π(2r+R') σ=4πRσ F=W总- W环= 4πRσ, σ = △W/ 4πR ①测定方法: 铂丝圆形挂环挂于扭力天平或 链式天平,环平面恰与液面接触,测 定挂环与液面脱离时的最大拉力W总, 与环重W环之差是所设拉起的液体为 圆柱形的液重F (R'环的内半径,r环 丝半径,2r+R'环的外半径,环平均半 径R= R'+ r )。
求 水 / 汞。 解: 只考虑色散力,有
d d ls gs gl 2 gl gs d d 水 / 庚烷 庚烷 水 2 水 庚 烷 d 可得(已知饱和烷烃 gs= gs
2 p p pl gh r 2 72 103 3 2 10 9.8 3 10 0.3 103 / 2 1254 N / m2
Page
18
例5
用滴重法测定一有机液体的表面张力,滴管外径为0.006m,内径为0.0002m。 今测得20滴液体重量为0.0008kg,液体的密度为950kg/m3,液体可润湿管端。 用适当的校正因子计算表面张力。
(ƒ为校正系数,是V/r3的函数,校正因子F= 1/2πƒ )
测定方法:用读数显微镜测准管端外直径r ;由滴出体积 和计数得每一液滴V或重量W ;计算V/r3的值从表查F 。求 σ= (ρ·V·g / r)F ( ρ液体密度)
Page
5
挂环法
①公式:F=mg=2πR'σ+2π(2r+R') σ=4πRσ F=W总- W环= 4πRσ, σ = △W/ 4πR ①测定方法: 铂丝圆形挂环挂于扭力天平或 链式天平,环平面恰与液面接触,测 定挂环与液面脱离时的最大拉力W总, 与环重W环之差是所设拉起的液体为 圆柱形的液重F (R'环的内半径,r环 丝半径,2r+R'环的外半径,环平均半 径R= R'+ r )。
求 水 / 汞。 解: 只考虑色散力,有
d d ls gs gl 2 gl gs d d 水 / 庚烷 庚烷 水 2 水 庚 烷 d 可得(已知饱和烷烃 gs= gs
胶体的定义和稳定性理论

电解质
负电溶胶的聚沉值(mmol/L)
As2S3溶胶
Au溶胶
AgI溶胶
实验 平 均 实验 平 均 实 验 平均
值
值
值
值
值
值
LiCl
58
LiNO3
—
NaCl
51
Na NO3
—
KCl
49.5
K NO3
50
55
1/2K 2SO4
65.5
Rb NO3
—
CH 3COOK 110
HCl
31
Ag NO3
—
— — 24 — — 25 24 23 — — 5.5 —
平均值 0.068
0.090
0.090
0.0009 0.0009 0.013
0.013
正电溶胶的聚沉值(mmol/L)
显然,聚沉值大,聚沉能力低;反之,聚沉能力大。
聚沉作用的一些实验规律如下: ⑴Schulze-Hardy规则:起聚沉作用的主要是反离子,反离子价数越 高,聚沉效率也越高。一般地,聚沉值与反离子价数的六次方成反比 。 相同价数的反离子聚沉值虽然相近,但也有差异,其顺序为: Li+ > Na+ > K+ > NH4+ > Rb+ > Cs+ Mg2+ > Ca2+ > Sr2+ > Ba2+ SCN -> I- > NO3-> Br- > Cl- > F- > Ac- >1/2 SO42- 这种顺序称为感胶离子序(Holmeister序)。 Schulze-Hardy规则只是用于惰性电解质,即不与溶胶发生任何特殊 反应的电解质。因此电势决定离子、特性吸附离子等都不应包含在内
胶体化学第5章胶体的稳定性

体的移动速度来计算电渗和电动现象,从而判断胶体的稳定性。
02 03
沉降法
沉降法是通过测量胶体在重力场中的沉降速度来判断其稳定性。如果沉 降速度很快,说明胶体的稳定性较差;如果沉降速度很慢,说明胶体的 稳定性较好。
光学法
光学法是通过观察胶体在光学显微镜下的形态来判断其稳定性。如果观 察到明显的聚沉现象,说明胶体的稳定性较差;如果没有观察到明显的 聚沉现象,说明胶体的稳定性较好。
反絮凝
是指通过某些措施使已经 絮凝的胶体重新分散成小 聚集体的过程。
04 胶体的应用
胶体在化学工业中的应用
胶体在化学工业中有着广泛的应用, 如涂料、颜料、粘合剂、印染等。胶 体作为分散相,能够提高产品的性能 和稳定性,改善产品的外观和手感。
