初中数学八年级上册《三角形全等的判定:角边角、角角边》优秀教学设计
人教初中数学八上《三角形全等的判定(角边角)》教案 (公开课获奖)

三角形全等的判定教学目标1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角〞“角角边〞条件.4.能运用全等三角形的条件,解决简单的推理证明问题.教学重点两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学过程Ⅰ.提出问题,创设情境1.复习:〔1〕三角形中三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.〔2〕到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.在三角形中,三个元素的四种情况中,我们研究了三种,今天我们接着探究两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课问题1:三角形中两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,•你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比拟,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等〔可以简写成“角边角〞或“ASA〞〕.问题3:我们刚刚做的三角形是一个特殊三角形,随意画一个三角形ABC,•能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢? ①先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长. ②画线段A′B′,使A′B′=AB.③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.④射线A′D 与B′E 交于一点,记为C′ 即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等.C 'A 'B 'DCAE两角和它们的夹边对应相等的两三角形全等〔可以简写成“角边角〞或“ASA〞〕. 思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA〞推出“两角和其中一角的对边对应相等的两三角形全等〞呢? 探究问题4:如图,在△ABC 和△DEF 中,∠A=∠D,∠B=∠E,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D CABFE证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F 在△ABC 和△DEF 中B EBC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC≌△DEF〔ASA 〕.两个角和其中一角的对边对应相等的两个三角形全等〔可以简写成“角角边〞或“AAS〞〕. [例]如以下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C.求证:AD=AE .[分析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD=AE ,只需证明△ADC≌△AEB 即可. 证明:在△ADC 和△AEB 中A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩所以△ADC≌△AEB〔ASA 〕 所以AD=AE . Ⅲ.随堂练习〔一〕课本练习1、2. 〔二〕补充练习图中的两个三角形全等吗?请说明理由.50︒50︒45︒45︒DCAB (1)29︒29︒DC A B(2)E答案:图〔1〕中由“ASA〞可证得△ACD≌△ACB.图〔2〕由“AAS〞可证得△ACE≌△BDC. Ⅳ.课时小结至此,我们有五种判定三角形全等的方法: 1.全等三角形的定义2.判定定理:边边边〔SSS 〕 边角边〔SAS 〕 角边角〔ASA 〕 角角边〔AAS 〕 推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径. Ⅴ.作业1.课本习题5、6、题. 板书设计D CABE11.2.3 三角形全等的判定〔三〕一、两角一边⎧⎨⎩两角及其夹边两角和其中一角的对边二、三角形全等的条件1.两角及其夹边对应相等的两三角形全等〔ASA〕2.两角和其中一角的对边对应相等的两三角形全等〔AAS〕15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,D CA BD CABDCA B求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3.练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D CA B〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习EDCA B P五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,那么它的对称轴一定是〔〕A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
“角角边”判定三角形全等-人教版八年级数学上册教案

角角边判定三角形全等-人教版八年级数学上册教案
一、教学目标
1.掌握角角边全等的定义;
2.掌握角角边全等的判定方法;
3.能够运用角角边全等的方法解决实际问题。
二、教学内容
1.什么是角角边全等;
2.角角边全等的判定方法;
3.解决实际问题。
三、教学重点
1.掌握角角边全等的定义;
2.掌握角角边全等的判定方法。
四、教学难点
能够运用角角边全等的方法解决实际问题。
五、教学方法
讲授、示范、练习。
六、教学过程
1. 导入新知
通过展示一个等腰三角形和一个一般三角形:
/|
/ |
/__|
/|
/ |\\
/__|_\\
引导学生讨论它们之间的不同。
然后问学生,如何证明这两个三角形是相等的?引入角角边全等定理。
2. 角角边全等的定义
引入角角边全等的定义,并让学生用自己的话说出来。
3. 角角边全等的判定方法
讲解角角边全等的判定方法:
1.如果两个三角形的两个角分别相等,且它们的夹边也相等,那么这两个三角形就全等。
2.如果两个三角形的两个角和一边分别相等,另一边也相等,那么这两个三角形也全等。
4. 解决实际问题
通过一些实际问题的解答,让学生学会如何使用角角边全等定理。
七、教学总结
通过本节课的学习,学生们掌握了角角边全等的定义,掌握了角角边全等的判定方法,并且学会了如何使用角角边全等定理解决实际问题。
八、作业
1.完成课后练习;
2.准备下一节课的内容。
八年级数学上册《角角边判定三角形全等》教案、教学设计

