初三中考数学选择填空压轴题
中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。
题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。
【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。
中考数学选择填空压轴题汇编 规律探索(含解析)-人教版初中九年级全册数学试题

2020年中考数学选择填空压轴题汇编:规律探索1.(2020某某某某)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.2.(2020某某某某)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).3.(2020某某鹤岗)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标2×32020﹣1,32020.【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).4.(2020某某某某)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),×2×2=2,∴第1个等腰直角三角形的面积=12∵A2(6,0),=2√2,∴第2个等腰直角三角形的边长为√2×2√2×2√2=4=22,∴第2个等腰直角三角形的面积=12∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4,×4×4=8=23,∴第3个等腰直角三角形的面积=12…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).5.(2020某某某某)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119 .【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.(x>0)的图象上,点B1,B2,B3,…B n在y 6.(2020•某某某某)如图,点A1,A2,A3…在反比例函数y=1x轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y=1交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3x⊥B2A3…,则B n(n为正整数)的坐标是()A.(2√x,0)B.(0,√2x+1)C.(0,√2x(x−1))D.(0,2√x)【解答】解:由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,∵A1(1,1),∴OB1=2,设A2(m,2+m),则有m(2+m)=1,解得m=√2−1,∴OB2=2√2,设A3(a,2√2+n),则有n=a(2√2+a)=1,解得a=√3−√2,∴OB3=2√3,同法可得,OB4=2√4,∴OB n=2√x,∴B n(0,2√x).故选:D.7.(2020某某某某州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C (1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C 的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).8.(2020某某仙桃)如图,已知直线a:y=x,直线b:y=−12x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=−12x上,∴1=−12x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=212x,∴P2020的横坐标为212×2020=21010,故答案为:21010.9.(2020某某某某)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p 格, 这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .10.(2020某某某某)如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 (0,﹣22019) .【解答】解:∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…, ∴OP n =2n ﹣1,由题意可得出线段每旋转8次旋转一周, ∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴的负半轴上, ∴点P 2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).11.(2020某某某某)如图,△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A n ﹣1B n A n ,都是一边在x 轴上的等边三角形,点B 1,B 2,B 3,…,B n 都在反比例函数y =√3x(x >0)的图象上,点A 1,A 2,A 3,…,A n ,都在x 轴上,则A n 的坐标为 (2√x ,0) .【解答】解:如图,过点B 1作B 1C ⊥x 轴于点C ,过点B 2作B 2D ⊥x 轴于点D ,过点B 3作B 3E ⊥x 轴于点E ,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),得t•√3t=√3,解得t=1或t=﹣1(舍去),把B1(t,√3t)代入y=√3x∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),把B2(2+m,√3m)代入y=√3x∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),得(2√2+n)•√3n=√3,把B3(2√2+n,√3n)代入y=√3x∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√x,0),故答案为:(2√x,0).12.(2020某某湘西州)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3.