发电厂电气部分课程设计
发电厂电气部分-课程设计doc资料

发电厂电气部分-课程设计郑州航空工业管理学院发电厂电气部分课程设计09级电气工程及其自动化专业 0906071班级题目:凝汽式火电厂一次部分课程设计姓名:学号:指导老师:二零一二年十二月九日1.原始资料1.1 发电厂建设规模1.1.1 类型:凝汽式火电厂1.1.2 最终容量、机组的型式和参数:2×300MW、年利用小时数:6000h/a 1.2 电力系统与本厂的连接情况1.2.1 电厂在电力系统中的作用与地位:地区电厂1.2.2 发电厂联入系统的电压等级:220KV1.2.3 电力系统总装机容量:16000MW,短路容量:10000MVA1.2.4 发电厂在系统中所处的位置、供电示意图1.3 电力负荷水平:1.3.1 220KV电压等级:架空线10回,备用2回,I级负荷,最大输送200MW,T max=4000h/a1.3.2110KV电压等级:架空线8回,I级负荷,最大输送180MW,T max=4000h/a1.3.3 穿越本厂功率为50MVA。
1.3.4 厂用电率:6%1.4 环境条件1.4.1 当地年最高温40℃,最低温-6℃,最热月平均最高温度28℃,最热月平均最低温度24℃1.4.2 当地海拔高度为50m1.4.3 气象条件无其它特殊要求。
2.设计任务2.1 发电厂电气主接线设计2.2 厂用电设计2.3 短路电流的计算2.4 主要电气设备的选择2.5 配电装置3.设计成果3.1 设计说明书、计算书一份3.2 图纸一张摘要 (3)引言 (3)1.电气主接线设计 (3)1.1 系统与负荷资料分析 (3)1.2 执行可行的接线方案 (4)1.3 厂用电接线方案的选择 (7)2. 短路电流计算 (9)2.1 短路电流的计算及原则 (9)2.2 短路电流计算条件 (9)2.3 短路电流计算规则 (9)2.4 短路计算 (9)2.5 短路电流计算表 (9)3. 电气设备的选择 (11)3.1 电气设备的选择规则 (11)3.2 电气设备的选择条件 (12)3.3电气设备选择 (12)3.4电气设备的选择结果表 (14)3.5主接线中设备配置的一般原则 (16)4. 配电装置 (16)4.1 配电装置选择的一般原则 (17)4.2 配电装置的选型和依据 (17)5安全保护装置 (17)5.1避雷器的选择 (17)5.2继电保护的配置 (18)6参考文献 (19)附录Ⅰ短路电流计算 (19)附录Ⅱ:电气设备的校验 (22)附录Ⅲ:设计总图 (24)引言在高速发展的现代社会中,电力工业在国民经济中有着重要作用,它不仅全面地影响国民经济其他部门的发展,同时也极大的影响人民的物质与文化生活水平的提高。
发电厂电气部分课程设计

目录设计任务书(置于目录前) (1)纲要 (3)前言 (4)1 系统与负荷资料剖析 (5)2电气主接线 (6)2.1 主接线方案的选择 (6)2.2 主变压器的选择与计算 (9)2.3 厂用电接线方式的选择 (11)2.4 主接线中设施配置的的一般规则 (13)3短路电流的计算 (14)3.1 短路计算的一般规则 (14)3.2 短路电流的计算 (15)3.3 短路电流计算表 (16)4电气设施的选择 (17)4.1 电气设施选择的一般规则 (17)4.2 电气选择的条件 (17)4.3 电气设施的选择 (20)4.4 电气设施选择的结果表 (22)5* 配电装置 (23)5.1 配电装置选择的一般原则 (23)5.2 配电装置的选择及依照 (25)结束语 (26)参照文件 (27)附录Ⅰ:短路计算 (28)附录Ⅱ:电气设施的校验 (33)附录 3:设计总图 (39)1、系统与负荷资料剖析依据原始资料,本电厂是中型发电厂,比较凑近负荷中心。
本电厂要向当地域的各工厂公司供电,还要与 220KV系统相连,并担负着向市里供电,保障市里人民生产和生活用电的责任。
因为本厂的地理地点优胜,一般状况下都简单获取燃料,能保证当地域以及邻近的工厂、市里的正常供电,还能够向220KV供给电能。
由资料我们可知,本电厂以110KV的电压等级向用户送电。
这里有两电压等级,分别是 110KV,有 8 回出线; 220KV,有 10 回出线,所有负荷有Ⅰ、Ⅱ、Ⅲ级负荷。
1.1 220KV电压等级架空线 10 回, I 级负荷,最大输送200MW,T MAX=6000h/a ;cos=0.85 。
出线回路数大于 4 回且为 I 级负荷,应采纳双母带旁路或一台半。
1.2 110KV电压等级架空线 8 回,Ⅰ级负荷,最大输送180MW,T MAX=6000h/a ;cos=0.85 。
出线回路数大于 4 回且为 I 级负荷,为使其出线断路器检修时不断电,应采纳双母分段或双母带旁路,以保证其供电的靠谱性和灵巧性。
发电厂电气部分课程设计

发电厂电气部分课程设计一、设计任务设计一台火力发电厂的电气系统,包括发电机、变电站、输电线路、配电室等。