(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生主动探索、积极思考的学习态度。
2.培养学生严谨、细致、踏实的科学态度,养成认真检查、自觉订正的良好习惯。
3.培养学生面对困难和挑战时,保持积极心态,勇于克服困难,追求卓越的品质。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、实践、探索发现AAS判定方法。
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的思维。
(3)组织小组合作和讨论,促进学生交流与合作,提高学生的团队意识和沟通能力。
2.教学步骤:
(1)导入:通过复习三角形全等的定义和基本性质,为新课的学习做好铺垫。
(2)新课:以生活实例为载体,引导学生发现AAS判定方法,并通过具体例题进行讲解和演示。
(3)巩固:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(4)拓展:结合学生的实际水平,设计一些拓展性问题,培养学生的创新思维和几何直观。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
3.提问导入:教师提出问题:“我们学过的全等三角形判定方法有哪些?这些方法在解决实际问题时有什么局限性?”引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.教师以直观的动画或实物演示,引导学生观察并思考:当三角形的两个角和一个边分别相等时,这两个三角形是否全等?
2.学生通过观察、实践,发现当三角形的两个角和一个边相等时,这两个三角形确实全等。
四、教学内容与过程
(一)导入新课
1.复习导入:教师引导学生复习三角形全等的定义和基本性质,回顾已学过的全等三角形判定方法(SSS、SAS、ASA),为新课的学习打下基础。
初中数学《三角形全等判定定理—“角边角”“角角边”》教案

教学设计复习引入一、巩固旧知1、能够的两个三角形叫做全等三角形。
2、全等三角形的性质有哪些?全等三角形的对应边,对应角。
3、已学的判定两个三角形全等方法有哪些?边边边:对应相等的两个三角形全等。
符号语言:边角边:和它们的对应相等的两个三角形全等。
符号语言:二、自主学习1.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了,如图:你能制作一张与原来同样大小的新道具吗?能恢复原来三角形的原貌吗?(1)以①为模板,画一画,能还原吗?(2)以②为模板,画一画,能还原吗?(3)以③为模板,画一画,能还原吗?(4)第③块中,三角形的边角六个元素中,固定不变的元素是_____________.猜想:两角及夹边对应相等的两个三角形_______.根据学生完成情况,了解学生对已学知识的掌握程度。
通过学生自主学习与思考,初步发现结论,同时激发学生勇于探索的科学精神。
教学过程教学环节教学活动评估要点ABCF ED探究新知 探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳: 相等的两个三角形全等(简称“角边角”或“ASA ”).几何语言:如图,在△ABC 和△DE F 中,∴△ABC ≌△DEF .典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC .求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB =AC , ∠B =∠C .求证:AD=AE .方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF .求证:△ADF ≌△CBE .引导学生通过动手画图、剪下来等操作,观察所画的图与原图是否重合,进而得出“角边角”的判定条件,并会用几何语言表述。
人教版初中八年级上册数学《角边角角角边》精品教案

第3课时“角边角”“角角边”1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:应用“角边角”、“角角边”判定三角形全等【类型一】应用“ASA”判定两个三角形全等如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用ASA可证明△ADF≌△CBE.证明:∵AD∥BC,BE∥DF,∴∠A=∠C,∠DFE=∠BEC.∵AE=CF,∴AE+EF=CF+EF,即AF=CE .在△ADF 和△CBE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.【类型二】 应用“AAS ”判定两个三角形全等如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等. 证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是“其中一个角的对边”.【类型三】 灵活选用不同的方法证明三角形全等如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是______________.解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.探究点二:运用全等三角形解决有关问题已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎪⎨⎪⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,∴△BDA ≌△AEC (AAS);(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.3.三角形全等是证明线段相等或角相等的常用方法.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法证明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA ”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练.作者留言:非常感谢!您浏览到此文档。
人教版初中八年级上册数学《角边角和角角边》精品教案

∴ △ABE ≌△ACD(ASA). ∴ AE =AD.
知识点2 探究“AAS”判定方法
例2 如图,在△ABC 和△DEF 中,∠A =∠D,∠B =∠E,BC =EF . 求证△ABC ≌△DEF.
∴AB∥CD. ∴∠BAO =∠DCO.
在△ABO和△CDO中,
B D,
AB
CD,
BAO DCO,
∴△ABO≌△CDO,
∴BO = DO,AO = CO,即AC与BD互相平分.
课堂小结
ED C′
A′
B′
两角和它们的夹边分别相等的两个三角形全等
(简称为“角边角”或“ASA”).
两角分别相等且其中一组等角的对边相等的两
B′E相交于点C′ . 现象:两个三角形放在一起
能完全重合.
ED C′
说明:这两个三角形全等.
A′
B′
归纳概括“ASA”判定方法: 两角和它们的夹边分别相等的两个三角形全 等(简写为“角边角”或“ASA”). 几何语言: 在△ABC 和△ A′B′ C′ 中,
∠A =∠A′,
AB = A′B′, ∠B =∠B′,
拓展延伸
3.如图,点 E、F 在BD上,且 AB = CD,
BF = DE,AE = CF,求证:AC 与 BD 互相平分.
证明:∵BF = DE,
∴BF-EF = DE-EF,即BE = DF.
在△ABE和△CDF中,
AB CD,
AE
CF,
BE DF,
∴△ABE≌△CDF. ∴∠B =∠D.
R·八年级上册
12.2 三角形全等的判定
人教版八年级上册12.2《三角形全等的判定》(角边角)教案

