第9章 质点系动量定理
合集下载
物理-动量定理

一、冲 量
定义:力
在 t 到t +dt 时间内的元冲量为:
在
有限长时间内,力
的冲量定义为各无穷
小时间间隔内的元冲量的矢量和(积分):
注意: 1.冲量是矢量,冲量表示力的时间累积效应。 2. 冲量的单位: N·m (与动量的单位相同)
二、质点的动量定理
给定时间间隔内,合外力作用在质点上的冲量,等于 该质点在此时间内动量的增量。
1987年,美国空军 的一架B-1轰炸机被鸟 撞毁,损失2.15亿美元。 ……
三、质点系的动量定理
设有N个质点构成质点系,质点系的总动量:
作用到第 i 个质点上的外力: Fi 第 j 个质点作用到第 i 个质点上
的内力: fij
则第 i 个质点的动力学方程
·
i·
பைடு நூலகம்
pi
·
· ·
·fi j
· fj i
·j
三、质点系的动量定理 (4)直角坐标系中的分量形式
(积分式)
三、质点系的动量定理
三、质点系的动量定理
逆风行舟的动量分析
航 向 风对帆的平均作用力
空气分子团 (质点系)
帆对风的平均作用力
三、质点系的动量定理
例2 总长为 l 、总质量为m 的软绳竖直提起上端,其
下端刚好触及一台秤平台表面,求放手后上端落下x 距
二、质点的动量定理 (4)平均冲力
在给定时间间隔
由动量定理:
内:
平均 冲力
二、质点的动量定理 • 平均冲力在直角坐标系中的计算式:
二、质点的动量定理
p 一定时 延长作用时间 减小平均冲力
二、质点的动量定理
p一定时 缩短作用时间 增大平均冲力
定义:力
在 t 到t +dt 时间内的元冲量为:
在
有限长时间内,力
的冲量定义为各无穷
小时间间隔内的元冲量的矢量和(积分):
注意: 1.冲量是矢量,冲量表示力的时间累积效应。 2. 冲量的单位: N·m (与动量的单位相同)
二、质点的动量定理
给定时间间隔内,合外力作用在质点上的冲量,等于 该质点在此时间内动量的增量。
1987年,美国空军 的一架B-1轰炸机被鸟 撞毁,损失2.15亿美元。 ……
三、质点系的动量定理
设有N个质点构成质点系,质点系的总动量:
作用到第 i 个质点上的外力: Fi 第 j 个质点作用到第 i 个质点上
的内力: fij
则第 i 个质点的动力学方程
·
i·
பைடு நூலகம்
pi
·
· ·
·fi j
· fj i
·j
三、质点系的动量定理 (4)直角坐标系中的分量形式
(积分式)
三、质点系的动量定理
三、质点系的动量定理
逆风行舟的动量分析
航 向 风对帆的平均作用力
空气分子团 (质点系)
帆对风的平均作用力
三、质点系的动量定理
例2 总长为 l 、总质量为m 的软绳竖直提起上端,其
下端刚好触及一台秤平台表面,求放手后上端落下x 距
二、质点的动量定理 (4)平均冲力
在给定时间间隔
由动量定理:
内:
平均 冲力
二、质点的动量定理 • 平均冲力在直角坐标系中的计算式:
二、质点的动量定理
p 一定时 延长作用时间 减小平均冲力
二、质点的动量定理
p一定时 缩短作用时间 增大平均冲力
质点系动量定理

h
T
2H g
取铅垂轴y向上为正,根据动量定理有:
mv2 mv1 p
p 0。则有 由题意知, v1 0 ,经过(T+t)秒后,
p Nt Q(T t ) 0
由此得
1 T N Q( 1) Q t t 2H 1 g
1 2 1.5 16.9 KN N 300 1 0.01 9.8
e i
质点系外力: R
e
Fi
e
2、内力:所研究得质点系内部的各质点之间的相互 i 作用力;用 F i 表示。
质点系内力: R
i
Fi
i
质点系内力系的主矩、主矢为:
R Fi 0