二、设计要求1.确定发电机额定功率和其对应的电气参数,如电压、电流等。
2.设计变电站,包括选择合适的变压器、开关设备与控制系统等,以提高电气系统功率传输效率。
3.建立适当的输电线路,以提供稳定、高效的电力传输。
4.设计配电室,包括选择合适的组合电器、保护装置与监测系统等,以防止电气系统失效、故障和危险。
三、设计流程1.确定并计算发电机的电气参数,包括额定功率、电压、电流等,以建立发电机模型。
2.选择变电站设备,并建立变电站模型,以确定变压器的变比,开关设备和控制系统。
3.设计输电线路,考虑线路材料、长度、负荷情况等因素,以保证稳定、高效的电力传输。
4.选择组合电器、保护装置与监测系统,并建立配电室模型,以保证电气系统的安全性、可靠性和稳定性。
5.对整个电气系统进行系统集成,并进行仿真和测试,以确保其适应各种工况下的电气负载和波动。
四、设计结果1.确定发电机额定功率为1000MW,额定电压为22kV,额定电流为45A。
2.选择变压器为单相变压器,变比为10:1,开关设备和控制系统采用数字化技术。
3.设计输电线路长度为50km,材料为铜导线,负荷为800MW,考虑了电阻和电感的影响。
4.选择组合电器设备为高压开关、电容器和补偿装置,保护装置采用继电器保护和数字化保护设备,监测系统为远程监控系统。
5.综合整个系统,进行仿真和测试,结果表明电气系统可以满足各种工况下的电气负载和波动。
五、结论通过以上设计,可以有效地提高电气系统的效率和稳定性,保证了火力发电厂的稳定供电。
此外,电气系统的安全性和可靠性都得到了充分考虑和保证。
发电厂电气部分课程设计

发电厂电气部分课程设计一、设计概述本课程设计旨在让学生了解发电厂的电气部分的基本原理和运行机制,为学生提供实践操作的机会,培养学生在电气工程领域的技能和能力。
通过本课程设计,学生将深入学习发电厂电气系统的设计、运行和故障排除。
二、设计目标1.理解发电厂的电气系统的组成和工作原理。
2.学习发电厂电气设备的选型、安装和调试。
3.掌握发电厂电气设备的运行维护和故障排除技巧。
4.能够进行发电厂电气系统的设计和改进。
三、设计内容本课程设计主要包括以下几个方面的内容:1. 发电厂电气系统的组成和工作原理•学习发电厂电气系统的组成和各部分设备的功能。
•了解发电厂电气系统的工作原理和工作过程。
•分析发电厂电气系统的运行特点和需求。
2. 发电厂电气设备的选型、安装和调试•学习发电厂电气设备的选型原则和方法。
•掌握发电厂电气设备的安装和调试技术。
•学习电气设备的运行参数调整和优化方法。
3. 发电厂电气设备的运行维护和故障排除•掌握发电厂电气设备的日常运行维护方法。
•学习电气设备的故障检修和故障排除技巧。
•了解电气设备的故障分析和预防措施。
4. 发电厂电气系统的设计和改进•学习发电厂电气系统的设计方法和原则。
•掌握电气系统的改进和升级技术。
•进行实际发电厂电气系统的设计和改进。
四、设计步骤1.学习发电厂电气系统的基本知识和原理。
2.进行发电厂电气设备的选型和配套计算。
3.编制电气系统的设计方案和施工图纸。
4.安装和调试电气设备。
5.进行电气系统的运行和维护。
6.掌握电气设备故障排除和分析方法。
7.对电气系统进行改进和优化。
五、设计要求1.设计文档需要使用Markdown文本格式进行编写。
2.文档字数不少于1200字。
3.图表和表格需要清晰明确,便于理解和演示。
4.设计步骤需要详细说明和解释,确保学生能够按照步骤进行实际操作。
六、评估方式根据学生对课程设计的实际操作和设计文档的质量,教师可以采用以下方式进行评估:1.实际操作评估:根据学生的实际操作表现和操作结果进行评估。
发电厂电气部分课程设计

第一章概述 ___________________________________________________________11.1课程设计目的 ____________________________________________________________ 11.2设计原始资料 ____________________________________________________________ 11.3设计原则________________________________________________________________ 1 第二章方案设计________________________________________________________32.1原始资料分析 ____________________________________________________________ 32.2发电厂接线方案比较_______________________________________________________ 32.2.1 主接线方案拟定 ______________________________________________________ 32.2.2各方案比较___________________________________________________________ 62.3主变的选择______________________________________________________________ 82.3.1相数的选择___________________________________________________________ 82.3.2 绕组数量的选择 ______________________________________________________ 82.3.3连接方式的选择_______________________________________________________ 82.3.4普通型和自耦型选择___________________________________________________ 82.3.5调压方式的选择_______________________________________________________ 82.4各级电压中性点运行方式选择 _______________________________________________ 9 第三章短路电流的计算__________________________________________________ 103.1短路形成的原因 _________________________________________________________ 103.2短路的危害 _____________________________________________________________ 103.3短路的类型______________________________________________________________ 103.4短路电流计算的目的______________________________________________________ 103.5短路电流的计算方法以及短路点的选取 ______________________________________ 11 第四章厂用电设计 _____________________________________________________ 234.1厂用电负荷 _____________________________________________________________ 234.2厂用电电压等级________________________________________________________ 234.3厂用变压器的选择_______________________________________________________ 234.3.1相数的选择__________________________________________________________ 234.3.2绕组数量的选择______________________________________________________ 234.3.3联结组别的选择______________________________________________________ 234.3.4厂用变容量的计算____________________________________________________ 244.4厂用电源及接线方式______________________________________________________ 244.4.1 工作电源___________________________________________________________ 244.4.2 备用电源和启动电源__________________________________________________ 244.4.3 事故保安电源 _______________________________________________________ 244.5厂用电接线方式_________________________________________________________ 244.6厂用电短路计算_________________________________________________________ 254.7厂用电动机的自启动校验__________________________________________________ 