上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n=(x−2)×180°x【解答】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,=60°;∠NOC=(3−2)×180°3=90°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=(4−2)×180°4=108°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=(5−2)×180°5…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O..也有类似的结论是A1N=A n M,∠NOA n=(x−2)×180°x故答案为:A1N=A n M,∠NOA n=(x−2)×180°.x13.(2020某某某某)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【解答】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.14.(2020某某某某)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( )A .1100B .120C .1101D .2101【解答】解:由题意知,第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是1005050=2101, 故选:D .15.(2020某某威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m ,n )位置恰好为A 型地砖,则正整数m ,n 须满足的条件是m 、n 同为奇数或m 、n 同为偶数 .【解答】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数. 故答案为m 、n 同为奇数或m 、n 同为偶数.16.(2020某某潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:xx 1̂的圆心为点A ,半径为AD ;x 1x 1̂的圆心为点B ,半径为BA 1;x 1x 1̂的圆心为点C ,半径为CB 1;x 1x 1̂的圆心为点D ,半径为DC 1;⋯xx 1̂,x 1x 1̂,x 1x 1̂,x 1x 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则x 2020x 2020̂的长是 4039π.【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故x 2020x 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,x 2020x 2020̂的弧长=90180×8078x =4039x .故答案为:4039π.17.(2020某某达州)已知k 为正整数,无论k 取何值,直线11:y =kx +k +1与直线12:y =(k +1)x +k +2都交于一个固定的点,这个点的坐标是 (﹣1,1) ;记直线11和12与x 轴围成的三角形面积为S k ,则S 1=14,S 1+S 2+S 3+…+S 100的值为50101.【解答】解:∵直线11:y =kx +k +1=k (x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1);∵直线12:y =(k +1)x +k +2=k (x +1)+(x +1)+1=(k +1)(x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1).∴无论k 取何值,直线l 1与l 2的交点均为定点(﹣1,1).∵直线11:y =kx +k +1与x 轴的交点为(−x +1x,0), 直线12:y =(k +1)x +k +2与x 轴的交点为(−x +2x +1,0), ∴S K =12×|−x +1x +x +2x +1|×1=12x (x +1), ∴S 1=12×11×2=14;∴S 1+S 2+S 3+…+S 100=12[11×2+12×3+⋯1100×101] =12[(1−12)+(12−13)+…+(1100−1101)] =12×(1−1101)=12×100101=50101.故答案为(﹣1,1);14;50101.18.(2020某某某某)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2x 1+2x 2+2x 3+⋯+2x x=x2020.(n 为正整数),则n 的值为 4039 .【解答】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4, ∴a n =n (n +1),∵2x 1+2x 2+2x 3+⋯+2x x=x2020,∴21×2+22×3+23×4+⋯+2x (x +1)=x2020, ∴2×(1−12+12−13+13−14+⋯⋯+1x −1x +1)=x 2020, ∴2×(1−1x +1)=x2020, 1−1x +1=x4040, 解得n =4039,经检验:n =4039是分式方程的解, 故答案为:4039.19.(2020某某某某)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =xx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE 1,E 1E 2,E 2E 3,…在x 轴上,顶点D 1,D 2,D 3,…在该双曲线第一象限的分支上,则k = 4√3,前25个等边三角形的周长之和为 60 .【解答】解:设直线y =−√3x +b 与x 轴交于点D ,作BE ⊥y 轴于E ,CF ⊥y 轴于F . ∵y =−√3x +b ,∴当y =0时,x =√33b ,即点D 的坐标为(√33b ,0), 当x =0时,y =b ,即A 点坐标为(0,b ),∴OA =﹣b ,OD =−√33b .∵在Rt △AOD 中,tan ∠ADO =xxxx=√3,∴∠ADO =60°.∵直线y =−√3x +b 与双曲线y =x x在第三象限交于B 、C 两点,∴−√3x +b =xx ,整理得,−√3x 2+bx ﹣k =0,由韦达定理得:x 1x 2=√33k ,即EB •FC =√33k ,∵xxxx =cos60°=12, ∴AB =2EB ,同理可得:AC=2FC,k=16,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.。