i
i
M o mo Fi i 0
i
结论:
质点系质心的运动,是可以看成为一个质点的运 动,同时假想地把整个质点系的质量集中于这一点, 作用于质点系的全部外力也都集中于这一点。 同时:质点系的内力不影响质心的运动,只有外 力才能改变质心的运动。
例1、锤重Q=300N,从高度H=1.5m处自由落到锻 件上,如图所示,锻件发生变形,历时t=0.01s. 求锤对锻件的平均压力。 解:取锤为研究对象。作用在锤 上的力有重力Q锤与锻件接触后 锻件的反力。但锻件的反力是变 力。设平均反力为N. 锤下落高度H所需时间T为:
i i
§11-3 质心运动定理 1、质心:质点系的质量中心 质点系的运动不仅与各质点质量有关,而且与质 量的分布情况有关。 2、质心的确定
直角坐标下的质心计算公式:
mi xi xC M
mi yi yC M
mi zi zC M
第九章 动量定理和动量矩定理

i
i
mi aC F i
(e)
C
i
i
i
C
i
——质心运动定理: 质点系的质量与质心绝对 加速度的乘积等于作用于 质点系的外力的主矢。 质点系的内力不影响质心 的运动,只有外力才能改 变质心的运动。
i
i
C
i
该定律的投影式为: 直角坐标式
mi aCx F (e) mi aCy F iy (e) mi aCz F iz 自然坐标式
F
(e) ix
0
则:vCx=恒代数量
四、解题步骤 分析质点系所受的全部外力,含主动力和约束反力。 为求未知力,可先计算质心绝对坐标,求出质心绝 对加速度,然后用质心运动定律求解。
在外力已知的条件下,欲求质心的运动规律,其解 法与质点动力学第二类问题相同。
如果外力主矢为零,且初始时质点系为静止,则质 心坐标保持不变。分别列出两个时刻质心的坐标, 令其相等,即可求得所求质点的位移。
质点系动量的增量等于作 用于质点系的外力元冲量 的矢量和。
由dp d I i( e) F i( e ) dt
d mi v i dt mi ai F i( e )
质点系动量对时间的一阶 导数等于作用于质点系的 外力的矢量和(主矢)。 积分形式 由 dp F i( e ) dt
M O (F )
z
F
mv
〃Q MO(F) O y
x
直角坐标投影式为
d M x (mv ) M x (F ) dt d M y (mv ) M y (F ) dt d M z (mv ) M z (F ) dt
质点系动量定理

③
在碰撞、打击、 在碰撞、打击、爆炸等相互作用时间极短的 过程中, 过程中,由于系统内部相互作用力远大于合 外力,往往可忽略外力, 外力,往往可忽略外力,系统动量守恒近似 成立。 成立。 定律中的速度应是对同一惯性系的速度, 定律中的速度应是对同一惯性系的速度,动 量和应是同一时刻的动量之和。 量和应是同一时刻的动量之和。
dp ′= = − ρ ′v′2 − ρ v 2 F dt
F 为墙壁给予水柱的作用力
若水流碰到墙壁不再弹回 则 若水流完全反射 因而
v′ = 0
F = ρv
2
′v′2 = ρ v 2 ρ
F = 2ρ v
2
实际的情况介于这两个极 端情况之间。 端情况之间。工业上的水力采 煤技术就是基于这个原理。 煤技术就是基于这个原理。
讨论 ①
应用动量守恒定律要注意以下几点: 应用动量守恒定律要注意以下几点: 要注意以下几点
r r d ∑ pi = ∑ Fi dt
将上式写成分量式,其中 方向的分量式为: 将上式写成分量式,其中x 方向的分量式为: r r d ∑ pix = ∑ Fix dt r 若: ∑ Fix = 0 则有: 则有:
r F1
r f12
m1
r f 21
r F2
m2
对质点1 对质点 对质点2 对质点