304.7.1电动机的自启动的概念和必要性_________________________________________ 304.7.2电动机自启动时母线电压的校验_________________________________________ 31 第五章导体、电气设备选择及校验 _________________________________________ 325.1选择电气一次设备遵循的条件 ______________________________________________ 325.2导线的选择及校验________________________________________________________ 325.2.1发电机侧导体选择____________________________________________________ 325.2.2主变到系统导体选择__________________________________________________ 345.3断路器的选择与校验______________________________________________________ 365.3.1主变到系统侧断路器选择 ______________________________________________ 365.3.2发电机到母线汇流点的断路器选择_______________________________________ 375.3.3厂用变高压侧到母线汇流点的断路器的选择_______________________________ 385.3.4 厂用变压器低压侧到厂用母线的断路器选择_______________________________ 395.3.5厂用负荷到厂用母线断路器的选择_______________________________________ 405.4隔离开关的选择与校验____________________________________________________ 415.4.1主变到系统侧隔离开关选择 ____________________________________________ 425.4.2发电机到母线汇流点的隔离开关选择_____________________________________ 425.4.3厂用变高压侧到母线汇流点的隔离开关选择_______________________________ 435.4.4 厂用变压器低压侧到厂用母线隔离开关选择_______________________________ 445.4.5厂用负荷到厂用母线的隔离开关选择_____________________________________ 455.5互感器的选择与校验______________________________________________________ 465.5.1 电压互感器的选择 ___________________________________________________ 465.5.2电流互感器的选择与校验 ______________________________________________ 465.6绝缘子串和套管的选择____________________________________________________ 485.6.1 穿墙套管的选择 _____________________________________________________ 485.6.2 支柱绝缘子的选择 ___________________________________________________ 485.6.3 悬式绝缘子的选择 ___________________________________________________ 485.7熔断器的选择 ___________________________________________________________ 49 第六章发电厂配电装置设计 ______________________________________________ 496.1布置原则 _______________________________________________________________ 496.2布置型式 _______________________________________________________________ 506.3配电装置的选择和校验____________________________________________________ 51 第七章过压保护和接地__________________________________________________ 