胶体在化学工业中还可以用于制备功 能性材料,如光敏材料、电绝缘材料 ห้องสมุดไป่ตู้磁性材料等,以满足不同领域的需 求。
A
B
C
D
电子信息领域
利用胶体化学制备高性能的电子材料和器 件,推动电子信息技术的进步和发展。
能源与催化领域
利用胶体化学制备高效催化剂和燃料添加 剂,提高能源利用效率和减少环境污染。
感谢您的观看
THANKS
分散剂的作用
分散剂可以降低胶体粒子 之间的相互作用力,使胶 体粒子在介质中均匀分散。
分散剂的种类
常用的分散剂包括表面活 性剂、高分子物质等。
胶体的絮凝与反絮凝
胶体的絮凝
是指在某些条件下,胶体 粒子通过相互作用形成较 大聚集体的现象。
絮凝的条件
电解质、高分子物质、温 度变化等都可能引起胶体 的絮凝。
根据分散相粒子的大小,胶体可 分为粗分散体系、溶胶、高分子 溶液和缔合胶体等。
第五章 胶体的稳定性(精心制作)资料

2019/3/17
胶体的稳定性概论
无机电解质和高分子都能对溶胶的稳定性产生重大影响,但其机
理不同。为加以区别,通常: 把无机电解质使溶胶沉淀的作用称为聚沉作用 把高分子使溶胶沉淀的作用称为絮凝作用 两者可统称为 聚集作用
2019/3/17
第一节 电解质的聚沉作用
2019/3/17
5.1 电解质的聚沉作用
第五章
胶体的稳定性
5.1 电解质的聚沉作用 5.2 高分子化合物的絮凝作用 5.3 高分子化合物的稳定作用
2019/3/17
秦可欣 哈尔滨商业大学
胶体的稳定性概论
胶体溶液的稳定性实指其某种性质(如分散相浓度、颗粒大小、
体系黏度和密度等)在一定程度的不变性。包括热力学稳定性、动 力稳定性和聚结稳定性。
(单位:mmol/L)
Al2O3(正电) NaCL KCl KNO3 K2SO4 K2Cr2O7 草酸钾 K3[Fe(CN)6] 43.5 46 60 0.30 0.63 0.69 0.08
2019/3/17
5.1 电解质的聚沉作用
聚沉作用规律
1 叔尔采—哈迪(Schulze-Hardy)规则
起聚沉作用的主要是反离子,反离子的价数越高,聚沉效率也越 高。由表5-1可粗略的估计出。对于给定溶胶来说,聚沉值与反离子的 价数的六次方成反比。即:
2019/3/17
5.1 电解质的聚沉作用
同价离子聚沉能力的次序称为感胶离子序。 对于高价离子的聚沉能力,电荷作用是主要的,离子大小的影响相 对的就不那么显著了。而大的有机离子,如表面活性剂,由于与胶粒 间有较强的范德华引力,容易在胶体粒子上吸附,所以聚沉能力比同 价小离子要大得多。
3 同号离子的影响
2019/3/17
胶体的稳定性概论
无机电解质和高分子都能对溶胶的稳定性产生重大影响,但其机
理不同。为加以区别,通常: 把无机电解质使溶胶沉淀的作用称为聚沉作用 把高分子使溶胶沉淀的作用称为絮凝作用 两者可统称为 聚集作用
2019/3/17
第一节 电解质的聚沉作用
2019/3/17
5.1 电解质的聚沉作用
第五章
胶体的稳定性
5.1 电解质的聚沉作用 5.2 高分子化合物的絮凝作用 5.3 高分子化合物的稳定作用
2019/3/17
秦可欣 哈尔滨商业大学
胶体的稳定性概论
胶体溶液的稳定性实指其某种性质(如分散相浓度、颗粒大小、
体系黏度和密度等)在一定程度的不变性。包括热力学稳定性、动 力稳定性和聚结稳定性。
(单位:mmol/L)
Al2O3(正电) NaCL KCl KNO3 K2SO4 K2Cr2O7 草酸钾 K3[Fe(CN)6] 43.5 46 60 0.30 0.63 0.69 0.08
2019/3/17
5.1 电解质的聚沉作用
聚沉作用规律
1 叔尔采—哈迪(Schulze-Hardy)规则
起聚沉作用的主要是反离子,反离子的价数越高,聚沉效率也越 高。由表5-1可粗略的估计出。对于给定溶胶来说,聚沉值与反离子的 价数的六次方成反比。即:
2019/3/17
5.1 电解质的聚沉作用
同价离子聚沉能力的次序称为感胶离子序。 对于高价离子的聚沉能力,电荷作用是主要的,离子大小的影响相 对的就不那么显著了。而大的有机离子,如表面活性剂,由于与胶粒 间有较强的范德华引力,容易在胶体粒子上吸附,所以聚沉能力比同 价小离子要大得多。