∫
t
t0
r r r r ( F1 + f12 )dt = m1v1 − m1v10
∫
t
t0
r r r r ( F2 + f 21 )dt = m2 v 2 − m2 v 20
由牛顿第三定律,内力等大小、反方向) 两式相加 (由牛顿第三定律,内力等大小、反方向)
理论力学-9-动量定理及其应用

例题 1
y
解法1:建立Oxy坐标系,在角度q为任意值的情形下
vA
yA 2lsin q
A
xB 2lcosq
vA yA 2lqcosq 2lcosq
vB xB 2lqsinq 2lsin q
Oθ
vB
B
p mivi
i
p mAvA mBvB
p mAvA mBvB
x
2lmcosq j 2lmsinq i
l
cost
例题 3
2.求作用在O轴处的最大水平约束力
y
由质心运动定理
A
O
C
B
l/2
x
&x&C
m1 2(m1
2m2 2m3 m2 m3 )
lω2
cos
ωt
D
Fox
MaCx
(m1
2m2
2m3 )
lω2 2
cos ωt
当 cosωt 1 时,水平约束力最大,其值为
Fox,max
Macx
(m1
2m2
隔板
水池
?抽去隔板后将会
发生什么现象
水
光滑台面
第9章 动量定理及其应用
? 二人在太空中拔河,
初始静止,同时用尽 全力相互对拉。若A 的力气大于B的力气, 则拔河的胜负将如何?
第9章 动量定理及其应用
9.1 动量定理与动量守恒 9.2 质心运动定理 9.3 综合应用举例 9.4 结论与讨论
第9章 动量定理及其应用
2lm(-sinq i cosq j)
9.1.1 质点和质点系的动量
例题 1
解法2: 质点系的质心在C处,其速度大小为
A vC
y
解法1:建立Oxy坐标系,在角度q为任意值的情形下
vA
yA 2lsin q
A
xB 2lcosq
vA yA 2lqcosq 2lcosq
vB xB 2lqsinq 2lsin q
Oθ
vB
B
p mivi
i
p mAvA mBvB
p mAvA mBvB
x
2lmcosq j 2lmsinq i
l
cost
例题 3
2.求作用在O轴处的最大水平约束力
y
由质心运动定理
A
O
C
B
l/2
x
&x&C
m1 2(m1
2m2 2m3 m2 m3 )
lω2
cos
ωt
D
Fox
MaCx
(m1
2m2
2m3 )
lω2 2
cos ωt
当 cosωt 1 时,水平约束力最大,其值为
Fox,max
Macx
(m1
2m2
隔板
水池
?抽去隔板后将会
发生什么现象
水
光滑台面
第9章 动量定理及其应用
? 二人在太空中拔河,
初始静止,同时用尽 全力相互对拉。若A 的力气大于B的力气, 则拔河的胜负将如何?
第9章 动量定理及其应用
9.1 动量定理与动量守恒 9.2 质心运动定理 9.3 综合应用举例 9.4 结论与讨论
第9章 动量定理及其应用
2lm(-sinq i cosq j)
9.1.1 质点和质点系的动量
例题 1
解法2: 质点系的质心在C处,其速度大小为
A vC
质点动量定理.pptx

1
Yc m
1 yCdm m
R
0 y边 (2x边dy边)
1 R
m
0
y边 (2
R2
y边2 dy边 )
4R 3π
dy边
yC
y边
即质心位置为
0,
4R 3π
。
8
第9页/共47页
(4) 多个规则形状物体组成系统的质心 多个规则形状物体组成系统的质心,可先找到每
个物体的质心,再用分立质点系质心的求法,求出公 共质心。
它们置于一质量也为 m 的槽的底部。槽置于光滑的水
平面上。释放后,球最终静止于槽的底部,问此时槽移
动了多远?