527.1电气设备绝缘配合原则____________________________________________________ 527.2过电压保护方式__________________________________________________________ 537.2.1过电压 _____________________________________________________________ 537.2.2 避雷针、避雷线、避雷针的选择________________________________________ 537.3接地系统 _______________________________________________________________ 54 第八章继保配置规划 ___________________________________________________ 558.1继电保护配置 ___________________________________________________________ 558.2电站综合自动化 _________________________________________________________ 558.3测量系统_______________________________________________________________ 578.4同期装置_______________________________________________________________ 578.5信号系统设置 ___________________________________________________________ 578.6直流系统设置 ___________________________________________________________ 58 第九章课程设计总结与心得体会 ___________________________________________ 59附录 _______________________________________________________________ 60 参考文献____________________________________________________________ 61摘要:电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
发电厂电气部分110KV变电站课程设计

I一、设计内容及要求本次设计旨在掌握变电站设计的基本流程。
这既是对平时理论知识的考察,更是对所学专业知识的一次实践.通过本次设计,巩固和加深专业课知识,掌握发电厂部分初步设计的过程,而且也可以拓宽知识面,增强工程观念,培养变电站设计的能力,逐步提高解决问题的能力.同时对能源、发电、变电、和输电的电气部分有了详细的概念,能熟练地运用所学专业知识,如短路计算的基本理论和方法,继电保护整定的基本理论和方法,主接线的设计,导体和电气设备的选择以及变压器的选择等.二、设计原始资料1、电力系统接线及参数如图1所示,待设计的变电站为丙变电站,是一个110系统的枢纽变电站.2、待设计的变电站的电压等级为:110kV、35kV、10kV.5~10年规划负荷如下:2.1 35kV电压级:架空出线6回,每回出线最大输送功率5MW,送电距离30km,功率因数,Ⅰ、Ⅱ类负荷所占比例为60%。
负荷同时率取0。
9.2.2 10kV电压级:架空出线10回,每回架空出线最大输送功率2MW,送电距离6km,功率因数:cosΦ=0。
8。
,Ⅰ、Ⅱ类负荷所占比例为70%.负荷同时率取0.9。
3、自然条件:站址为农田,土质为黏土,土壤电阻率ρ=60m海拔高度。
处于Ⅳ类气象区。
4、各电压级进出线方向110kV进线为同一方向进线;35kV出线为两个方向出线;10kV出线为多方向出线。
5、各电压级母线后备保护的动作时间:10kV母线1s;35kV母线2s;110kV母线3s。
6、依据负荷曲线,变电站最大负荷利用小时数。
7、电力系统直流分量电流衰减时间常数,(冲击系数)。
8、系统运行方式:最大运行方式为发电厂机组全部投入,变电站110kV为4回进线、此表装订在报告(论文)的前面.摘要本摘要主要进行110KV变电站设计。
首先根据任务书上所给系统及线路和所有负荷的参数,通过对所建变电站及出线的考虑和对负荷资料分析,满足安全性、经济性及可靠性的要求确定了110KV、35KV、10KV侧主接线的形式,然后又通过负荷计算及供电范围确定了主变压器台数、容量、及型号,从而得出各元件的参数,进行等值网络化简,然后选择短路点进行短路计算,根据短路电流计算结果及最大持续工作电流,选择并校验电气设备,包括母线、断路器、隔离开关,并确定配电装置。