江苏省中考数学选择填空压轴题专题9阅读理解问题

专题 09 阅读理解问题例 1.我们把 1,1,2, 3,5,8,13, 21, 这组数称为斐波那契数列,为了进一步研究,挨次以这列数为半径作 90°圆弧 PP ,PP ,PP , 获得斐波那契螺旋线,而后按序连接, , , 获得螺旋折线(如图) ,已知点 P (0, 1), PP PP PPP (- 1,0),( 0,- 1),则该折线上的点 的坐标为( )P PA .(- 6,24)B .(- 6,25)C .(- 5,24)D .(- 5,25) 同类题型 1.1 定义 [x]表示不超出实数 x 的最大整数,如 [1.8] =1,[- 1.4]=-12,[-3]=- 3.函数 y =[x] 的图象以下图,则方程[x] = x 的解为()2A .0 或 2B .0 或 2C .1 或- 2D . 2或- 2同类题型 1.2 nmn ﹣1m ﹣1对于函数 y = x + x ,我们定义y'= nx + mx ( m 、 n 为常数).比如 y =x 4+x 2,则 y'=4x 3+2x .已知: y =1x 3+( m ﹣1)x 2+m 2x .3(1)若方程 y ′=0 有两个相等实数根,则 m 的值为 ;(2)若方程 y ′=m ﹣1有两个正数根,则 m 的取值范围为.4例 2.将一枚六个面的编号分别为 1,2,3,4,5,6 的质地平均的正方体骰子先后扔掷两次,记第一次掷出的点数为 a ,第二次掷出的点数为 b ,则使对于x ,y 的方程组 {ax +by =3)有正数解的概率为 ___.x +2y =2同类题型 2.1 六个面上分别标有1,1,2,3, 4, 5 六个数字的平均立方体的表面睁开图以下图,掷这个立方体一次,记向上一面的数为平面直角坐标系 中某个点的横坐标,朝下一面的数为该点的纵坐标.则获得的坐标落在抛物线y =2x -x 上的概率是( )A .2 B .1C .1D .13639同类题型 2.2 把一枚六个面编号分别为 1,2,3, 4,5, 6 的质地平均的正方体骰子先后扔掷 2 次,若两个正面向上的编号分别为m 、n ,则二次函数 y =x +mx +n 的图象与 x 轴没有公共点的概率是 ________.同类题型2.3 如图,正方形ABCD的边长为2,将长为2 的线段QR 的两头放在正方形的相邻的两边上同时滑动.假如点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点 B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD内任一点,把N 点落在线段 QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =()4-ππ 1π-1A .B .C .D .4444同类题型 2.4 从- 1, 1, 2 这三个数字中,随机抽取一个数,记为 a ,那么,使对于 x 的一次函数 y =2x +a 的图象与 x 轴、 y 轴围成的三角形的面积为1,4且使对于 x 的不等式组 {x +2 ≤a 有解的概率为 _________.-)1 x ≤2a例 3.若 f (n )为的各位数字之和,如 +1=197,1+9 + (是随意正整数)14 n 1 n+7=17,则 f ( 14)= 17,记 ( n )= f (n ), =(f (n )),k 是任 f f = (()) f f f nf意正整数则f(8)=()A.3 B .5 C.8 D.11同类题型 3.1 将 1,2,3,,100 这100 个自然数,随意分为50 组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式1(|a-2b|+a+b)中进行计算,求出其结果,50 组数代入后可求得50 个值,则这 50 个值的和的最大值是 ____________.同类题型 3.2 规定: [x]表示不大于 x 的最大整数,(x)表示不小于x 的最小整数, [x)表示最靠近x 的整数( x≠n+ 0.5,n 为整数),比如: [2.3] =2,(2.3)=3,[2.3)= 2.则以下说法正确的选项是 ________.(写出全部正确说法的序号)①当 x=1.7 时, [x]+( x)+ [x)= 6;②当 x=- 2.1 时, [x] +( x)+ [x)=- 7;③方程 4[x]+3(x)+ [x)= 11 的解为 1<x<1.5;④当- 1< x< 1 时,函数 y=[x] +( x)+ x 的图象与正比率函数有两个交点.y= 4x 的图象同类题型 3.3 设[x]表示不大于 x 的最大整数, { x} 表示不小于 x 的最小整数,<x>表示最靠近 x 的整数( x≠n+ 0.5, n 为整数).比如 [3.4] =3,{3.4} =4,<3.4 ≥3.则方程 3[x]+2{x} +< x≥ 22()A .没有解B.恰巧有 1 个解C.有 2 个或 3 个解D.有无数个解同类题型 3.4 对于实数 p, q,我们用符号min{ p,q} 表示 p, q 两数中较小的数,如 min{1 ,2} =1,所以, min{ -,} = ______;若 min{ (-, }2 -3 )xx 1=1,则 x=____________.例4.已知点 A 在函数y=-1(x>0)的图象上,点 B 在直线y= kx+1+k(k x为常数,且 k≥0)上.若 A,B 两点对于原点对称,则称点 A, B 为函数y,y图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的状况为()A.有 1 对或 2 对B.只有 1 对C.只有 2 对D.有 2 对或3 对同类题型 4.1 在平面直角坐标内A,B 两点知足:①点 A,B 都在函数 y=f(x)的图象上;②点 A,B 对于原点对称,则称A,B 为函数 y=f(x)的一个“黄金点对”.|x+4|,x ≤0则函数 f(x)=1的“黄金点对”的个数为(){-,x>0 )xA.0 个 B .1 个C.2 个D.3 个同类题型 4.2 定义:在平面直角坐标系 xOy 中,把从点 P 出发沿纵或横方向抵达点Q(至多拐一次弯)的路径长称为 P,Q 的“实质距离”.如图,若 P(-1, 1), Q( 2,3),则 P, Q 的“实质距离”为 5,即 PS+ SQ= 5 或 PT+ TQ=5.