数学必修五第一章复习知识点及题型

合集下载

高中数学必修五知识点大全

高中数学必修五知识点大全

知识点串讲必修五第一章:解三角形1.1.1正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

2、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ 证明出sin sin a b A B =sin c C ==sin sin sin a b c A B C++++ 解:设sin sin a b A B =(>o)sin c k k C== 则有sin a k A =,sin b k B =,sin c k C = 从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C A B C++++=k又sin a A =2k ==,所以sin sin sin a b c A B C++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c k k A B C ++=>++ 恒成立。

3、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c(答案:1:2:3)1.1.2余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba2、在∆ABC 中,已知=a c 060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+-=8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2222221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

高中数学必修5第一章解三角形知识点复习及经典练习

高中数学必修5第一章解三角形知识点复习及经典练习

高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结1.正弦定理:2sin sin sin a b c R A B C===或变形:::sin :sin :sin a b c A B C =. 推论:①定理:若α、β>0,且α+β<π,则α≤β⇔sin sin αβ≤,等号当且当α=β时成立。

②判断三角解时,可以利用如下原理: s inA > sin B ⇔ A > B ⇔ a > b (在上单调递减)2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或.222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩ﻩ 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cotA B C A B C A B C +++===cos cos A B A B >⇔<cos y x =(0,)π解三角形[基础训练A 组]一、选择题1.在△A BC中,若0030,6,90===B a C ,则b c -等于( )A.1 B.1- C .32 D.32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sin B.A cos C .A tan D .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或 B.006045或 C.0060120或 D.0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120 C.0135 D .0150二、填空题1.在Rt △A BC 中,090C =,则B A sin sin 的最大值是_______________。

高中数学必修五 第一章 解三角形知识点归纳

高中数学必修五  第一章   解三角形知识点归纳

高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++===4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >. 11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等)12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

高中数学必修5第一章解三角形知识点复习及经典练习(最新整理)

高中数学必修5第一章解三角形知识点复习及经典练习(最新整理)

2
22
解三角形[提高训练 C 组] 一、选择题
1. A 为△ABC 的内角,则 sin A cos A 的取值范围是( ) A. ( 2,2) B. ( 2, 2) C. (1, 2] D.[ 2, 2]
3
2.在△ABC 中,若 C 900 , 则三边的比 a b 等于( ) c
A. 2 cos A B B. 2 cos A B C. 2 sin A B
三边 (如 a、b、c)
余弦定理
由余弦定理求出角 A、B,再利用 A+B+C=180˙,求出角 C 在有解时只有一解。
1
解三角形[基础训练 A 组]
一、选择题 1.在△ABC 中,若 C 900 , a 6, B 300 ,则 c b 等于( )
A.1 B. 1 C. 2 3 D. 2 3
4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.
5.三角形中的基本关系: sin( A B) sin C, cos( A B) cos C, tan( A B) tan C,
sin A B cos C , cos A B sin C , tan A B cot C
4.在△ABC 中,设 a c 2b, A C , 求 sin B 的值。 3
解三角形[综合训练 B 组] 一、选择题
2
1.在△ABC 中, A : B : C 1: 2 : 3 ,则 a : b : c 等于( )
A.1: 2 : 3 B. 3 : 2 :1 C.1: 3 : 2 D. 2 : 3 :1 2.在△ABC 中,若角 B 为钝角,则 sin B sin A 的值( )A 大于零 B 小于零 C 等于零 D 不能确定 3.在△ABC 中,若 A 2B ,则 a 等于( )A. 2b sin A B. 2b cos A C. 2b sin B D. 2b cos B 4.在△ABC 中,若 lg sin A lg cos B lg sin C lg 2 ,则△ABC 的形状是( )