解:水平方向动量守恒,质心位置不变
xC0 xC
xC 0
2m 0 3m
mR
3mx xC 3m
解得: x 1 R 0 向右移动
3 27 第28页/共47页
例4.1.2-2 一物体在光滑水平面上以 5m/s的速度沿 x
由牛顿第二定律原始表达式:
对上式积分得:
F d(mv) dt
定义:
t t
Fdt mv(t t) mv(t) t P mv 称为质点的动量
tt
I Fdt
称为力在 t 时间内的冲量
t
质点的动量定理: 外力冲量等于质点动量的改变量
16
第17页/共47页
例4.2.1-1 一质量为 0.15 千克的棒球以 v0 40m/s 的
(3)
1
yc
mA yA mB yB mD yD mA mB mD
4mD (2) 2mD (1) mD (8) 4mD 2mD mD
2
zc
mA zA mB zB mD mA mB mD
质点系动量守恒定律

6. 比牛顿定律更普遍的最基本的定律,它在宏 观和微观领域、低速和高速范围均适用。
7. 在同一个惯性系中使用.并且只适用于惯 性系。
3
动量定律的说明
8.若F ex Fiex 0,但满足 Fxex 0
i
有 px mi vix C x
i
Fxex 0 , px mivix Cx
1. 动量守恒定律是牛顿定律的必然推论。 2. 外力的矢量和为零,是动量守恒的条件。 3. 动量定理及动量守恒定律只适用于惯性系,
且动量若在某一惯性系中守恒,则在其它一 切惯性系中均守恒。
4. 系统的总动量保持不变,即为各质点的动量 和不变,而不是指其中一个质点的动量不变。
2
动量定律的说明
5. 当合外力为零,或外力与内力相比小很多如 爆炸过程),这时可忽略外力,仍可应用动 量守恒。
pν
或 180o 61.9o 118.1o
7
例题
例3 一枚返回式火箭以 2.5103 m·s-1 的速
率相对惯性系S沿水平方向飞行.空气阻力不
计.现使火箭分离为两部分, 前方的仪器舱质量为
m1 =100 kg,后方的火箭容器质量为m2 = 2 00 kg, 仪器舱相对火箭容器的水平速率为v’=1.0103 m·s-
1求.仪器舱和火箭 容器相对惯性系
的速度.
y s v
y' s' v'
m2 m1
o
o'
x x'
z
z'
8
例题
已知 v 2.5103 m s1 v' 1.0 103 m s1
求 mv11,1v020 kg
7. 在同一个惯性系中使用.并且只适用于惯 性系。
3
动量定律的说明
8.若F ex Fiex 0,但满足 Fxex 0
i
有 px mi vix C x
i
Fxex 0 , px mivix Cx
1. 动量守恒定律是牛顿定律的必然推论。 2. 外力的矢量和为零,是动量守恒的条件。 3. 动量定理及动量守恒定律只适用于惯性系,
且动量若在某一惯性系中守恒,则在其它一 切惯性系中均守恒。
4. 系统的总动量保持不变,即为各质点的动量 和不变,而不是指其中一个质点的动量不变。
2
动量定律的说明
5. 当合外力为零,或外力与内力相比小很多如 爆炸过程),这时可忽略外力,仍可应用动 量守恒。
pν
或 180o 61.9o 118.1o
7
例题
例3 一枚返回式火箭以 2.5103 m·s-1 的速
率相对惯性系S沿水平方向飞行.空气阻力不
计.现使火箭分离为两部分, 前方的仪器舱质量为
m1 =100 kg,后方的火箭容器质量为m2 = 2 00 kg, 仪器舱相对火箭容器的水平速率为v’=1.0103 m·s-
1求.仪器舱和火箭 容器相对惯性系
的速度.