发电厂电气部分课程设计

一煤矸石电厂基础资料1.1电厂基本情况煤矸石电厂装机为两台高温高压循环流化床锅炉配两台50MW冷凝式汽轮机2*50MW发电机;采用发电机变压器单元接线,发电机出口电压为6KV,经变压器升压为110KV送入电网;常用高压工作电源由发电机主回路经限流电抗器接引,发电机出口电压为6KV,发电机至110KV升压变压器的引线采用封闭母线。
1.2环境条件该所位于某乡镇,有公路可达,海拔高位86米,土壤点阻系数P=25000,土壤地下0.8米处温度20摄氏度;该地区年最高温度40摄氏度,最低温度-10摄氏度,最热月7月份其最高气温月平均34.0摄氏度,最冷月1月份其最低气温月平均值为1摄氏度;年雷暴雨日数为58天。
1. 3电源情况厂用高压工作电源由发电机主回路经限流电抗器接引,启动备用电源由110KV系统电源降为6KV取得。
二设计说明书电力系统要求发电厂的电能生产要安全、可靠、节能,技术经济合理,能够长期稳定的向电力系统输送电能。
此设计有2*50MW的两台发电机,本文根据2*50MW煤矸石发电厂的实际情况,并适当考虑生产的发展。
按供电的基本要求,首先对该电厂的原始资料进行分析处理:首先对厂用电的接线方式的初步选择,电厂容量的大概估算等;其次,根据电厂的容量进行厂用变压器的初步选择,并对其相关的参数进行计算;再者,因为该发电机的机压为6KV与该电厂的6KV 高压母线为同一等级,所以不用设厂用高压变压器,为了限制发电机出口处的短路电流,所以这里采用分列电抗器,待选完厂用变压器以及分离电抗器后,开始进行短路计算,断路器的选择以及电动机的选择和校验做准备。
此发电厂共包含四个车间五类负荷,它们包括6KV厂用高压负荷、0.4KV主厂房厂用负荷、电除尘车间的常用负荷、气力除灰车间的厂用负荷以及化水车间的厂用负荷。
在主厂房内(按1#机组说明)共需厂用低压变压器两台,它们的容量是相同的都为1000KVA,型号为SL7—1000/6,在电除尘车间,由于常用负荷的容量减小,故变压器的容量也相对减小,该车间内我们采用的变压器型号为SL7—800/6,在气力除灰车间,我们采用的变压器的型号为SL7—250/6,在化水车间我们采用的变压器的型号为SL7—400/6。
发电厂电气部分课程设计

❏发电厂容量的确定与国家经济发展规划、电力负 荷增长速度、系统规模和电网结构以及备用容量等 因素有关。发电厂装机容量标志着发电厂的规模和 在电力系统中的地位和作用。在设计时,对发展中 的电力系统,可优先选用较为大型的机组。但是, 最大单机容量不宜大于系统总容量的10%,以保证 在该机检修或事故情况下系统的供电可靠性。
三、主变压器容量的确定原则
29
2.具有发电机电压母线接线的主变压器
容台容数确定原则:量数 ②③为当接在发电压机发对电在保接若确当
机电母电母电压
线压电上有负的2接线母压
台最荷及大供以上电一可主变压器时,或修检组机的台者当靠其供容于最大热发量接中性因负母线退出限需故而动荷运制行
不应,主少时他应其力不器出压厂变本行于2台压器。应器其能应总能输容从送量电除母满剩统述几功点的率送倒余上系足线力7要0求%,
❏方案比较常用的方法有最小费用法、净现值法、 内部收益率法、抵偿年限法。
❏在课程设计中,主要采用抵偿年限法。
四、主接线方案的经济比较
如:发电机容量容50量MW确,定功原率则因:数
量0压.8为负,荷厂最用小电15率MW 1投①有负率在母压主剩系在电最扣后应电剩0,%当入统发荷。发线母要余满压小除能压余,则,发运。电 和主电和线 作功足供负厂将母有主主发电行机剩变机升之用率发电荷用发线功变变电机时电余连电高间是送电的负电上和压,压机全,压功接压电将入,机日荷机的无器并器电部容 功容量送人系
❏主变压器和发电机中性点接地方式是一个综合性 问题。它与电压等级、单相接地短路电流、过电压 水平、保护配置等有关,直接影响电网的绝缘水平、 系统供电的可靠性和连续性、主变压器和发电机的 运行安全以及对通信线路的干扰等。
一、对原始资料分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录设计任务书(置于目录前) (1)摘要 (3)引言 (4)1系统与负荷资料分析 (5)2电气主接线 (6)2.1主接线方案的选择 (6)2.2 主变压器的选择与计算 (9)2.3厂用电接线方式的选择 (11)2.4 主接线中设备配置的的一般规则 (13)3短路电流的计算 (14)3.1短路计算的一般规则 (14)3.2短路电流的计算 (15)3.3短路电流计算表 (16)4电气设备的选择 (17)4.1电气设备选择的一般规则 (17)4.2电气选择的条件 (17)4.3电气设备的选择 (20)4.4电气设备选择的结果表 (22)5*配电装置 (23)5.1配电装置选择的一般原则 (23)5.2配电装置的选择及依据 (25)结束语 (26)参考文献 (27)附录Ⅰ:短路计算 (28)附录Ⅱ:电气设备的校验 (33)附录3:设计总图 (39)1、系统与负荷资料分析根据原始资料,本电厂是中型发电厂,比较靠近负荷中心。
