高二数学必修五知识点归纳

合集下载

高二年级必修五数学知识点

高二年级必修五数学知识点

高二年级必修五数学知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二年级必修五数学知识点本店铺高二频道为你整理了《高二年级必修五数学知识点》希望对你的学习有所帮助!1.高二年级必修五数学知识点集合的运算1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

高中数学必修五知识点大全

高中数学必修五知识点大全

知识点串讲必修五第一章:解三角形1.1.1正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

2、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ 证明出sin sin a b A B =sin c C ==sin sin sin a b c A B C++++ 解:设sin sin a b A B =(>o)sin c k k C== 则有sin a k A =,sin b k B =,sin c k C = 从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C A B C++++=k又sin a A =2k ==,所以sin sin sin a b c A B C++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c k k A B C ++=>++ 恒成立。

3、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c(答案:1:2:3)1.1.2余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba2、在∆ABC 中,已知=a c 060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+-=8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2222221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。

高二数学必修5知识点总结

高二数学必修5知识点总结

高二数学必修5知识点总结高二数学必修5主要包括数列与数学归纳法、函数与导数、三角函数与导数、指数与对数函数、统计与概率五个主要知识点。

下面将对这些知识点进行总结和回顾。

1. 数列与数学归纳法数列是按照一定规律排列的一系列数。

常见的数列有等差数列和等比数列。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

数学归纳法是一种证明数列性质的方法,分为基本步骤和归纳步骤。

2. 函数与导数函数是一个映射关系,将一个集合的元素映射到另一个集合的元素。

函数的定义域、值域、反函数、复合函数是常见的概念。

导数是函数在某一点的变化率,表示为f'(x)或dy/dx。

导数的计算可以利用导数的定义或基本的导数公式,如常数倍法则、和差法则、乘法法则、除法法则等。

3. 三角函数与导数三角函数包括正弦函数、余弦函数、正切函数等。

这些函数与导数的计算有一定的关系。

正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数,正切函数的导数是其平方的倒数。

利用这些导数公式可以简化三角函数的导数计算。

4. 指数与对数函数指数函数是以底数为常数的指数幂,对数函数是指数函数的逆运算。

指数函数的图像呈现指数增长或指数衰减的趋势,对数函数的图像表现为增长率逐渐减少的趋势。

指数函数和对数函数有一些重要的性质,如指数函数的性质:指数函数的值域为正实数集,指数函数在原点取值为1;对数函数的性质:对数函数的定义域为正实数集,对数函数在x=1时取值为0。

5. 统计与概率统计是研究数据收集、整理、分析和解释的方法。

概率是描述随机事件发生可能性的数值。

统计与概率在实际问题中有广泛的应用,包括抽样调查、数据处理、概率模型等。

常见的统计与概率问题包括频率分布、均值与方差、正态分布、概率的计算等。

以上是高二数学必修5的主要知识点总结。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

高二数学必修五知识点总结5篇

高二数学必修五知识点总结5篇

高二数学必修五知识点总结5篇高二数学必修五知识点总结5篇了解社交媒体和在线工具对于知识管理和交流的作用和优势。

寻求和借鉴他人的成功经验和最佳实践。

下面就让小编给大家带来高二数学必修五知识点总结,希望大家喜欢!高二数学必修五知识点总结篇1一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗4.简单命题与复合命题有什么区别四种命题之间的相互关系是什么如何判断充分与必要条件5.你知道“否命题”与“命题的否定形式”的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

例如:。

10.你熟练地掌握了函数单调性的证明方法吗定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗14.解对数函数问题时,你注意到真数与底数的限制条件了吗(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次)的关系及应用掌握了吗如何利用二次函数求最值16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。

高二数学必修五知识点总结

高二数学必修五知识点总结

高二数学必修五知识点总结高二数学必修五包括了数列与数学归纳法、概率与统计、三角函数、指数与对数函数、数学选修的五个主要知识点。

下面将对这五个知识点进行总结与归纳,帮助大家更好地理解和掌握这些数学知识。

一、数列与数学归纳法数列是由若干项按照一定规律排列而成的序列。

常见的数列有等差数列和等比数列。

等差数列的通项公式为an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。

等比数列的通项公式为an=a1*r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

数学归纳法是一种证明数学命题的方法,分为基本步骤和归纳步骤。

基本步骤是证明当n=1时命题成立,归纳步骤是假设当n=k时命题成立,证明当n=k+1时命题也成立。

二、概率与统计概率是研究随机事件发生可能性的数学分支,其基本思想是通过实验或观察,利用一定的数学模型对事件发生的概率进行计算和推断。

概率的计算方法有频率法、古典概型法、几何概型法和条件概率法等。

统计是以收集、整理、分析和解释资料为主要内容的一门学科。

统计学分为描述统计和推断统计两个部分,其中描述统计主要是对数据进行总结、整理和分析,推断统计则是通过抽样调查等方法对总体进行推断。

三、三角函数三角函数是描述角度和边长之间关系的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

正弦函数的定义域是实数集,值域是[-1, 1];余弦函数的定义域是实数集,值域也是[-1, 1];正切函数的定义域是除去所有余弦函数为零的点之外的实数集,值域是实数集。

