一次函数复习课_教案
北师大版 八年级上册 课题:《一次函数》复习课教案

北师大版八年级上册课题:《一次函数》复习课教案一. 教材分析北师大版八年级上册《一次函数》复习课教案旨在帮助学生巩固已学的一次函数知识,提高解题能力和思维水平。
本节课的主要内容有一次函数的定义、性质、图像和应用等方面,通过本节课的学习,学生可以更好地理解和掌握一次函数的知识,并能够运用一次函数解决实际问题。
二. 学情分析学生在学习一次函数时,已经具备了一定的数学基础和思维能力,能够理解和掌握一次函数的基本概念和性质。
但学生在应用一次函数解决实际问题时,还存在着一些困难,如对一次函数图像的理解和运用不够灵活等。
因此,在复习课中,需要针对这些难点进行讲解和练习,帮助学生更好地掌握一次函数的知识。
三. 教学目标1.掌握一次函数的定义、性质和图像。
2.学会运用一次函数解决实际问题。
3.培养学生的逻辑思维和解题能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的理解和运用。
3.运用一次函数解决实际问题。
五. 教学方法采用讲授法、练习法、讨论法等教学方法,通过讲解、示例、练习和讨论等方式,帮助学生理解和掌握一次函数的知识,提高学生的解题能力和思维水平。
六. 教学准备1.教学课件或黑板。
2.练习题和答案。
3.教学参考书和资料。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾一次函数的定义和性质,激发学生的学习兴趣和思维能力。
呈现(15分钟)讲解一次函数的图像和应用,通过示例和练习,让学生理解和掌握一次函数图像的特点和运用方法。
操练(15分钟)让学生独立完成练习题,教师进行个别辅导和指导,帮助学生巩固已学知识,提高解题能力。
巩固(10分钟)通过讨论和练习,让学生进一步理解和掌握一次函数的知识,培养学生的思维能力和解决问题的能力。
拓展(10分钟)讲解一次函数在实际问题中的应用,通过示例和练习,让学生学会运用一次函数解决实际问题。
小结(5分钟)总结一次函数的知识点,强调一次函数的定义、性质和图像的重要性,提醒学生注意运用一次函数解决实际问题。
一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
北师大版 八年级上册 课题:《一次函数》复习课教学设计

北师大版八年级上册课题:《一次函数》复习课教学设计一. 教材分析《一次函数》是北师大版八年级上册数学第二章的内容,主要介绍了函数的概念、一次函数的定义、图像和性质。
本节课的教学内容是对一次函数的复习,通过复习使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。
二. 学情分析学生在之前的学习中已经掌握了函数的概念和一次函数的基本知识,但部分学生对一次函数的图像和性质理解不够深入,解决实际问题的能力有待提高。
此外,学生的数学基础和学习兴趣存在差异,因此在教学过程中需要关注学生的个体差异,激发学生的学习兴趣。
三. 教学目标1.知识与技能:通过对一次函数的复习,使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。
2.过程与方法:通过复习课的教学,培养学生自主学习、合作交流的能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的数学素养,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:一次函数的基本概念、图像和性质。
2.难点:一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,激发学生的学习兴趣。
2.启发式教学法:引导学生通过自主学习、合作交流,发现一次函数的性质。
3.案例教学法:通过解决实际问题,培养学生应用一次函数的能力。
4.反馈评价法:及时了解学生的学习情况,调整教学策略。
六. 教学准备1.教学课件:制作一次函数的复习课件,包括一次函数的基本概念、图像和性质。
2.教学案例:准备一些实际问题,用于巩固一次函数的应用。
3.作业布置:提前布置一次函数的相关作业,了解学生的掌握情况。
七. 教学过程1.导入(5分钟)通过生活实例引入一次函数,激发学生的学习兴趣。
例如,讲解购物时打折优惠的问题,引导学生发现折扣率与价格之间的关系是一次函数。
2.呈现(10分钟)呈现一次函数的基本概念、图像和性质,让学生回顾和巩固一次函数的知识。
一次函数复习教案

(4)图像平行于直线y=-4x+3(5)图像与y轴交点在x轴下方2.如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标(四)小结教师引导学生进行小结:1.看图应先看横轴和纵轴所表示的意义。
2.“数”用“形”表示,由“形”想到数,数与形结合,是我们数学学习中一种很重要的思想方法,这就是数形结合法。
3.函数图象不仅与函数解析式有关,还直接与自变量的取值范围有关(五)课下作业布置教材97-101页复习题学生认真听讲,并仔细体会学生课下独立完成课堂达标检测题如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标板书设计一次函数一、知识网络概念函数的表示方法函数图像函数概念一次函数的图像、性质一次函数解析式的确定一次函数与一元一次方程的关系与二元一次方程(组)的关系应用教学反思本节课设计思路:1.没有提示用1分钟时间回忆本章内容2.根据课本目录提示用1分钟时间回忆本章内容3.根据自己做的知识网络图复习本章内容4.直接看课本复习本章内容5.老师引领复习本章内容6.练习7.小结8.作业本节课优点:思路清晰,前五步是复习本章知识点,每一步都为下一步做准备,下一步又都在为上一步查漏补缺,经过一个这样的过程,学生就会知道自己对各部分知识的掌握程度,找到自己以后的努力方向。
在练习题的设置上,我用尽量少的题去涵盖尽量多的知识点,综合性较强,能够起到拔高的作用。
并且在出示题后,鼓励学生大胆去做,对一部分同学能起到克服恐惧数学的作用。
八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
《一次函数》教案(共5则)