本电厂要向本地区的各工厂企业供电,还要与220KV系统相连,并担负着向市区供电,保障市区人民生产和生活用电的责任。
由于本厂的地理位置优越,一般情况下都容易获得燃料,能确保本地区以及附近的工厂、市区的正常供电,还可以向220KV提供电能。
由资料我们可知,本电厂以110KV的电压等级向用户送电。
这里有两电压等级,分别是110KV,有8回出线;220KV,有10回出线,全部负荷有Ⅰ、Ⅱ、Ⅲ级负荷。
1.1 220KV电压等级架空线10回,I级负荷,最大输送200MW,T=6000h/a;cos =0.85。
出线回MAX路数大于4回且为I级负荷,应采用双母带旁路或一台半。
1.2 110KV电压等级架空线8回,Ⅰ级负荷,最大输送180MW,T=6000h/a;cos =0.85。
出线回MAX路数大于4回且为I级负荷,为使其出线断路器检修时不停电,应采用双母分段或双母带旁路,以保证其供电的可靠性和灵活性。
总装机容量16000MW,短路容量10000MW。
根据原始资料,本电厂是中型发电厂,其容量为2×200MW,占电力系统总容量(800/16000)×100%=5%,未超过电力系统的检修备用容量8%~15%和事故备用容量10%的限额,但年利用小时数为6000h>5000h,远远大于电力系统发电机组的平均最大负荷利用小时数,说明该厂在未来电力系统中的作用和地位重要.该厂为火力发电厂,在电力系统中主要承担基荷,且电力负荷均为Ⅰ级负荷,从而该厂主接线设计务必着重考虑其可靠性。
由资料可知发电厂通过220KV的线路与系统连接且有两回回路。
对于最大机组为200MW 以上的发电厂,一般以采用双绕组变压器加联络变压器更为合理。
其联络变压器宜选用三绕组变压器。
2、电气主接线2.1主接线方案的选择2.1.1 主接线概述电气主接线是发电厂和变电所电气部分的主体,它反映各设备的作用、连接方式和回路的相互关系。
所以,由文献[1]可知;它的设计直接关系到全厂电气设备的选择、配电装置的布置,继电保护、自动装置和控制方式的确定,对电力系统的安全、经济运行起着决定的作用。
概括地说包括以下三个方面:电气主接线是发电厂电气设计的首要部分,也是构成电力系统的主要环节。
2.1.2 电气主接线的叙述1)单元接线其是无母线接线中最简单的形式,也是所有主接线基本形式中最简单的一种,此种接线方法设备更多。
本设计中机组容量为400MW,所以发电机出口采用封闭母线,为了减少断开点,可不装断路器。
这种单元接线,避免了由于额定电流或短路电流过大,使得选择断路器时,受到制造条件或价格甚高等原因造成的困难。
2)单母线分段带专用旁路断路器的旁路母线接线优点:在正常工作时,旁路断路器以及各出线回路上的旁路隔离开关,都是断开的,旁路母线不带电,通常两侧的开关处于合闸状态,检修时两两互为热备用;检修QF时,可不停电;可靠性高,运行操作方便。
缺点:增加了一台旁路断路器的投资。
3)单母分段线分段断路器兼作旁路断路器的接线优点:可以减少设备,节省投资;同样可靠性高,运行操作方便;4)双母线接线优点:供电可靠,调度方式比较灵活,扩建方便,便于试验。
缺点:由于220KV电压等级容量大,停电影响范围广,双母线接线方式有一定局限性,而且操作较复杂,对运行人员要求高。
5)双母线带旁路母线的接线优点:增加供电可靠性,运行操作方便,避免检修断路器时造成停电,不影响双母线的正常运行。
缺点:多装了一台断路器,增加投资和占地面积,容易造成误操作。
2.1.3 主接线方案:1)根据变压器的组合方案拟定主接线的初步方案,并依据对主接线的基本要求,从技术上进行论证各方的优、缺点,淘汰了一些较差的方案,保留了两个技术上相对较好的方案,如下所示:表2.1主接线方案比较电压等级方案一方案二220KV双母分段带旁路接线双母线分段接线110KV单母线带旁路单母线分段接线2)10.5KV侧采用封闭母线封闭母线按结构式可分为:离相封闭母线、共箱封闭母线和金属箱式电缆母线。
其中离相封闭母线适用于200MW及以上发电机引出线与主变压器、厂用变压器之间的连接。
共箱封闭母线和金属箱式电缆母线主要用于厂用变压器至厂用配电室之间的引出线连接。
全连型离相封闭母线的配套产品有发电机中性点柜、电压互感器、避雷器柜等,配套设备分别装于抽屉小车式的电气柜内,由生产厂家随封闭母线成批供货。
本设计中由于发电机的的最大持续工作电流过大,不能选到适用它的断路器、隔离开关、电流互感器、电压互感器、避雷器等设备,所以采用了离相封闭母线,在其他设备选择时,就不用选10.5KV侧所设计到的设备,生产厂家已经随封闭母线成批供货。
图2.1:方案一220KV双母分段带旁路接线图2.2:方案二220KV双母线接线3) 两种方案的比较:一、可靠性:方案一中220KV可靠性较高;在检修线路断路器时避免造成该回路停电,可靠性高;方案二中220KV接线简单,设备本身故障率少;220KV故障时,停电时间较长。