y s v
y' s' v'
m2 m1
o
o'
x x'
z
z'
8
例题
已知 v 2.5103 m s1 v' 1.0 103 m s1
求 mv11,1v020 kg
《理论力学》第九章质点动力学

《理论力学》第九章质点动力 学
目
CONTENCT
录
• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω
目
CONTENCT
录
• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t1
t2
∫ mv2 y − mv1y = Fy d t =I y
t1
t2
∫ mz
t1
21
质点系动量定理
投影形式
d dt
( mv
x)
=
Fx
d dt
( mv
y)
=
Fy
d dt
( mv
z)
=
Fz
守恒形式
d (mv) = F dt
t2
∫ mv2x − mv1x = Fx d t =I x t1 t2
内力:所考察的质点系内各质点 之间相互作用的力。
∑Fi =0
∑M
i O
=
0
F´e Fe
F´i Fi
考察的质点系
6
质点系动量定理
第9章 质点系动量定理
§9-1 动量定理 §9-2 质心运动定理 §9-3 本章讨论与小结
7
质点系动量定理
几个有意义的问题
? 太空拔河,谁胜谁负
8
质点系动量定理
? 蹲在磅秤上的人站起来时
质点系动量定理
理论力学
基 础 部 分 — 动力学
第9 章 质点系动量定理
2012年11月13日
1
质点系动量定理
质点系动力学普遍定理概述
一、质点系动力学普遍定理的特征
理论上: n个质点构成的质点系动力学问题,可通过 建立3n个微分方程联立求解。
实际上: ◆联立求解大规模微分方程组(尤其是积分 问题)非常困难;
建立图示Oxy坐标系,则
yA = 2lsinϕ
y vA
A
vA = y&A = 2lωcos ϕ
xB = 2lcosϕ
vB = x&B = −2lωsin ϕ
ωC
Oϕ
vB
px = −2lmωsinϕ py = 2lmωcosϕ
p = −2lmωsinϕ i + 2lmωcosϕ j
Bx
18
质点系动量定理
质点动力学基本方程:
质点系
ma = ∑ F
单个质点
可见:假想把整个质点系的质量集中于质心,且作用于 质点系上的全部外力也都集中于质心,则质点系质心的 运动相当于一个质点的运动。
34
质点系动量定理
例如: 定向爆破
vC
α
根据质心的运动轨迹及需要堆积土石块的位置,可 以设计质心的初始发射倾角和速率大小。
35
质点系动量定理
∑ maC = F e
3. 只有外力才能改变质点系质心的运动,内力不能改变 质心的运动,但可以改变系统内各质点的运动。
例如:
汽车靠什么外力启动?
——静滑动摩擦力
思考:当汽车制动时,又是什么外力使汽车的质心运动
停止的呢?
36
质点系动量定理
4. 质心运动守恒定律
∑ maC = F e
d dt
(mivi
)
=
Fi
= Fie
+ Fii
∑ ∑ ∑ d dt
(mi
vi
)
=
Fie +
Fi i
∑ ∑ d dt
(mivi
)
=
d dt
(mivi
)
=
dp dt
∑∑ ddpp==
ddt t
FFi e e ——质点系的动量定理
即:质点系的动量对时间的一阶导数等于作用于质点系 外力系的主矢。
23
质点系动量定理
思考:在上例中,若曲柄OC和连杆AB均为均质杆,且 质量分别为 m1 和 2m1,则系统的总动量又为多少?
A
ωC Oϕ
B
19
质点系动量定理
二、动量定理 1. 质点的动量定理
d (mv) = F dt
即:质点的动量对时间的一阶导数等于作用于质点的力。
上式改写为 两边积分得
d( m v ) = F d t = d I
d p =∑Fe
dt
即:质点系的动量对时间的一阶导数等于作用于质点系 外力系的主矢。
结论:只有外力才能改变质点系的动量,内力不能改变 整个质点系的动量。
d p = ∑dIe
——微分形式
∑ p 2 − p1 = I e ——积分形式
24
质点系动量定理
投影形式
d p =∑ Fe
dt
∑ d p x =
质点系外力系的主矢。
32
质点系动量定理
讨论:
∑ maC = F e
1. 应用时应取投影形式
直角坐标系
∑ maCx = Fxe
∑ maCy = Fye