3 同号离子的影响
2019/3/17
第五章胶体的稳定性

R 其中:
64 n KT 2 0 2 k) d 0exp( k
式5-10
exp( Ze KT ) 1 0/2 0 exp( Ze KT ) 1 0/2
R 表示两平板质点的双电层在单位面积上的相互排斥能(斥力位能)。
当 0 很高时,Ze 0 >>1,则 0 →1, R 与 0 无关
§5-1 电解质的聚沉作用
一、聚沉与老化
聚沉:胶粒聚集变大而沉淀的过程,与沉淀反应不同, 因聚沉电解质的量远少于沉淀量,其间不存在当量关系。
老化:由于小颗粒具有大的溶解度,静止时,溶液中的 小颗粒溶解,大颗粒长大,直到形成分散度较单一的大颗粒 ,这一过程称为老化。
二、聚沉值及其测定方法
聚沉值:在指定条件下,使溶胶聚沉所需电解质的最 低浓度,以mol/L表示。
一、胶粒间的范德华吸引能
a、永久偶极之间 1、分子间的范德华吸引能
对于同种分子
b、色散吸引能 c、诱导偶极与永久偶极之间
6 x 分
式5-1 (六次律)
式中: 分 :分子间总的范德华引力
2 2 3 2 2 hv 3 KT 4
式5-2
x:分子间距离 α :分子的极化度
对斥能峰的高低有较大影响。 ② s 的影响 , A与 0无关,而 0 随 A 上升而增加,所以 R 2 0 与A相同时,势垒能 s 增加而上升。 泥浆不抗盐是因为电解质对双电层的压缩,使 s下降 ,势垒下降。
R 2 ,所以A与 不变时, ③ 的影响 A与 无关, 0 越小,双电层越厚,势垒越高。
1 1 1 ∶ ∶ 1 2 3
6
6
6
聚沉值与离子价数的6次方成反比,即schulze-hardy 规则。除了反离子外,同号离子的性质、大小均对聚沉值 有影响。
64 n KT 2 0 2 k) d 0exp( k
式5-10
exp( Ze KT ) 1 0/2 0 exp( Ze KT ) 1 0/2
R 表示两平板质点的双电层在单位面积上的相互排斥能(斥力位能)。
当 0 很高时,Ze 0 >>1,则 0 →1, R 与 0 无关
§5-1 电解质的聚沉作用
一、聚沉与老化
聚沉:胶粒聚集变大而沉淀的过程,与沉淀反应不同, 因聚沉电解质的量远少于沉淀量,其间不存在当量关系。
老化:由于小颗粒具有大的溶解度,静止时,溶液中的 小颗粒溶解,大颗粒长大,直到形成分散度较单一的大颗粒 ,这一过程称为老化。
二、聚沉值及其测定方法
聚沉值:在指定条件下,使溶胶聚沉所需电解质的最 低浓度,以mol/L表示。
一、胶粒间的范德华吸引能
a、永久偶极之间 1、分子间的范德华吸引能
对于同种分子
b、色散吸引能 c、诱导偶极与永久偶极之间
6 x 分
式5-1 (六次律)
式中: 分 :分子间总的范德华引力
2 2 3 2 2 hv 3 KT 4
式5-2
x:分子间距离 α :分子的极化度
对斥能峰的高低有较大影响。 ② s 的影响 , A与 0无关,而 0 随 A 上升而增加,所以 R 2 0 与A相同时,势垒能 s 增加而上升。 泥浆不抗盐是因为电解质对双电层的压缩,使 s下降 ,势垒下降。
R 2 ,所以A与 不变时, ③ 的影响 A与 无关, 0 越小,双电层越厚,势垒越高。
1 1 1 ∶ ∶ 1 2 3
6
6
6
聚沉值与离子价数的6次方成反比,即schulze-hardy 规则。除了反离子外,同号离子的性质、大小均对聚沉值 有影响。
讲-第章-胶体的稳定性

(iii)若H >0,S <0,均可使G >0,此时焓变及 熵变均使系统稳定,为复合稳定。(温度对稳定的影 响不明显)
(ii) 脱水效应—高聚物分子由于亲水,其水化作用较胶粒 水化作用强(憎水),从而高聚物的加入夺去胶粒的水化外壳 的保护作用。
(iii) 电中和效应—离子型高聚物的加入吸附在带电的胶 粒上而中和胶粒表面电荷。
2. 空间稳定理论( steric stabilization)
向溶胶中加入高聚物或非离子表面活性剂,虽降低了电势, 但却显著地提高了溶胶系统的稳定性,这是用DLVO理论所解 释不了的。这种结果可用空间稳定理论加以解释。空间稳定理 论认为这是由于溶胶粒子表面吸附了高聚物,吸附的高聚物层 引起系统的G >0.