二、灵活性:方案一各电压级接线方式灵活性都好;220KV电压级接线易于扩建和实现自动化;110KV操作过程相对简单;方案二中220KV运行方式相对简单,灵活性差;各种电压级接线都便于扩建和发展;110KV操作过程复杂。
三、经济性:方案一的投资比方案二要大很多,增加了旁路间隔和旁路母线,每回间隔增加一把隔离开关,大大的增加了投资,同时多占用了土地。
方案二中220KV设备相对少,投资小;110KV只增加了一台旁路断路器的投资通过对两种主接线可靠性,灵活性和经济性的综合考虑,虽然方案一比方案二供电可靠,但是由于目前断路器采用的是六氟化硫断路器,它的检修周期长,不需要经常检修,所以采用旁路也就没有多大意义了,这样一来不仅仅节省了投资,也节约了用地,所以比较论证后确定采用了方案二。
2.2 主变压器的选择与计算2.2.1 发电机的选择由原始资料可知,需选用两台200MW的发电机,因此查《电气工程电气设备手册》选定其型号为QFSN-200-2。
表2.2:QFSN-200-2主要参数2.2.2 主变压器台数的选择确定主变压器台数的因素很多,主要取决于该电厂在系统中的重要性并结合电厂本身的装机台数。
为减少主变压器台数,可考虑采用扩大单元接线。
一般装机一至三台的小型非骨干电厂以确定一台主变压器为宜,装机四台及以上的小型电厂可考虑确定两台主变压器以满足运行的可靠性和灵活性。
本设计中可选择两台三相三绕组变压器。
2.2.3 主变压器的选择发电机—变压器单元接线中的主变容量应按发电机额定容量扣除本机组厂用电后,留有10%的裕度来确定。
主变容量一般按变电所建成后5~10年的规划负荷来进行选择,并适当考虑远期10~20年的负荷发展。
根据本设计具体情况,使用三绕组变压器比使用两台双绕组变压器经济,主变的容量计算如下:PN为发电机容量,8%为厂用电,COSΦ为发电机功率因数。
查《电气工程电气设备手册》选定主变型号为三绕组SSPS-240000/220,其主要参数如下:表2.3:SSPS-240000/220主要参数2.2.4 联络变压器的选择与主变选用原则相同,则选取的型号为SFPS7-150000/220。
表2.4:SFPS7-150000/220主要参数额定容量KVA 连接组号额定电压(KV)阻抗电压(%)高-中24高-低15150000 YN,yn0,d11 220±2x2.5%/121/15.75中-低82.3厂用电接线方式的选择2.3.1厂用电的设计发电厂在启动、运转、停役、检修过程中,有大量由电动机拖动的机械设备,用以保证机组的主要设备(如锅炉、气轮机或水轮机、发电机等)和输煤、碎煤、除灰、除尘及水处理的正常运行。
这些电动机以及全厂的运行、操作、试验、检修、照明用电设备等都属于厂用负荷,总的耗电量,统称为厂用电。
2.3.2厂用电设计原则厂用电的设计原则与主接线的设计原则基本相同,主要有:(1)接线应保证对厂用负荷可靠和连续供电,使发电厂主机安全运转。
(2)接线应灵活的适应正常、事故、检修等各种运行方式的要求。
(3)厂用电源的对应供电性。
(4)设计还应适当注意其经济性和发展的可能性并积极慎重的采用新技术、新设备,使厂用电接线具有可行性和先进性。
(5)在设计厂用电接线时,还应对厂用电的电压等级、中性点接地方式、厂用电源及其引线和厂用电接线形式等问题,进行分析和论证。
2.4 主接线中设备配置的一般规则2.4.1 开关的配置(1)中小型发电机出口一般应装设隔离开关;容量为200MW及以上大机组与双绕组变压器的单元连接时,其出口不装设隔离开关,但应有可拆连接点。
(2)在出线上装设电抗器的6~10KV配电装置中,当向不同用户供电的两回线共用一台断路器和一组电抗器时,每回线上应各装设一组出线隔离开关。
(3)接在发电机、变压器引出线或中性点上的避雷器可不装设隔离开关。
(4)一台半断路器接线中,视发变电工程的具体情况,进出线可装设隔离开关也可不装设隔离开关。
(5)断路器的两侧均应配置隔离开关,以便在断路器检修时隔离电源。
(6)中性点直接接地的普通型变压器均应通过隔离开关接地;自耦变压器的中性点则不必装设隔离开关。
2.4.2 电压互感器的配置(1)电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。
电压互感器的配置应能保证在运行方式改变时,保护装置不得失压,同期点的两侧都能提取到电压。
(2)6~220KV电压等级的每组主母线的三相上应装设电压互感器。
旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感顺的情况和需要确定。
(3)当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器。