必修5第一章解三角形知识点全面 总结

必修5第一章解三角形知识点全面 总结

必修5第一章解三角形 知识总结1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin a b A B =sin cC==2R (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数2R ,即2sin =a R A , 2sin =b R B ,2sin =c R C ;(2)sin sin a b A B =sin c C =等价于sin sin a b A B =变形:sin sin a Ab B =, (3)正弦定理的基本作用为:①已知三角形的两角及其一边可以求其他边,即先用内角和求第三角,再用正弦定理求另外两边;②已知三角形的两边与一边的对角可以先求另一对角的正弦值,然后用内角和定理求第三角,再用正弦定理求第三边如先求sin sin aA B b=——A ——C ——c2、余弦定理:三角形中任何一边的平方等于其它两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即:2222cos a b c bc A =+- 或 2222cos b c a bc A +-= 2222cos =+-b a c ac B 或 2222cos a c b ac B +-= 2222cos c a b ab C =+- 或 2222cos a b c ab C +-= 从余弦定理,又可得到以下推论:222cos 2b c a A bc +-=222cos 2a c b B ac +-= 222cos 2a b c C ab+-= 在△ABC 中,由222cos 2a b cC ab+-=得:若222a b c +=,则cosC=0, 角C 是直角;若222a b c +<,则cos C <0, 角C 是钝角; 若222a b c +>,则cos C >0, 角C 是锐角.3、三角形面积公式:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.S =12ab sin C =12bc sin A=12ac sin B4、三角形中的三角变换 ,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

必修五第一章解三角形知识点总结及经典习题

必修五第一章解三角形知识点总结及经典习题(数学教研组)一、知识点总结1.正弦定理:2sin sin sin a b c R A B C=== (R:外接圆半径) 或变形:::sin :sin :sin a b c A B C =.结论:①定理:在三角形中,α、β为其内角,则α≤β⇔sin sin αβ≤,等号当且当α=β时成立。

②判断三角形大小关系时,可以利用如下原理:sin A > sin B ⇔ A > B ⇔ a > bcos cos A B A B >⇔<⇔a < b③三角形的面积公式: ∆S =21ab sin C =21bc sin A =21ac sin B 2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 3.利用正弦定理和余弦定理分别能解决的问题:(1)正弦定理:1、已知两角和一边(如A 、B 、c ),由A +B +C =π求C ,由正弦定理求a 、b .(ASA 或AAS )2、已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况。

(SSA )(2)余弦定理:1、已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C 。

(SSS)2、已知两边和夹角(如a 、b 、C ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角。

(SAS )主流思想:利用正、余弦定理实现边角转化,统一成边的形式或角的形式。

5.三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 6。

高中数学必修5第一章解三角形知识点复习及经典练习

高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结1.正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C =.推论:①定理:若α、β>0,且α+β<π,则α≤β⇔sin sin αβ≤,等号当且当α=β时成立。

②判断三角解时,可以利用如下原理: sinA > sinB ⇔ A > B ⇔ a > b cos cos A B A B >⇔<(cos y x =在(0,)π上单调递减)2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- 已知条件 定理应用 一般解法一边和两角 (如a 、B 、C )正弦定理由A+B+C=180˙,求角A ,由正弦定理求出b 与c ,在有解时 有一解。

两边和夹角 (如a 、b 、c)余弦定理 由余弦定理求第三边c ,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。

三边(如a 、b 、c)余弦定理 由余弦定理求出角A 、B ,再利用A+B+C=180˙,求出角C 在有解时只有一解。

高中数学必修5知识点总结(史上最全版)

高中数学必修5知识点第一章 解三角形1、三角形三角关系:A+B+C=180°;C=180°-(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C ===A B .5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.8、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。

2.已知三边求角) 9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

高中数学必修五第一章《解三角形》知识点

高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B .5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5第一章:解三角形
1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,
则有
2sin sin sin a b c
R C
===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;
②sin 2a R A =,sin 2b R B =,sin 2c
C R
=;(正弦定理的变形经常用在有三角函数的等式中)
③::sin :sin :sin a b c C =A B ;
④sin sin sin sin sin sin a b c a b c
C C
++===
A +
B +A B . 3、三角形面积公式:111
sin sin sin 222
C S bc ab C ac ∆AB =A ==B .
4、余 定理:在C ∆AB 中,有2
2
2
2cos a b c bc =+-A ,2
2
2
2cos b a c ac =+-B ,
2222cos c a b ab C =+-.
5、余弦定理的推论:222cos 2b c a bc +-A =,222
cos 2a c b ac
+-B =,222cos 2a b c C ab +-=.
6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若2
2
2
a b c +=,则90C =o
为直角三角形;
②若2
2
2
a b c +>,则90C <o 为锐角三角形;③若222a b c +<,则90C >o
为钝角三角形. 考点一:正弦定理的应用
例1(1) 在ABC ∆中,2010,1a b ==,则sin
:sin A B 等于 ( )
A .1:1 B. 1:2010 C. 2010:1 D. 不确定
(2) 在ABC ∆中,若3,75,60AB B C ==︒=︒,则在ABC ∆中,BC = (3) 在ABC ∆中,角
,,A B C 所对边,,a b c
,若1,3
a c C π
==
=
,则
A =
(4) 在ABC ∆中,若cos cos cos a b c
A B C ==
,判断ABC ∆的形状.
(5) 在ABC ∆中,分别根据所给条件指出解的个数
①4,5,30a b A ===︒ ②5,4,60a b A ===︒
③120a b B ==
=︒
例2.已知ABC ∆中,sin sin ,b B c C =且222sin sin sin A B C =+,试断三角形的形状。