环保低碳的共享单车,正式成为市民出行喜爱的交通工具.设A,B,C 三个小区的坐标分别为 A(3, 1),B(5,- 3),C(- 1,- 5),若点 M 表示单车停放点,且知足 M 到 A, B, C 的“实际距离”相等,则点 M 的坐标为____________.同类题型 4.3 经过三边都不相等的三角形的一个极点的线段把三角形分红两个小三角形,假如此中一个是等腰三角形,此外一个三角形和原三角形相像,那么把这条线段定义为原三角形的“和睦切割线”.如图,线段CD 是△ABC 的“和谐切割线”,△ACD 为等腰三角形,△CBD 和△ABC 相像,∠A= 46°,则∠ACB 的度数为__________.专题 09 阅读理解问题例 1.我们把 1,1,2, 3,5,8,13, 21, 这组数称为斐波那契数列,为了进一步研究,挨次以这列数为半径作 90°圆弧 PP ,PP ,PP , 获得斐波那契螺旋线,而后按序连接, , , 获得螺旋折线(如图) ,已知点 P (0, 1),PP PP PPP (- 1,0),( 0,- 1),则该折线上的点 的坐标为( )P PA .(- 6,24)B .(- 6,25)C .(- 5,24)D .(- 5,25)解:由题意, P 在 P 的正上方,推出 P 在 P 的正上方,且到P 的距离= 21+ 5=26,所以 P 的坐标为(- 6,25), 选 B .同类题型 1.1 定义 [x]表示不超出实数 x 的最大整数,如 [1.8] =1,[- 1.4]=- 2,[-3]=- 3.函数 y =[x] 的图象以下图,则方程[x] = 1 的解为( )2 xA .0 或 2B .0 或 2C .1 或- 2D . 2或- 2解:当 1≤x<2 时,1=1,解得= 2 ,;2xx=- 2x1当 x=0,x=0,x=0;21当- 1≤x<0时,2x=- 1,方程没有实数解;1当- 2≤x<- 1 时,2x=- 2,方程没有实数解;1所以方程 [x]=2x的解为 0 或 2.选A.同类题型 1.2 对于函数nm n﹣1m﹣1y= x + x ,我们定义y'= nx + mx ( m、 n 为常数).比如 y=x4+x2,则 y'=4x3+2x.已知: y=1x3+( m﹣1)x2+m2x.3(1)若方程y′=0 有两个相等实数根,则m 的值为;(2)若方程y′=m﹣1有两个正数根,则4m 的取值范围为.解:依据题意得y′=x2+2(m﹣1)x+m2,(1)∵方程x2﹣2(m﹣1)x+m2=0 有两个相等实数根,∴△= [ ﹣2(m﹣1)]2﹣4m2=0,1解得: m=;(2)y′=m﹣1,即 x2+2(m﹣1)x+m2=m﹣1,4 41化简得: x2+2(m﹣1)x+m2﹣m+=0,4∵方程有两个正数根,2(m-1)<0∴m2-m+> 0 {[-2(m-1)]2-4(m2-m+) ),≥03 1解得: m≤且 m≠ .4 2例2.将一枚六个面的编号分别为 1,2,3,4,5,6 的质地平均的正方体骰子先后扔掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使对于+=ax by 3)有正数解的概率为 ___.x,y的方程组 {x+2y=2解:①当 2a-b=0 时,方程组无解;②当 2a-b≠0时,方程组的解为由 a、b 的实质意义为1, 2, 3, 4,5, 6 可得.易知 a,b 都为大于 0 的整数,则两式结合求解可得=6-2b,2a-3,-y =-x2a b2a b∵使 x、y 都大于 0 则有6-2b>0,=2a-3>0,=-x -y2a b 2a b∴解得 a<1.5,b>3 或许 a>1.5,b<3,∵a,b 都为 1 到 6 的整数,∴可知当 a 为 1 时 b 只好是 4, 5, 6;或许 a 为 2, 3, 4, 5, 6 时 b 为 1 或2,这两种状况的总出现可能有3+10=13 种;(1, 4)(1,5)( 1,6)(2,1)( 3,1)(4,1)( 5,1)(6,1)(2,2)(3,2)(4,2)(5,2)(6,2)又掷两次骰子出现的基本领件共6×6=36 种状况,故所求概率为=13.36同类题型 2.1 六个面上分别标有 1,1,2,3, 4, 5 六个数字的平均立方体的表面睁开图以下图,掷这个立方体一次,记向上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则获得的坐标落在抛物线y=2x-x 上的概率是()A .2B .1C .1D .13639解:掷一次共出现 6 种状况,依据图形可知 1,2,3 所对应的数分别是 1,5,4,在抛物线上的点为:( 1,1),只有两种状况,所以概率为:2=1. 6 3选 C .同类题型 2.2 把一枚六个面编号分别为1,2,3, 4,5, 6 的质地平均的正方体骰子先后扔掷 2 次,若两个正面向上的编号分别为m 、n ,则二次函数 = +xy mx +n 的图象与 x 轴没有公共点的概率是 ________. 解:∵二次函数 y =x +mx +n 的图象与 x 轴没有公共点, ∴△< 0,即 m -4n <0, ∴m <4n ,列表以下:m 、 n 1234561 1,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 3 3,1 3,2 3,3 3,4 3,5 3,6 44 , 1 , 2 , 3 , 4 ,5 4 , 64 4 4 45 5,1 5,2 5,3 5,4 5,5 5,6 66,16,26,36,46,56,6共有 36 种等可能的结果,此中知足 m <4n 占 17 种,17所以二次函数y=x+mx+n 的图象与 x 轴没有公共点的概率=.同类题型 2.3 如图,正方形 ABCD 的边长为 2,将长为 2 的线段 QR 的两头放在正方形的相邻的两边上同时滑动.假如点Q 从点 A 出发,沿图中所示方向按A→B→C→D→A 滑动到 A 止,同时点R 从点 B 出发,沿图中所示方向按B→C→D→A→B 滑动到 B 止.点 N 是正方形 ABCD 内任一点,把 N 点落在线段 QR 的中点 M 所经过的路线围成的图形内的概率记为 P,则 P=()- B .πC.1 -A.4πD.π14 4 4 4解:依据题意得点M 到正方形各极点的距离都为1,点M 所走的运动轨迹为以正方形各极点为圆心,以 1 为半径的四个扇形,∴点 M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去 4 个扇形的面积.