可见,聚沉能力是聚沉值的倒数,即聚沉值愈小,该电解 质的聚沉能力就愈大;反之,聚沉值越小的电解质,其聚沉能 力越强。
(1)电解质中与胶粒所带电荷相反的离子是其主要聚沉作用 的离子,并且离子价数越高,电解质的聚沉能力越大。
对某一给定溶胶,一、二、三价反离子聚沉值的比例大约是:
100 :1.6 : 0.14
当x缩小,先出现一 极小值F,则发生粒子的
Born排斥 {U}
聚集称为絮凝(可逆的)。
UR ∝exp{-x} —德拜参量
Umax
当x再缩小,则出现 极大值Umax。只有两胶 粒通过热运动积聚的动 能超过15kT时才有可能
超过此能量值,进而出 现极小值C,在此处发
生粒子间的聚沉(不可 逆)。
势垒
exp( Ze0 ) 1
2kT
exp( Ze0 ) 1
2kT
B:常数; :介电常数;Z:分散离子价数 ; :复合比 (complex ration) ; kB :波尔滋曼常数
(ii) 脱水效应—高聚物分子由于亲水,其水化作用较胶粒 水化作用强(憎水),从而高聚物的加入夺去胶粒的水化外壳 的保护作用。
(iii) 电中和效应—离子型高聚物的加入吸附在带电的胶 粒上而中和胶粒表面电荷。
2. 空间稳定理论( steric stabilization)
向溶胶中加入高聚物或非离子表面活性剂,虽降低了电势, 但却显著地提高了溶胶系统的稳定性,这是用DLVO理论所解 释不了的。这种结果可用空间稳定理论加以解释。空间稳定理 论认为这是由于溶胶粒子表面吸附了高聚物,吸附的高聚物层 引起系统的G >0.
可见,聚沉能力是聚沉值的倒数,即聚沉值愈小,该电解 质的聚沉能力就愈大;反之,聚沉值越小的电解质,其聚沉能 力越强。
(1)电解质中与胶粒所带电荷相反的离子是其主要聚沉作用 的离子,并且离子价数越高,电解质的聚沉能力越大。
对某一给定溶胶,一、二、三价反离子聚沉值的比例大约是:
100 :1.6 : 0.14
当x缩小,先出现一 极小值F,则发生粒子的
Born排斥 {U}
聚集称为絮凝(可逆的)。
UR ∝exp{-x} —德拜参量
Umax
当x再缩小,则出现 极大值Umax。只有两胶 粒通过热运动积聚的动 能超过15kT时才有可能
超过此能量值,进而出 现极小值C,在此处发
生粒子间的聚沉(不可 逆)。
势垒
exp( Ze0 ) 1
2kT
exp( Ze0 ) 1
2kT
B:常数; :介电常数;Z:分散离子价数 ; :复合比 (complex ration) ; kB :波尔滋曼常数
胶体化学第5章 胶体的稳定性

12 H
式中,VA为范德华引力势能(为负值);a是球半径;H是两球最短 距离;A是Hamaker常数 。 两平行的等同平板粒子:
VA A 12 D
2
式中,D是两板间距。
上两式表明,VA随距离的增大而下降。 Hamaker常数A是一个重要的参数,它与粒子性质有关,是物质的 特性常数,具有能量的单位,在10-19~10-20J之间。下表是一些物质的 Hamaker常数。
影响絮凝作用的主要因素有: ①絮凝剂的分子结构 絮凝效果好的高分子应有直链结 构,交联和支链结构的效果差。应有水化基团和架桥 功能,电离度越大,荷电越多,分子越伸展,利于架 桥;但若高分子与胶粒荷相同电性时,带电多,产生 静电斥力不利于絮凝。 ②絮凝剂的分子量 分子量越大越好,但过大时,不容 性和远距离则不利絮凝,一般分子量在106左右。 ③絮凝剂的浓度 研究表明存在一个最佳浓度,为胶 粒表面饱和吸附量一般是最好,可见上图示。 ④搅拌 要均匀,不可带激烈。 ⑤酸性和盐 它们对絮凝影响很大。 下面给出了一些代表性的高分子絮凝剂:
4.临界聚沉浓度 电解质是影响V的重要因素之一。见下图示。电解质浓度大(κ亦大), 势垒越低。把势垒值为零时的电解质浓度称为临界聚沉浓度,用Cccc表 示。根据DLVO理论的势能公式,可得到
C ccc 常数
( kT )
3 5
4 0
A z
2
6
这表明,Cccc 与离子价数的六次 方成反比,这与Schulze-Hardy经 验规则相符,也证明了DLVO理 论的合理性。
4.3 高分子的稳定性和絮凝作用