考点二:余弦定理
例3(1) 已知ABC ∆
满足60,3,B AB AC =︒==BC 的长等于 ( )
A .2 B. 1 C. 1或2 D. 无解 (2) 在ABC ∆中,角
,,A B C 所对边,,a b c
,若222a c b +-=
,则角B 为( )
A .6π B. 3π C. 6π
或56π
D. 3π或23π
(3) 在ABC ∆中,如果sin :sin :sin 5:6:8A B C
=,那么此三角形最大角的余弦值是
(4) 在ABC ∆中,若cos cos b A a B =,试判断三角形的形状。

(5) 在ABC ∆中,已知7,3,5a b c ===,求最大角和sin C 。

(6) 设锐角ABC ∆的角
,,A B C 所对边,,a b c ,且2sin a b A =
(1)求B 的大小 (2
)若5a c ==,求b
例4(1). 在ABC ∆中,角,,A B C 所对的边,,a b c ,23
B π
=
,4b a c =
+=求a 。

(2) 在ABC ∆中,角
,,A B C 所对边,,a b c ,若2b ac =,且2c a =,则cos B 等于( )
A .14 B. 3
4 C. 42 D. 3
2
(3) 在
ABC ∆中,三内角分别是,,A B C
,若
sin 2cos sin C A B
=,则此三角形一定是
( )A .直角三角形 B. 正三角形 C. 等腰三角形 D. 等腰直角三角形 (4) 在直角ABC ∆中,,A B 为两锐角,则sin sin A B 中 ( )
A .有最大值
12和最小值0 B. 有最大值1
2
,但无最小值 C. 无最大值也无最小值 D. 有最大值1,但无最小值 (5) 在ABC ∆中,若2,60b
a B A ==+︒,则A = 。

(6) 在ABC ∆中,角,,A B C 所对边,,a b c ,已知
()(
)
22
22sin 2sin sin C a B A b =--,ABC
∆外接圆的半径为
2 ,求角C .
考点三:三角形面积公式应用
例5(1) 在ABC ∆中,已知60,1,3ABC
A b S ∆=︒==,则sin sin sin a b c
A B C
++++等于 ( )
A .33 B. 23926339
(2) 在ABC ∆中,若7,3,8a
b c ===,则ABC ∆的面积等于
(3) 在ABC ∆中,三边,,a b c 与面积S 的关系为:2
22
4a S b c
+=+,则角
A =
(4) 在ABC ∆中,4sin10,2sin 50,70a
b C =︒=︒∠=︒,则ABC S ∆=
(5)在ABC ∆中,已知()()sin ,sin cos ,,2m C B A n b c ==u r r
,且0m n •=u r r ①求角A ,
②若23,2a c ==,求ABC ∆的面积。

(6)在ABC ∆中,25
cos 2A =,3AB AC •
=u r u u r
,①求ABC ∆的面积 ②若1c =,求a 的值
(7)在锐角ABC ∆中,角,,A B C 所对边,,a b c ,且
32sin a c A =
(1)求C (2)若7c =
,且33
2
ABC S ∆=
,求a b +的值。

考点四:解三角形实际应用 例6(1) 已知两灯塔
A 和
B 与海洋观测站C
的距离都等于
a km ,灯塔A 在观测站C 的北偏东
20︒,灯塔B 在观测站C 的南偏东40︒,两塔的距离为 ( )
A. a km
B.
3a km
C.
2a km
D. 2a km
(2)某同学家住8楼,距地面高约为20m ,在该楼前的建筑工地上有一座塔吊,该同学测得塔吊顶的仰角为60︒,塔底的俯角为45︒,则这座塔吊的高度是
(3)在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角
为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。

相关文档
最新文档