而正方形ABCD 的面积为2×2=4,4 个扇形的面积为90π×14 ×=π,360∴点∴把M 所经过的路线围成的图形的面积为4-π,N 点落在线段QR 的中点 M 所经过的路线围成的图形内的概率记为P,则4-π.P= 4选A.同类题型 2.4 从- 1, 1, 2 这三个数字中,随机抽取一个数,记为a,那么,使对于 x 的一次函数 y=2x+a 的图象与 x 轴、 y 轴围成的三角形的面积为1,4且使对于 x 的不等式组{x +2 ≤a)有解的概率为 _________. 1-x ≤2a1解:当 a =- 1 时, y =2x +a 可化为 y = 2x - 1,与 x 轴交点为 (, 0),与 y轴 2交点为( 0,- 1),三角形面积为1 1 12 × ×1= ;241,0),与 y 轴交点当 a = 1 时, y =2x + a 可化为 y = 2x +1,与 x 轴交点为 (-2为( 0,1),三角形的面积为 1 1 1 2 × ×1= ;2 4当 a =2 时, y =2x +2 可化为 y = 2x + 2,与 x 轴交点为(- 1,0),与 y 轴交点为( 0,2),三角形的面积为 1×2×1=1(舍去);2当 a =- 1 时,不等式组{x +2 ≤a 可化为 x +2 ≤-1,不等式组的解集为){)1-x ≤2a1-x ≤-2x ≤-3 ,无解;{ x ≥3 )x +2 ≤ax +2 ≤1 x ≤-1 当 a = 1 时,不等式组1-x ≤2a可化为1-x ≤2 ,解得 -x ≤1),解集为{){ ) {-≤ 1,解得 x =- 1.{-)x ≥ 1使对于 x 的一次函数 y =2x +a 的图象与 x 轴、 y 轴围成的三角形的面积为1,4且使对于 x 的不等式组 {x +2 ≤a 有解的概率为1.)3=1-x ≤2a P例 3.若 f (n )为 + (是随意正整数) 的各位数字之和,如 +1=197,1+ 914n 1 n +7=17,则 f ( 14)= 17,记 ( n )= f (n ), =(f (n )),k 是任 f f = (()) f f f nf意正整数则 f (8)=()A .3B .5C .8D .11解:∵ 8+1=65,∴ f (8)= f (8)= 6+5=11,同理,由 11+1=122 得 f (8)= 1+ 2+2= 5;由 5+ 1=26,得 f (8)= 2+ 6=8,可得f (8)=6+5=11=f (8), (8), ,f (8)=f ∴ f (8)=f (8)对随意 k ∈ N 建立又∵ 2016=3×672,∴ f (8)=f (8)=f (8)= =f (8)= 8.选 C .同类题型3.1 将 1,2,3, ,100 这100 个自然数,随意分为50 组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式1(|a -2b|+a +b)中进行计算,求出其结果,50 组数代入后可求得50 个值,则这50 个值的和的最大值是 ____________.解:①若 a ≥b ,则代数式中绝对值符号可直接去掉,∴代数式等于 a ,②若 b >a 则绝对值内符号相反,∴代数式等于 b因而可知输入一对数字,能够获得这对数字中大的那个数(这跟谁是a 谁是b没关)既然是乞降,那就要把这五十个数加起来还要最大,我们能够列举几组数,找找规律,假如 100 和 99 一组,那么 99 就被浪费了,由于输入 100 和 99 这组数字,获得的不过 100,假如我们取两组数字 100 和 1 一组, 99 和 2 一组,则这两组数字代入再乞降是 199,假如我们这样取100 和 99 2 和 1,则这两组数字代入再乞降是102,这样,能够很显然的看出,应防止大的数字和大的数字相遇这样就能够使最后的和最大,由此一来,只需100 个自然数里面最大的五十个数字从51 到 100 随意俩个数字不一样组,这样最后求得五十个数之和最大值就是五十个数字从51 到 100 的和,51+52+53++100=3775.同类题型 3.2 规定: [x]表示不大于 x 的最大整数,(x)表示不小于x 的最小整数, [x)表示最靠近x 的整数( x≠n+ 0.5,n 为整数),比如: [2.3] =2,(2.3)=3,[2.3)= 2.则以下说法正确的选项是 ________.(写出全部正确说法的序号)①当 x=1.7 时, [x]+( x)+ [x)= 6;②当x=- 2.1 时, [x] +( x)+ [x)=- 7;③方程 4[x]+3(x)+ [x)= 11 的解为 1<x<1.5;④当- 1< x< 1 时,函数 y=[x] +( x)+ x 的图象与正比率函数 y= 4x 的图象有两个交点.解:①当 x=1.7 时,[x]+( x)+ [x)=[1.7] +( 1.7)+ [1.7)=1+2+2=5,故①错误;②当 x=- 2.1 时,[x]+( x)+ [x)=[-2.1]+(- 2.1)+ [ -2.1)=(- 3)+(- 2)+(- 2)=- 7,故②正确;③4[x] +3(x)+ [x)= 11,7[x]+3+[x)= 11,7[x]+[x)= 8,1<x<1.5,故③正确;④∵- 1<x<1 时,∴当- 1<x<- 0.5 时, y=[x] +( x)+ x=- 1+0+x=x-1,当- 0.5<x<0 时, y=[x] +( x)+ x=- 1+0+x=x-1,当x=0 时, y=[x] +( x)+ x=0+0+0=0,当0<x<0.5 时, y=[x]+( x)+ x=0+1+x=x+1,当0.5<x<1 时, y=[x]+( x)+ x=0+1+x=x+1,∵y=4x,则x- 1=4x 时,得x=- 1;x+1=4x3 时,得x=1;当3x= 0 时, y=4x=0,∴当- 1< x< 1 时,函数y=[x] +( x)+ x 的图象与正比率函数y= 4x 的图象有三个交点,故④错误,答案为②③.同类题型 3.3 设[x]表示不大于 x 的最大整数, { x} 表示不小于 x 的最小整数,<x>表示最靠近 x 的整数( x≠n+ 0.5, n 为整数).比如 [3.4] =3,{3.4} =4,<3.4 ≥3.则方程A .没有解C.有 2 个或3[x]+2{x} +< x≥ 22()B.恰巧有 1 个解3 个解D.有无数个解】解:当 x= 3 时, 3[x]+ 2{ x} +< x≥3×3+2×3+ 3= 18,当 x= 4 时, 3[x] + 2{x} +< x≥ 3×4+2×4+4=24,∴可得 x 的大概范围为 3<x<4,①3<x<3.5 时, 3[x] +2{ x} +< x≥3×3+2×4+3=20,不切合方程;②当3.5<x<4 时, 3[x]+2{ x} +< x≥3×3+2×4+4=21,不切合方程.