1.空间稳定作用 人们很早就发现高分子物质对溶胶具有稳定作用。稳定机理有如下几 个原因。 ①带电高分子吸附後会增加胶粒间的静电斥力势能。 ②高分子吸附层通常能减小Hamaker常数,从而降低粒子间的范德华 引力势能。 ③带有高分子吸附层的胶粒相互接近时,吸附层的重叠会产生新的斥 力势能阻止粒子聚集。这种稳定作用称为空间稳定作用,产生的斥力势 能称为空间斥力势能,用VS表示。这样粒子间总的相互作用势能为 V = VA + VR + VS
式中,VA为范德华引力势能(为负值);a是球半径;H是两球最短 距离;A是Hamaker常数 。 两平行的等同平板粒子:
VA A 12 D
2
式中,D是两板间距。
上两式表明,VA随距离的增大而下降。 Hamaker常数A是一个重要的参数,它与粒子性质有关,是物质的 特性常数,具有能量的单位,在10-19~10-20J之间。下表是一些物质的 Hamaker常数。
影响絮凝作用的主要因素有: ①絮凝剂的分子结构 絮凝效果好的高分子应有直链结 构,交联和支链结构的效果差。应有水化基团和架桥 功能,电离度越大,荷电越多,分子越伸展,利于架 桥;但若高分子与胶粒荷相同电性时,带电多,产生 静电斥力不利于絮凝。 ②絮凝剂的分子量 分子量越大越好,但过大时,不容 性和远距离则不利絮凝,一般分子量在106左右。 ③絮凝剂的浓度 研究表明存在一个最佳浓度,为胶 粒表面饱和吸附量一般是最好,可见上图示。 ④搅拌 要均匀,不可带激烈。 ⑤酸性和盐 它们对絮凝影响很大。 下面给出了一些代表性的高分子絮凝剂:
4.临界聚沉浓度 电解质是影响V的重要因素之一。见下图示。电解质浓度大(κ亦大), 势垒越低。把势垒值为零时的电解质浓度称为临界聚沉浓度,用Cccc表 示。根据DLVO理论的势能公式,可得到
C ccc 常数
( kT )
3 5
4 0
A z
2
6
这表明,Cccc 与离子价数的六次 方成反比,这与Schulze-Hardy经 验规则相符,也证明了DLVO理 论的合理性。
4.3 高分子的稳定性和絮凝作用
1.空间稳定作用 人们很早就发现高分子物质对溶胶具有稳定作用。稳定机理有如下几 个原因。 ①带电高分子吸附後会增加胶粒间的静电斥力势能。 ②高分子吸附层通常能减小Hamaker常数,从而降低粒子间的范德华 引力势能。 ③带有高分子吸附层的胶粒相互接近时,吸附层的重叠会产生新的斥 力势能阻止粒子聚集。这种稳定作用称为空间稳定作用,产生的斥力势 能称为空间斥力势能,用VS表示。这样粒子间总的相互作用势能为 V = VA + VR + VS
第五章 胶体的稳定性(精心制作)

高分子的絮凝作用和保护作用
2020/4/5
5.2 高分子化合物的絮凝作用
据研究分析,最佳值大约为固体 粒子表面吸附高分子化合物达到饱 和时的一半吸附量。因为这时高分 子在固体粒子上架桥的给予最大。
2020/4/5
用聚丙烯酰胺 絮凝3 ~ 5目硅胶悬浮体
5.2 高分子化合物的絮凝作用
3 絮凝剂的分子量 絮凝剂的分子质量越大则架桥能力越强,絮凝效率也越高。 絮凝剂
价数的六次方成反比。即:
M
:M
2
: M 3
100 :1.6 : 0.3
1
6
:
1
6
:
1
6
1 2 3
上式括号中的分母就相当于反离子的价数,这个规则称为
Schulze-Hardy规则。
2020/4/5
5.1 电解质的聚沉作用
一价离子的聚沉值:25~150mmol/L之间 二价离子的聚沉值:0.5~2mmol/L之间 三价离子的聚沉值:0.01~0.1mmol/L之间
与胶粒所带电荷相同的离子称为同号离子,一般来说他们对胶 体有一定的稳定作用,特别是高价离子或有机离子,在胶粒表面 特性吸附后可降低反离子的聚沉作用。
2020/4/5
5.1 电解质的聚沉作用
4 不规则聚沉
有时少量的电解质使溶胶聚沉,电解质浓度高时沉淀又重新分散成 溶胶,并使胶粒所带电荷符号改变,浓度再高时,又使溶胶再次聚沉。 这种现象称为不规则聚沉。此时,电解质的浓度已经很高,再增加电 解质也不能使沉淀再分散。多发生在高价反离子或有机反离子为聚沉 剂的情况。
作用物质
电解质
高分子