∑ maCz = Fze
思考:写出在自然轴系中的投影形式。
33
质点系动量定理
2. 与质点动力学基本方程的比较 质心运动定理:
∑ m aC = F e
29
质点系动量定理
[思考题] 长均为l、质量均为m的均质杆OA、OB在O处 光滑铰接,求图示两种运动状态时,系统的动量。
v
v
30
质点系动量定理
[思考题] 图示四连杆机构中,各均质杆长度为O1A= O2B=AB=20 cm,质量相等,均为m=1 kg。在图示瞬
时,杆O1A转动的角速度ω = 2 rad/s,O1A与O2B两杆的
即质心沿该轴的位置坐标保持不变。
37
质点系动量定理
5. 刚体系统
设第 i 个刚体 M i , a Ci ,则有
∑ ∑ M iaCi = F e
或
∑ ∑ M i&r&Ci = F e
∑ ∑ ∑ 直角坐标投影式:
M i aCix = M i &x&Ci = Fxe
∑ ∑ ∑ M iaCiy = M i &y&Ci = Fye
∫ mv2 y − mv1y = Fy d t =I y t1 t2
∫ mv2z − mv1z = Fz d t =I z t1
若 F = 0 ,则 mv = 常矢量,质点作惯性运动; 若 Fx = 0 ,则 mvx = 常量,质点沿 x 轴作惯性运动。
22
质点系动量定理
2. 质点系的动量定理
任一质点 i : 整个质点系:
若 ∑ Fxe = 0 ,则 px = p0x = 常量。
——质点系动量守恒定律
注意:内力虽不能改变 整个质点系的动量,但 可以引起系统内各质点 动量的传递。
26
质点系动量定理
[例9-3] 质量为M 的大三角块,放于光滑水平面上,斜 面上另放一质量为m的小三角块。求小三角块滑到底时, 大三角块的位移。
mivi m
∑ aC =
miai m
注意: ◆ 在均匀重力场中,质点系的质心与重心的 位置重合;
◆ 静力学中确定重心的方法可用来确定质心的 位置;
◆ 质心与重心是两个不同的概念,质心比重心 具有更加广泛的力学意义。
5
质点系动量定理
三、质点系的外力与内力
外力:所考察的质点系以外的物 体作用于该质点系中各质 点的力。
◆工程中,通常需要了解质点系整体的运 动,而不是每一个质点的运动。
2
质点系动量定理
质点系整体运动状 态的物理量(动量 、动量矩、动能)
质点系动力 学普遍定理
作用于质点系的力 系特征量(主矢、 主矩、功)
质点系动力学普遍定理包括动量定理、动量矩定 理、动能定理及其推论。
3
质点系动量定理
二、质点系的质心
px = mvCx = mx&C py = mvCy = my&C pz = mvCz = mz&C
13
质点系动量定理
[例9-1] 试计算图示三种情形刚体的动量。
Oω
(a)
vC
C
(b)
ω
C
(c)
(a) 长为 l、质量m的均质细杆,角速度为ω 。
(b) 质量为m的均质滚轮,质心的速度为vC 。
(c) 质量为m的均质轮,绕中心转动,角速度为ω 。
解:选整个系统为研究对象。
受力分析:如图所示 ∑ Fxe = 0
运动分析:小三角块的绝对速度
va = v + vr
由质点系动量守恒定律,有 v px = p0x = 0
M (−v) + m(vr x − v) = 0
Mg mg vr
FN
27
质点系动量定理
M (−v) + m(vr x − v) = 0
设第i个刚体 M i , vCi ,则系统动量:
∑ p = M ivCi
∑ ∑ px = M vi Cix = M i x&Ci ∑ ∑ py = M vi Ciy = M i y&Ci ∑ ∑ pz = M ivCiz = M i z&Ci
16
质点系动量定理
[例9-2] 椭圆规机构
vA
已知:OC=AC=CB=l;滑块
dt
F
e x
∑ d p y =
dt
F
e y
∑ d p z =
dt
F
e z
∑ p2 − p1 = I e
∑ p2x − p1x =
I
e x
∑ p2 y − p1y =
I
e y
∑ p2z − p1z =
I
e z
25
质点系动量定理
守恒形式
d p =∑ Fe
dt
若 ∑ F e = 0 ,则 p = p0 = 常矢量;
z 若 ∑ F e = 0 ,则 aC = 0 , vC = 常矢量,
即质心作匀速直线运动;
z 若开始时系统静止,即vC0 = 0 ,则 rC = 常矢量,