选A.同类题型 3.4 对于实数 p, q,我们用符号min{ p,q} 表示 p, q 两数中较小的数,如 min{1 ,2} =1,所以, min{ -,} = ______;若 min{ (-, }2 -3 )xx 1=1,则 x=____________.解: min{ -2,- 3} =- 3,∵min{ , } =1,(-)xx 1当 x=0.5 时,,不行能得出,最小值为1,x=(x-1)∴当 x>0.5 时,(-)<,x 1 x则(x-1)=1,x-1=±1,x-1=1,x-1=- 1,解得:x=2,x=0(不合题意,舍去),当x<0.5 时,(x-1)>x,则x=1,解得:x=1(不合题意,舍去),x=- 1,综上所述: x 的值为: 2 或- 1.例4.已知点 A 在函数y=-1(x>0)的图象上,点 B 在直线y= kx+ 1+ k(k x为常数,且 k≥0)上.若 A,B 两点对于原点对称,则称点 A, B 为函数y,y图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的状况为()A.有 1 对或 2 对B.只有 1 对C.只有2 对D.有2 对或3 对解:设 A (a ,-1),a1由题意知,点 A 对于原点的对称点B (- a ,)在直线 y =kx +1+k 上, a则1=- ak +1+k , a整理,得: ka -( k +1)a +1=0 ①,即( a -1)(ka -1)= 0,∴a -1=0 或 ka -1=0,则 a =1 或 ka -1=0,若 k =0,则 a =1,此时方程①只有 1 个实数根,即两个函数图象上的 “友善点 ” 只有 1 对; 若 k ≠0,则 a =1 或1,此时方程①有 2 个实数根,即两个函数图象上的 “友a =k好点 ”有 2 对,综上,这两个函数图象上的 “友善点 ”对数状况为 1 对或 2 对,选 A .同类题型 4.1 在平面直角坐标内A ,B 两点知足:①点 A ,B 都在函数 y =f (x )的图象上;②点 A ,B 对于原点对称,则称 A ,B 为函数 y =f (x )的一个 “黄金点对 ”.|x +4|,x ≤0则函数 f (x )= {1 )的“黄金点对 ”的个数为( ) - ,x >0xA .0 个B .1 个C .2 个D .3 个解:依据题意: “黄金点对 ”,可知,作出函数y=-1(x>0)的图象对于原点对称的图象,x同一坐标系里作出函数y=|x+4|,x≤0的图象如右图:察看图象可得,它们在x≤0时的交点个数是3.即f(x)的“黄金点对”有: 3个.选 D.同类题型 4.2 定义:在平面直角坐标系xOy 中,把从点 P 出发沿纵或横方向到达点 Q(至多拐一次弯)的路径长称为P,Q 的“实质距离”.如图,若P(-1, 1), Q( 2,3),则 P, Q 的“实质距离”为 5,即 PS+ SQ= 5 或 PT+ TQ=5.环保低碳的共享单车,正式成为市民出行喜爱的交通工具.设A,B,C 三个小区的坐标分别为 A(3, 1),B(5,- 3),C(- 1,- 5),若点 M 表示单车停放点,且知足 M 到 A, B, C 的“实际距离”相等,则点 M 的坐标为____________.解:若设 M(x,y),则由题目中对“实质距离”的定义可得方程组: 3-x+1-y=y+5+x+1=5-x+3+y,解得, x=1,y=- 2,则 M(1,- 2).同类题型 4.3 经过三边都不相等的三角形的一个极点的线段把三角形分红两个小三角形,假如此中一个是等腰三角形,此外一个三角形和原三角形相像,那么把这条线段定义为原三角形的“和睦切割线”.如图,线段CD 是△ABC 的“和睦切割线”,△ACD 为等腰三角形,△CBD 和△ABC 相像,∠ A= 46°,则∠ ACB 的度数为 __________.解:∵△ BCD∽△ BAC,∴∠ BCD=∠ A=46°,∵△ ACD 是等腰三角形,∵∠ ADC>∠ BCD,∴∠ ADC>∠ A,即 AC≠CD,1①当 AC=AD 时,∠ACD=∠ADC=(180°-46°)= 67°,∴∠ ACB=67°+46°=113°,②当 DA=DC 时,∠ ACD=∠ A=46°,∴∠ ACB=46°+46°=92°,故答案为 113°或 92°.。
2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.18)一、选择题1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE =2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值()A.2B.+2 C.2﹣2 D.5二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=,b=;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.【分析】如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.想办法证明AF=DE=EH,BE+AF的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵CF=AE,CA=DA,∠C=∠EAD=90°,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,BH==,∴AF+BE的最小值为,故答案为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或1cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ =30°,再由PN与DC平行,得到∠PF A=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=3,b=4;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.【分析】(1)根据函数的图象,即可得出a、b的值;(2)分点P在线段AB上跟点P在线段BC上讨论,依据相似三角形的性质,即可得出y与x之间的关系;(3)由等高三角形的面积比等于底边长之比,可得出BP的长,根据勾股定理得出x的值,代入到(2)中的关系式中即可求出y的值.