三、教学难点与重点
1.教学重点
a. “角边角”(ASA)判定全等三角形的条件:两个角和它们夹的边分别相等。
b.应用ASA判定方法判断两个三角形是否全等。
c.理解全等三角形的性质,如对应边、对应角相等,对应边上的中线、高、角平分线相等。
-引导学生观察并总结规律,强调“角边角”中的“边”是特定的一条边。
-通过具体例题,让学生在实际应用中加深对“边”的理解。
针对难点b,教师可采用以下方法:
-在复杂图形中,引导学生先识别出已知的信息,如角和边,再判断是否符合ASA条件。
-通过变式练习,让学生在不同情境下运用ASA判定方法,提高识别和运用能力。
人教版八年级上册12.2《三角形全等的判定》(角边角)教案
一、教学内容
人教版八年级上册12.2《三角形全等的判定》(角边角)教案:
1.知识目标:使学生掌握“角边角”(ASA)判定全等三角形的方法。
2.能力目标:培养学生运用ASA判定方法解决实际问题的能力。
3.教学内容:
a.复习全等三角形的定义及性质。
d.通过具体例题,让学生掌握ASA判定全等三角形的步骤和技巧。
举例:在讲解ASA判定方法时,教师可借助图形,如∆ABC和∆DEF,明确指出当∠A=∠D,∠B=∠E,且边AB=DE时,根据ASA判定方法,可得出∆ABC≌∆DEF。
2.教学难点
a.理解并掌握“角边角”中的“边”是指两个角夹的那条边,而非任意一条边。
b.学习“角边角”(ASA)判定全等三角形的方法。
c.通过例题,让学生掌握ASA判定方法的运用。
d.练习:完成教材P122页练习题12.2的第1、2、3题。
人教版数学八年级上册12.2.3《“角边角”判定三角形全等》教学设计

人教版数学八年级上册12.2.3《“角边角”判定三角形全等》教学设计一. 教材分析《角边角(AAS)判定三角形全等》是人教版八年级上册数学的一个重要内容。
这部分内容是在学生已经掌握了三角形全等的判定方法SSS、SAS、ASA的基础上进行学习的。
通过学习AAS判定三角形全等,能够使学生更全面地了解三角形全等的判定方法,提高他们解决几何问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形全等的判定方法SSS、SAS、ASA,能够理解并运用这些方法解决一些简单的几何问题。
但是,对于AAS判定三角形全等,他们可能还比较陌生,需要通过实例分析和练习来逐步理解和掌握。
三. 教学目标1.让学生理解并掌握AAS判定三角形全等的方法。
2.培养学生运用AAS判定三角形全等解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:理解并掌握AAS判定三角形全等的方法。
2.难点:如何运用AAS判定三角形全等解决实际问题。
五. 教学方法1.采用案例分析法,通过具体的实例让学生理解和掌握AAS判定三角形全等的方法。
2.采用小组合作学习法,让学生在小组内讨论和分析问题,培养他们的团队协作能力。
3.采用练习法,让学生通过多做练习,巩固所学知识,提高解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,用于讲解和练习AAS判定三角形全等。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式复习三角形全等的判定方法SSS、SAS、ASA,引导学生思考:这些方法是否能够解决所有的三角形全等问题?引出本节课的内容——AAS判定三角形全等。
2.呈现(10分钟)呈现一个具体的实例,让学生观察和分析,引导学生运用已知的三角形全等判定方法进行尝试。
通过讨论和分析,得出AAS判定三角形全等的方法。
3.操练(10分钟)让学生分组进行练习,每组提供一些相关的题目,让学生运用AAS判定三角形全等的方法进行解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时 “角边角”“角角边”
1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)
2.能运用“角边角”“角角边”判定
方法解决有关问题.(重点) 3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点) 一、情境导入 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?
学生活动:学生先自主探究出答案,然后再与同学进行交流.
教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.
二、合作探究
探究点一:应用“角边角”、“角角边”
判定三角形全等 【类型一】 应用“ASA ”判定两个三角形全等 如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .
解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用ASA 可证明△ADF ≌△CBE .
证明:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵
⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,
∠DFA =∠BEC ,
∴△ADF ≌△CBE (ASA). 方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两
角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹
边”.
【类型二】 应用“AAS ”判定两个三角
形全等 如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF . 解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等.
证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,
∴△ADC ≌
△BDF (AAS).
方法总结:在“AAS ”中,“边”是“其
中一个角的对边”.
【类型三】 灵活选用不同的方法证明三角形全等
如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED
,还需添加一个条件,
这个条件可以是
______________
.
解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .
方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
探究点二:运用全等三角形解决有关问题
已知:在△ABC 中,∠BAC =90°,
AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .
解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.
证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎪⎨⎪
⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,
AB =AC ,
∴△BDA ≌△AEC (AAS);
(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .
方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形
的判定与性质进行线段之间的转化.
三、板书设计
“角边角”“角角边”
1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”.
2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.
3.三角形全等是证明线段相等或角相等的常用方法.
本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法证明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA ”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练.。