沉淀特点 缓慢、颗粒紧密 迅速、沉淀疏松、过滤快、絮凝剂用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/10/25
5.1 电解质的聚沉作用
通常对一价反离子来说,溶胶稀释时聚沉值增加;对二价反离 子:不变;对三价反离子:降低。这就是Burton-Bishop规则。
第五章 胶体的稳定性
2020/10/25
5.1 电解质的聚沉作用 5.2 高分子化合物的絮凝作用 5.3 高分子化合物的稳定作用
秦可欣 哈尔滨商业大学
胶体的稳定性概论
胶体溶液的稳定性实指其某种性质(如分散相浓度、颗粒大小、 体系黏度和密度等)在一定程度的不变性。包括热力学稳定性、动 力稳定性和聚结稳定性。
0.067 K3[Fe(CN)6] 0.069 0.069
43.5 46 60
0.30 0.63
0.69
0.08
2020/10/25
5.1 电解质的聚沉作用
聚沉作用规律
1 叔尔采—哈迪(Schulze-Hardy)规则
起聚沉作用的主要是反离子,反离子的价数越高,聚沉效率也越
高。由表5-1可粗略的估计出。对于给定溶胶来说,聚沉值与反离子的
与胶粒所带电荷相同的离子称为同号离子,一般来说他们对胶 体有一定的稳定作用,特别是高价离子或有机离子,在胶粒表面 特性吸附后可降低反离子的聚沉作用。
2020/10/25
5.1 电解质的聚沉作用
4 不规则聚沉
有时少量的电解质使溶胶聚沉,电解质浓度高时沉淀又重新分散成 溶胶,并使胶粒所带电荷符号改变,浓度再高时,又使溶胶再次聚沉。 这种现象称为不规则聚沉。此时,电解质的浓度已经很高,再增加电 解质也不能使沉淀再分散。多发生在高价反离子或有机反离子为聚沉 剂的情况。
不规则聚沉可通过反离子对ζ电势的影响来解释,见下页图。
2020/10/25
5.1 电解质的聚沉作用
稳定区
聚沉区
+30mv
0 - 30mv
稳定区
不规则聚沉示意图
当ζ电势绝对值低于临界值(一般为30mv)时,溶胶就聚沉,
高于此值,体系稳定。
2020/10/25
5.1 电解质的聚沉作用
5 溶胶相互聚沉
1.热力学稳定性
胶体是高度分散的多相体系,有巨大的界面能,因而是热力学不 稳定体系。
2020/10/25
胶体的稳定性概论
2.动力稳定性
由于胶粒很小,强烈的Brown运动能阻止其在重力场中的沉降, 因而具有动力稳定性。如Farady制备的金溶胶放置了几十年才沉下来。
3.聚结稳定性
粒子间有相互聚结而降低其界面能的趋势,称为聚结不稳定性。 稳定的溶胶必须同时兼备聚结稳定性和动力稳定性,其中聚结 稳定性更为重要,一旦失去聚结稳定性,粒子相互聚结变大,最终 将导致失去动力学稳定性。
2020/10/25
5.1 电解质的聚沉作用
同价离子聚沉能力的次序称为感胶离子序。 对于高价离子的聚沉能力,电荷作用是主要的,离子大小的影响相 对的就不那么显著了。而大的有机离子,如表面活性剂,由于与胶粒 间有较强的范德华引力,容易在胶体粒子上吸附,所以聚沉能力比同 价小离子要大得多。
3 同号离子的影响
价数的六次方成反比。即:
M
:M
2
: M 3
100 :1.6 : 0.3
1
6
:
1
6
:
1
6
1 2 3
上式括号中的分母就相当于反离子的价数,这个规则称为
Schulze-Hardy规则。
2020/10/25
5.1 电解质的聚沉作用
一价离子的聚沉值:25~150mmol/L之间 二价离子的聚沉值:0.5~2mmol/L之间 三价离子的聚沉值:0.01~0.1mmol/L之间
2020/10/25
5.1 电解质的聚沉作用
聚沉值
表征电解的聚沉能力的参数是聚沉值。聚沉值是指在规定条件
下使溶胶聚沉所需电解质的最低浓度,常以mmol/L为单位。聚沉值
的倒数为聚沉率。
聚沉值越小,该电解质的聚沉作用越强,聚沉能力越大。聚沉 值与测定条件有关,所以只能对相同条件的结果进行对比。
下面的表给出了一些体系的聚沉值。
AlCl3 1/2Al(SO4)3 Al(NO3)
0.093 Al(NO3)3 0.096 La(NO3)3 0.095 Ce(NO3)3
(单位:mmol/L)