三角函数的性质包括周期性、奇偶性、单调性和界值等,熟练掌握这些性质对于解题非常重要。

四、指数与对数函数指数函数和对数函数是数学中常用的函数形式。

指数函数的形式为y=a^x,其中a称为底数,x为自变量,y为因变量。

指数函数具有单调性和界值等性质。

对数函数是指数函数的逆运算,常用的对数函数有以10为底的常用对数函数和以e为底的自然对数函数。

高二年级必修五数学知识点

高二年级必修五数学知识点

高二年级必修五数学知识点在高中数学学习中,必修五是一门重要的数学课程。

它是高中数学的第五门课程,也是学生在高中时期经常接触的一门数学课程。

在此篇文章中,我将会介绍高二年级必修五数学知识点。

第一部分:平面向量矢量的概念在欧几里得空间当中,矢量是表示方向和大小的量。

一个矢量通常用一个有向线段来表示,它的方向和长度分别表示矢量的方向和大小。

矢量的运算矢量之间可以进行加、减、数乘等运算。

矢量加法两个矢量相加等于将其中一个矢量平移后与另一个矢量的始点相连所得到的矢量。

矢量减法两个矢量相减等于将其中一个矢量反方向平移后与另一个矢量的始点相连所得到的矢量。

数乘数乘是指一个矢量乘以一个常数,常数称为标量。

矢量的数量积和向量积数量积两个矢量的数量积是一个标量,表示两个矢量夹角的余弦值与两个矢量长度的乘积。

向量积两个矢量的叉积是一个矢量,其大小等于两个矢量围成的平行四边形的面积,其方向垂直于这两个矢量所在的平面,符合右手法则。

第二部分:三角函数角度制和弧度制三角函数中的角度可以用角度制和弧度制来表示。

角度制是将一周分成360度,弧度制是将一周分成 $2\\pi$ 弧度。

正弦、余弦、正切函数正弦函数、余弦函数和正切函数是三角函数中的重要概念。

在一个直角三角形中,正弦函数等于对边与斜边的比值,余弦函数等于邻边与斜边的比值,正切函数等于对边与邻边的比值。

三角函数的求值三角函数的求值可以通过查表或使用计算器来完成。

在计算三角函数值时,应注意数值是否符合角度制或弧度制的要求。

常用三角函数公式三角函数中有许多重要的公式,如余弦定理、正弦定理、同角三角函数间的关系等。

第三部分:导数导数的概念导数是微积分中的基础概念,表示函数曲线在某个点上的切线斜率。

它可以表示为函数关于自变量的变化率,也可以表示为函数的微分。

导数的计算导数的计算可以使用定义式或运用常用导数公式来完成。

在计算导数时,需要注意一些基本的求导规则和公式。

导数的应用导数在数学中有许多应用,如求函数的最大值和最小值、判断函数的单调性、辅助解方程等。

高二数学必修五知识点归纳大全5篇

高二数学必修五知识点归纳大全5篇

高二数学必修五知识点归纳大全5篇以下是五篇关于高二数学必修五知识点归纳的文章:1. 矩阵运算与行列式矩阵运算是数学中非常重要的一部分,也是高中数学必修五中的重要内容。