【解答】解:(1)当点P在线段AB上时,D到AB的距离为AD,由函数图象可看出,AD=4,即BC=b=4,当点P运动到线段BC上时,D到AB的距离出现变化,由函数图象可看出,AB=3=a.故答案为:3;4.(2)①当点P在线段AB上时,有0≤AP≤AB,即0≤x≤3,此时y=4.②当点P在线段BC上时,连接AC,过点D作DE⊥AP于点E,如图,由勾股定理可得:AC==5.∵此时P点过B点向C点运动,∴AB<AP≤AC,即3<x≤5.∵AD∥BC,∴∠DAE=∠APB,又∵∠ABP=∠DEA=90°,∴△DAE∽△APB,∴=,即=,∴y=.综合①②得:y=.(3)∵△PCD的面积是△ABP的面积的,且两三角形等高,∴BP=3PC,∵BP+PC=BC=4,∴BP=3,由勾股定理可得:x==3,将x=3代入,得y==2.故当△PCD的面积是△ABP的面积的时,y的值为2.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A的坐标,由点B,C的坐标可得出直线BC的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+P A取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+P A的最小值=PO′+P A=AO′==5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点D的坐标为(1,4).又∵点C的坐标为(0,3),点B的坐标为(3,0),∴CD==,BC==3,BD==2,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣1,0),点C的坐标为(0,3),∴OA=1,OC=3,∴==.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴=,即=,∴AQ=10,∴点Q的坐标为(9,0).综上所述:当Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.。
2024杭州中考数学压轴题

中考数学试卷一、单项选择题(共12分)1.如图图形中是中心对称图形的为()A.B. C. D.2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=35.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.6.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d二、填空题(共24分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
8.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。
9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.三、解答题(共20分)10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。
(1)求证:△ADE∽△MAB;(2)求DE的长。
11.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。
16.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。
(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。
12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达多少?(结果保留根号)14.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。
中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )A.B.6C.D.38.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①P M=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有() A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.16二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n 次操作得到△A n B n C n,则△A n B n C n的面积S n= _________ .(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,16.使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC(用含n的代数式表示).19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ (用含n的代数式表示).20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于_________ .25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于_________ .26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________ cm2.29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围().参考答案与试题解析一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22。
中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。
题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。
【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。
九年级数学选择、填空压轴题训练(含答案)

答案和解析
1.【答案】C
【解析】
解:∵ 直线 l1:y=-3x+3 交 x 轴于点 A,交 y 轴于点 B,
∴ A(1,0),B(0,3), ∵ 点 A、E 关于 y 轴对称, ∴ E(-1,0).