Al2O3(正电) 165 NaCL 140 KCl 136 KNO3 126
2.40 K2SO4 2.60 K2Cr2O7 2.43 草酸钾
胶体的离子有很大的比表面,体系的表面能也很高, 所以粒子有自动聚集以降低其表面能的趋势。粒子由小变 大的过程称为聚集过程(aggregation),由胶体粒子聚集 而成的大粒子称为聚集体(aggregate),如聚集的最终结 果导致粒子从溶液中沉淀析出则称为聚沉过程。为了加速 聚集,可以外加其他物质作聚沉剂,如电解质等。
2 异号离子大小(感胶离子序)
聚沉值的大小与水合离子半径有一定关系,同价离子、水合离子半 径越小,越容易靠近胶体粒子,聚沉能力就越大;水合离子半径越大, 越不易被胶粒吸附(静电引力越弱),聚沉能力越弱。对一价离子犹 其明显。
正离子:H+>Cs+> Rb+>NH4+ >K+>Na+>Li+ 负离子:F->C1->ClO3 ->Br->NO3->I->SCN->OH-
两种电性相反的溶胶混合时可发生相互聚沉作用,聚沉的程度 与两胶体的比例有关,比例相差很大时,聚沉不完全或不发生聚沉, 在等电点附近沉淀最完全。
相互聚沉的原因可能有两种:① 两种胶粒电性中和;② 两种 胶粒的稳定剂相互发生破坏(如沉淀)。
6 Burton-Bishop规则
溶胶的浓度也影响电解质的聚沉值。
2020/10/25
胶体的稳定性概论
无机电解质和高分子都能对溶胶的稳定性产生重大影响,但其机 理不同。为加以区别,通常:
把无机电解质使溶胶沉淀的作用称为聚沉作用 把高分子使溶胶沉淀的作用称为絮凝作用
两者可统称为 聚集作用
2020/10/25
第一节 电解质的聚沉作用
2020/10/25
5.1 电解质的聚沉作用
2020/10/25
5.1 电解质的聚沉作用
表5-1 电解质对溶胶聚沉浓度
As2S3(负电)
LiCl NΒιβλιοθήκη Cl KCl KNO3AgI(负电)
58 51 49.5 50
LiNO3 NaNO3 KNO3 RbNO3
CaCl2 MaCl2 MaSO4
0.65 Ca(NO3)2 0.72 Ma(N03)2 0.81 Pb(NO3)2
5.1 电解质的聚沉作用
通常对一价反离子来说,溶胶稀释时聚沉值增加;对二价反离 子:不变;对三价反离子:降低。这就是Burton-Bishop规则。
第五章 胶体的稳定性
2020/10/25
5.1 电解质的聚沉作用 5.2 高分子化合物的絮凝作用 5.3 高分子化合物的稳定作用
秦可欣 哈尔滨商业大学
胶体的稳定性概论
胶体溶液的稳定性实指其某种性质(如分散相浓度、颗粒大小、 体系黏度和密度等)在一定程度的不变性。包括热力学稳定性、动 力稳定性和聚结稳定性。
0.067 K3[Fe(CN)6] 0.069 0.069
43.5 46 60
0.30 0.63
0.69
0.08
2020/10/25
5.1 电解质的聚沉作用
聚沉作用规律
1 叔尔采—哈迪(Schulze-Hardy)规则
起聚沉作用的主要是反离子,反离子的价数越高,聚沉效率也越
高。由表5-1可粗略的估计出。对于给定溶胶来说,聚沉值与反离子的
与胶粒所带电荷相同的离子称为同号离子,一般来说他们对胶 体有一定的稳定作用,特别是高价离子或有机离子,在胶粒表面 特性吸附后可降低反离子的聚沉作用。
2020/10/25
5.1 电解质的聚沉作用
4 不规则聚沉
有时少量的电解质使溶胶聚沉,电解质浓度高时沉淀又重新分散成 溶胶,并使胶粒所带电荷符号改变,浓度再高时,又使溶胶再次聚沉。 这种现象称为不规则聚沉。此时,电解质的浓度已经很高,再增加电 解质也不能使沉淀再分散。多发生在高价反离子或有机反离子为聚沉 剂的情况。
不规则聚沉可通过反离子对ζ电势的影响来解释,见下页图。
2020/10/25
5.1 电解质的聚沉作用
稳定区
聚沉区
+30mv
0 - 30mv
稳定区
不规则聚沉示意图
当ζ电势绝对值低于临界值(一般为30mv)时,溶胶就聚沉,
高于此值,体系稳定。
2020/10/25
5.1 电解质的聚沉作用
5 溶胶相互聚沉
1.热力学稳定性