《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
一次函数小结复习课—教学设计及点评(获奖版)

《一次函数》小结复习课(第1课时)教学设计一、教学内容本节课是人教版八年级下册第十九章《一次函数》小结复习课的第1课时,其主要内容是:复习一次函数的定义、一次函数的图象与性质、用待定系数法求一次函数解析式及一次函数与方程(组)、不等式的关系.一次函数是最基本的初等函数,它反映了函数学习的一般步骤(先学习定义、画函数图象、探究图象性质,再学习解析式的求法,最后综合应用)和基本思想(数学建模思想、数形结合思想、分类讨论思想等),这对后续二次函数、反比例函数的学习具有启示作用的。
而一次函数与前面学习过的方程(组)、不等式等知识间的转化,也体现了一次函数在初中数学知识体系构成中具有桥梁和纽带的联系作用。
基于对教材的分析,我确定了本节课的重点为一次函数的图象与性质、求解析式、及其综合应用。
二、教学目标1.通过制作思维导图构建一次函数知识框架,加深对一次函数的定义、图象和性质、求解析式、函数应用的理解;2.熟练掌握用待定系数法求一次函数解析式;3.经历运用一次函数的相关知识提出问题、分析问题、解决问题的过程,从不同角度思考问题,优化解题策略,积累数学活动经验,体会数形结合思想,建立符号意识,发展直观想象、数学抽象、数据分析、数学建模、逻辑推理和数学运算能力;4.通过合作学习,激发学生的好奇心和求知欲,使其敢于发表自己的想法,敢于质疑,感受成功的快乐,养成独立思考、合作交流等学习习惯,形成严谨求实的科学态度.三、学情分析通过这一章的逐步学习,学生对一次函数已经有了一定的认识和了解,只是学生掌握的知识非常零散、没有形成完整的知识体系。
八年级学生的思维已逐步从直观的形象思维向抽象的逻辑思维过渡,有一定的信息处理能力。
我们班上有一定数量的学生思维活跃、有较强的分析问题的能力,能起到一定的引领作用。
并且通过长期的教学组织,学生养成了良好的小组合作学习的习惯。
结合学生情况本节课要解决的难点是应用函数思想解决方程(组)与不等式的相关问题.四、教学策略(一)课程资源人教版八年级数学下册教科书、《义务教育数学课程标准(2011年版)》、多媒体教室、希沃授课助手、课前为学生提供微课视频爱奇艺《一次函数-征服珠峰》、学生课前制作的一次函数复习思维导图、教师与有兴趣的学生共同制作的几何画板素材等.(二)教学思路教学思路主线:梳理知识—复习巩固—当堂检测—课堂小结—布置作业.1.梳理知识:思维导图—梳理分块.2.复习巩固:函数定义—图像性质—求解析式—应用函数.3.当堂检测:反馈学生学习情况.4.课堂小结:以思维导图开始,华罗庚名言结束.5.作业布置:对本节课知识的巩固和延伸.(三)教学方法1.教法:采用任务驱动、直观演示、启发式和小组讨论互助式学习模式,借助于多媒体、希沃、几何画板软件等与学生建立平等融洽的关系,注重教学评价,营造自主探索与合作交流的氛围,共同在讨论、演示、观察、练习等活动来提高教学效率,使学生成为学习的主人,加强学生自主学习和合作探究的意识与能力.2.学法:教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用.八年级的学生,从认知的特点来看,学生爱问好动、求知欲强,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,学生通过观察、自主探索、小组讨论、归纳等方式获得知识,真正成为课堂的主人.五.教学过程设计(一)展示导图,梳理知识1.教师展示各小组制作的思维导图,对学生课前准备给予肯定.2.请学生介绍知识板块,以此为线索梳理知识点.【设计意图】从学生自学制作的思维导图出发,培养学生分类、概括的能力,为一次函数的复习做教学铺垫,激发学生对数学的好奇心和求知欲.(二)复习巩固,活动交流1.一次函数的定义2.一次函数的图象与性质(1)学生讲解k、b对一次函数图象及性质的影响.并借助几何画板做动态演示.(2)学生用图表的形式归纳k、b对一次函数的图象及性质的影响.是一种很好的归纳方法。
一次函数数学教案优秀5篇