∵ 直线 l2:y=-3x+9 交 x 轴于点 D,过点 B 作 x 轴的平行线交 l2 于点 C,
∴ BD=2x, ∵ ACBD=4 ,
∴ - y×2x=4 ,
∴ xy=-3, ∵ M 在反比例函数的图象上, ∴ k=xy=-3, 故选(A) 过点 D 作 DE⊥y 轴于点 E,过点 C 作 CF⊥x 轴于点 F,然后求出 OA 与 OB 的长度,即可求出∠ OAB 的正弦值与余弦值,再设 M(x,y),从而可表示出 BD 与 AC 的长度,根据 ACBD=4 列出 即可求出 k 的值. 本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠ OAB 的锐角三角函数值求出 BD、AC,本题属于中等题型. 4.【答案】C
,
表示 a1=a2+a3,则 a1 的最小值为( )
A. 32 B. 36 C. 38 D. 40
5. 如图,直线 y= x-6 分别交 x 轴,y 轴于 A,B,M 是反比例函数 y= (x>0)的图象上位于直线上方的
一点,MC∥ x 轴交 AB 于 C,MD⊥MC 交 AB 于 D,ACBD=4 ,则 k 的值为( )
过 E、B、C 三点,下列判断中:
2. ①a-b+c=0;②2a+b+c=5;③抛物线关于直线 x=1 对称;④抛物线过点(b,c);⑤S 四边形 ABCD=5,
3. 其中正确的个数有( )
A. 5
B. 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学选择填空压轴题一、动点问题1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是()2.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x (s ).∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为. 3.如图,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时,始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2|等于() A 、5B 、6C 、7D 、84.如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是() A.563 B.25C.1123D.565.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t =秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.6.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为() A .2B .4π-C .πD .π1-7.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2BE =,则AFC S =△()2cm . A .8B .9C .8D .98.△ABC 是⊙O 的内接三角形,∠BAC =60°,D 是的中点,AD =a,则四边形ABDC 的面积为 .在梯形ABCD中,9.如图,90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是线段上一定点,且MC =8.动点P 从C 点出发沿D A B →→→的路线BC点B 停止.在点P 的运动运动,运动到PMC △为等腰三角形的过程中,使点P 有个10.如图在边长为2的正方形ABCD 中,E ,F ,O分别是AB ,CD ,AD 的中点,A B CQRM DA DCE F G B DP AODBFKEGM C以O 为圆心,以OE 为半径画弧EF .P 是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G .若3=BMBG,则BK ﹦. 二、面积与长度问题1.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,则图中阴影部分的面积是() A .2367a π- B .2365a π- C .2367a D .2365a 2.如图,在x 轴上有五个点,它们的横坐标依次为l ,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y=(a+1)x ,y=(a+2)x 相交,其中a>0.则图中阴影部分的面积是() A .12.5B .25 C .12.5aD .25a 3.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=.4.已知,A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形(阴影部分)并设 其面积分别为12345S S S S S 、、、、,则5S 的值为.6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是() A .78B .72C .54D .48xyOP 1P 2P 3 P 4 1 234yxO P 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A5ADEPBC ABCD NM7.如图,平行于y 轴的直线l 被抛物线y =2112x +、y =2112x -所截.当直线l 向右平移3 个单位时,直线l 被两条抛物线所截得的线段扫过的图形面积为平方单位.8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为.(结果保留π)9.如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为() A .77π338- B .47π338+C .πD .4π33+ 10.如图,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为() A .23 B .26C .3D .64245AB BAC =∠=,°,在锐角ABC△中,11.如图,DM N ,、分别是AD 和BAC ∠的平分线交BC 于点AB上的动点,则BMMN +的最小值是___________.12.如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 等于() A.75 B.125 C.135 D.145中,E 是BC 边上一点,以E 为圆ABCD13.正方形圆与以A 为圆心,AB 为半径的圆心、EC 为半径的半sin EAB ∠的值为()弧外切,则A .43B .34C .45D .3514.在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足关系式. 15.一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是() A .第4张B .第5张C.第6张D .第7张16.如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( ) AH BOC ADBC EFPADFCBOEEFDCBAA .a k 2B .a k 3C .2k a D .3k a17.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设弧CD 、弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )=.三、多结论问题1.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ; ③BE DC DE +=;④222BE DC DE += 其中一定正确的是()A .②④B .①③C .②③D .①④2.如图,在等腰Rt △ABC 中,∠C =90o ,AC =8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD =CE ,连接DE 、DF 、EF 。
在此运动变化的过程中,下列结论: ①△DFE 是等腰直角三角形;②四边形CDFE 不可能为正方形; ③DE 长度的最小值为4;④四边形CDFE 的面积保持不变; ⑤△CDE 面积的最大值为8。
其中正确的结论是() A .①②③B .①④⑤C .①③④D .③④⑤3.如图,在ABC △中,ABC ∠和ACB ∠的平分线相交于点O ,过点O作EF BC ∥交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D .下列四个结论:1902BOC A ∠=∠①°+;②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切;③设OD m AE AFn =+=,,则AEF S mn =△; ④EF 不能成为ABC △的中位线.其中正确的结论是_____________.(把你认为正确结论的序号都填上)4.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC=EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC.则以下四个结论中:①OH ∥BF ;②∠CHF=45°;③GH=41BC ;④FH 2=HE ·HB ,正确结论的个数为()A.1个B.2个C.3个D.4个5.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连接GF.下列结论①∠ADG=22.5°;②tan ∠AED=2;③OGD AGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE=2OG.其中正确的结论有() A.①④⑤B.①②④C.③④⑤D.②③④6.将△ABC 沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF∥AB ,且EF=21AB ;②∠BAF=∠CAF ;③DE AF 21S ADFE •=四边形;④∠BDF+∠FEC=2∠BAC ,正确的个数是() A.1B.2C.3D.47.四边形ABCD 为一梯形纸片,AB ∥CD ,AD=BC.翻折纸片ABCD ,使点A 与点C 重合,折AD CEB痕为EF.连接CE 、CF 、BD ,AC 、BD 的交点为O ,若CE ⊥AB ,AB=7,CD=3下列结论中:①AC=BD ;②EF ∥BD ;③EF AC S AECF •=四边形;④EF=7225,⑤连接F0;则F0∥AB.正确的序号是___________ 8.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC=2DG ;②∠GDH=∠GHD ;③DHGE CDG S S 四边形=∆;④图中有8个等腰三角形。