胶体是高度分散的多相体系,有巨大的界面能,因而是热力学不 稳定体系。
2020/10/25
胶体的稳定性概论
2.动力稳定性
由于胶粒很小,强烈的Brown运动能阻止其在重力场中的沉降, 因而具有动力稳定性。如Farady制备的金溶胶放置了几十年才沉下来。
3.聚结稳定性
粒子间有相互聚结而降低其界面能的趋势,称为聚结不稳定性。 稳定的溶胶必须同时兼备聚结稳定性和动力稳定性,其中聚结 稳定性更为重要,一旦失去聚结稳定性,粒子相互聚结变大,最终 将导致失去动力学稳定性。
2020/10/25
5.1 电解质的聚沉作用
同价离子聚沉能力的次序称为感胶离子序。 对于高价离子的聚沉能力,电荷作用是主要的,离子大小的影响相 对的就不那么显著了。而大的有机离子,如表面活性剂,由于与胶粒 间有较强的范德华引力,容易在胶体粒子上吸附,所以聚沉能力比同 价小离子要大得多。
3 同号离子的影响
价数的六次方成反比。即:
M
:M
2
: M 3
100 :1.6 : 0.3
1
6
:
1
6
:
1
6
1 2 3
上式括号中的分母就相当于反离子的价数,这个规则称为
Schulze-Hardy规则。
2020/10/25
5.1 电解质的聚沉作用
一价离子的聚沉值:25~150mmol/L之间 二价离子的聚沉值:0.5~2mmol/L之间 三价离子的聚沉值:0.01~0.1mmol/L之间
2020/10/25
5.1 电解质的聚沉作用
聚沉值
表征电解的聚沉能力的参数是聚沉值。聚沉值是指在规定条件
下使溶胶聚沉所需电解质的最低浓度,常以mmol/L为单位。聚沉值
的倒数为聚沉率。
聚沉值越小,该电解质的聚沉作用越强,聚沉能力越大。聚沉 值与测定条件有关,所以只能对相同条件的结果进行对比。
下面的表给出了一些体系的聚沉值。
AlCl3 1/2Al(SO4)3 Al(NO3)
0.093 Al(NO3)3 0.096 La(NO3)3 0.095 Ce(NO3)3
(单位:mmol/L)
Al2O3(正电) 165 NaCL 140 KCl 136 KNO3 126
2.40 K2SO4 2.60 K2Cr2O7 2.43 草酸钾
胶体的离子有很大的比表面,体系的表面能也很高, 所以粒子有自动聚集以降低其表面能的趋势。粒子由小变 大的过程称为聚集过程(aggregation),由胶体粒子聚集 而成的大粒子称为聚集体(aggregate),如聚集的最终结 果导致粒子从溶液中沉淀析出则称为聚沉过程。为了加速 聚集,可以外加其他物质作聚沉剂,如电解质等。
2 异号离子大小(感胶离子序)
聚沉值的大小与水合离子半径有一定关系,同价离子、水合离子半 径越小,越容易靠近胶体粒子,聚沉能力就越大;水合离子半径越大, 越不易被胶粒吸附(静电引力越弱),聚沉能力越弱。对一价离子犹 其明显。
正离子:H+>Cs+> Rb+>NH4+ >K+>Na+>Li+ 负离子:F->C1->ClO3 ->Br->NO3->I->SCN->OH-
两种电性相反的溶胶混合时可发生相互聚沉作用,聚沉的程度 与两胶体的比例有关,比例相差很大时,聚沉不完全或不发生聚沉, 在等电点附近沉淀最完全。
相互聚沉的原因可能有两种:① 两种胶粒电性中和;② 两种 胶粒的稳定剂相互发生破坏(如沉淀)。
6 Burton-Bishop规则
溶胶的浓度也影响电解质的聚沉值。
2020/10/25
胶体的稳定性概论
无机电解质和高分子都能对溶胶的稳定性产生重大影响,但其机 理不同。为加以区别,通常:
把无机电解质使溶胶沉淀的作用称为聚沉作用 把高分子使溶胶沉淀的作用称为絮凝作用
两者可统称为 聚集作用
2020/10/25
第一节 电解质的聚沉作用
2020/10/25
5.1 电解质的聚沉作用
2020/10/25
5.1 电解质的聚沉作用
表5-1 电解质对溶胶聚沉浓度
As2S3(负电)
LiCl NΒιβλιοθήκη Cl KCl KNO3AgI(负电)
58 51 49.5 50
LiNO3 NaNO3 KNO3 RbNO3
CaCl2 MaCl2 MaSO4
0.65 Ca(NO3)2 0.72 Ma(N03)2 0.81 Pb(NO3)2