一次函数数学教案优秀5篇一次函数数学教案(精选篇1)教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:•分)变化的函数关系式,并画出函数图象.y=例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=•20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本P119练习.三、课堂,发展潜能由学生自我本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:练习:一次函数数学教案(精选篇2)一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备 欢迎下载
中考第一轮复习课 一次函数复习课 教案 宜宾县育才中学 陈节芳
一、教学目标:
1、一次函数的代数与几何意义。
一次函数的定义、图象和性质。
2、一次函数解析式的确定。
3、体会一次方程、一次不等式与一次函数的内在联系。
4、在具体问题中培养学生分析解决问题的能力。
二、重难点
重点:一次函数的图象与性质;一次函数解析式的确定。
难点:一次函数与方程、不等式的联系;一次函数的应用。
三、教学方法:以题带概念进行重点知识复习,渗透待定系数法、数形结合等数学思想方法。
四、教学过程 (一)范例展示。
“本节课我们对一次函数的基础知识进行复习。
”通过例题组,唤醒学生对一次函数基本知识的记忆,同时使其积累解决问题的经验,为下一步小结提升,抽象概括做准备。
(二)回顾:“在本节课的学习中,你回忆起以前所学过的一次函数的有关知识了吗?”帮助学生把已有的知识和已经积累的解决问题的经验升华,抽象概括出来。
(三)运用知识解决问题 (一)一次函数的定义:
例1.已知y 是x 的一次函数,且满足b x k y k +-=2
)1(, ①求出k 的值。
②当b =0时,y 是x 的什么函数? 回顾:
1.如果两个变量y 与x 之间的关系可以表示成________________________的形式,则称y 是x 的一次函数;特别的,当______________时,y 是x 的正比例函数。
2.判断y =kx n +b 是否为一次函数,需要满足______________且_________________。
知行合一
1.下列函数中,哪些是一次函数?哪些是正比例函数?
2.函数y=(m +2)x +( m 2
- 4)为正比例函数,则m =________。
2
)4(1)3(1)2(2)1(x y x y x
y x y =+-===
学习必备 欢迎下载
(二)一次函数的图象和性质
例2.请画出一次函数y =2x -2的图象,并回答下列问题
(1)一次函数y =2x-2的图象与x 、y 轴的交点坐标分别是什么? (2)当x _________时,y >0。
(3)如图,直线y 1=2x -2与y 2=-x +4交于点______,则当x __________时,y 1<y 2。
(4)y 随x 的增大而___________,直线y =2x -2经过_________象限。
(5)若点A (x 1,y 1)、B (x 2,y 2)在直线y =2x -2上,且x 1<x 2,则y 1___________y 2。
回顾:
1.一次函数的图象是______________________。
2.直线y =kx +b (k ≠0)与x 轴交于(k
b
,0),与y 轴交于(0,b )。
3.对于直线y =kx +b 与y =mx +n ,当k ≠m 时,如何求它们的交点坐标?
知行合一
1. 一次函数y =mx +n 的图象如图,则m ___________,n __________。
2. 一次函数y =(-a 2
-1)x +3的图像上有两个点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则y 13.一次函数y =-2x +4的图象经过的象限是_______,它与x 轴的交点坐标是_____,与y x ___________________时,y <0。
4.直线y =kx +b (k ≠0)不经过第二象限,则k _________0,b ___________0 (三)一次函数解析式的确定
学习必备 欢迎下载
例3.已知,一次函数的图象上两个点A (0,5),B (2,3),求该一次函数的解析式。
并求出当x =1.5时,y 的值。
回顾:求一次函数解析式时,先确定函数类型,设函数解析式为_______,再代入两个已知点的坐标或x 、y 的两组对应值,得到关于_____的_________,然后解这个_________,求出_________的值,最后写出函数解析式。
知行合一
1.一次函数图象经过点A (-2,-3)B (1,3)求此一次函数的解析式。
试判断点P (-1,1)是否在这个一次函数图像上。
综合练习:在直角坐标系xOy 中,直线l 过(1,3)和(3,1)两点,且与x 轴,y 轴分别交于A ,B 两点.
(1)求直线l 的函数关系式; (2)求△AOB 的面积.
(四)课后作业:请把你在本节课中回顾到的有关一次函数的概念和方法,结合自己的所思所悟,绘制成一份名为“自悟自得”的图表,画在A 4上。
并完成下面的作业题。
1. 若函数y =(3-m ) 28
m x
是正比例函数,则m 的值是( )
A .±3
B .3
C .-3
D .以上都不是
2.将直线 y =2x -4 向上平移5个单位后,所得直线的表达式是_________________.
3. 如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (a ,2),则关于x 的不等式x +1≥mx +n 的解集为 .
4. 直线a 与直线y =2x +1的交点的横坐标为2,与直线y =-x +2的交点的纵坐标为1,求直线a 对应的函数解析式.。