它的基本概念包括矩阵与向量、矩阵的加、减、乘等等。

形式化的定义是,在同一个数域内,按照矩阵乘法法则,定义的一种矩形数组。

关于矩阵的运算,最重要的莫过于它的乘法。

矩阵乘法是运用于解决非常多的问题的,比如图像处理,分析算法等等。

而让我们更加提高计算效率的还有行列式,通过行列式的计算我们可以得出矩阵的秩,而当矩阵与向量进行行列式的运算时,我们还可以求出相应的线性方程组的解。

因此,行列式与矩阵乘法使得我们能够更加方便快捷地解决很多的数学问题,它们是数学中一对重要的工具。

例子:计算矩阵A =【1,3,5】【2,4,6】的行列式。

2. 三角函数三角函数是高中数学必修五中非常重要的一部分,也是每年数学高考的重要内容。

它包括正弦函数、余弦函数、正切函数、反正弦函数、反余弦函数和反正切函数等。

三角函数常常出现在几何图形、三角形、三角恒等式、极限、积分等等方面。

由于三角函数被广泛应用在多种数学领域中,我们也可以将它的应用范围扩展到物理、工程、计算机图形学等领域。

在这些领域中,三角函数可以帮助我们计算出不同角度下的某些物理量,如电压、电流、光线等等。

因此,理解三角函数的概念、性质和应用非常重要,是数学学习中必不可少的一部分。

例子:计算sin30,tan45,cosπ。

3. 向量代数向量代数是高中数学必修五的另一部分。

向量代数包括向量的基本概念、向量的加减、数乘、点积、叉积,向量的模长和方向角等等。

在力学、物理、计算机图形学、工程等领域中,向量代数扮演着非常重要的角色,并成为了这些领域中必须要掌握的数学工具。

通过向量的模长和方向角,我们可以求出向量的分解,从而方便地研究向量在三维空间中的运动轨迹。

此外,在求出两个向量之间的夹角时,向量的点积和叉积也非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学必修五知识点归纳
第一章解三角形
1、三角形的性质:
①.A+B+C=,
AB2
C2
sin
AB2
cos
C2
②.在ABC中, ab>c , ab<c ; A>BsinA>sinB,
A>BcosA<cosB, a >b A>B
③.若ABC为锐角,则AB>
,B+C >
,A+C >
a2b2>c2,b2c2>a2,a2+c2>b2 2、正弦定理与余弦定理:①. (2R为ABC外接圆的直径)
a2Rsin
A、b2Rsin
B、c2RsinC sinA
a2R
12
b2R
、 sinC
12
c2R
12
acsinB
面积公式:SABC
absinC
bcsinA
②.余弦定理:abc2bccosA、bac2accosB、cab2abcosC bca
2bc
cosA、cosB
ac
b
2ac
222
、cosC
abc
222
3第二章数列
1、数列的定义及数列的通项公式:
①. anf(n),数列是定义域为N
的函数f(n),当n依次取1,2,时的一列函数值② i.归纳法
若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm
Snf(an)
iv. 若Snf(an),先求a
1得到关于an1和an的递推关系式
Sf(a)n1n1Sn2an1
例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an
Sn12an11
2.等差数列:
① 定义:a
n1an=d(常数),证明数列是等差数列的重要工具。

② 通项d0时,an为关于n的一次函数;
d>0时,an为单调递增数列;d<0时,a
n为单调递减数列。

n(n1)2
③ 前nna1
d0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。

④ 性质: ii. 若an为等差数列,则am,amk,am2k,…仍为等差数列。

iii. 若an为等差数列,则Sn,S2nSn,S3nS2n,…仍为等差数列。

iv 若A为a,b的等差中项,则有A3.等比数列:
① 定义:
an1an
q(常数),是证明数列是等比数列的重要工具。

ab2
② 通项时为常数列)。

③.前n项和
需特别注意,公比为字母时要讨论.
④.性质:
第2 / 4页
ii.an为等比数列,则am,amk,am2k,仍为等比数列
,公比为qk。

iii. an为等比数列,则Sn,S2nSn,S3nS2n,K仍为等比数列,公比为qn。

iv.G为a,b的等比中项,Gab 4.数列求和的常用方法:
①.公式法:如an2n3,an3n1
②.分组求和法:如an3n2n12n5,可分别求出3n,2n1和2n5的和,然后把三部分加起来即可。

如an3n2,
Sn579(3n1)
2222
n1
3n2
n1
11111
Sn579…+3n13n2222222
n1
11111两式相减得:Sn52223n2 222222
,以下略。

如an
1nn1
1n
1n1
;an
1n1
n1n,
an
2n12n1
等。

22n12n1
⑤.倒序相加法.例:在1与2之间插入n个数a1,a
2,a3,,an,使这n+2个数成等差数列,求:Sna1a2an,(答案:Sn 32n)
第三章不等式
1.不等式的性质:
① ab,bcac
ab,cRacbc,推论:
ab
acbd cd
babab0
acbc;acbc;acbd0
c0c0cd0
④ ab0anbn0;ab02.不等式的应用:①基本不等式:
a
b0
当a>0,b>0且ab是定值时,a+b有最小值;
当a>0,b>0且a+b为定值时,ab有值。

相关文档
最新文档