初中数学八年级上册教案有哪些

合集下载

浙教版初中八年级数学上册全套精品教案

浙教版初中八年级数学上册全套精品教案

浙教版初中八年级数学上册全套精品教案一、教学内容1. 第十一章:数据整理与概率11.1 数据的收集与整理11.2 概率初步11.3 统计图的选择与应用二、教学目标1. 理解并掌握数据的收集、整理、描述和分析的方法。

2. 掌握概率的基本概念和计算方法,并能应用于解决实际问题。

3. 学会选用合适的统计图展示数据,提高数据分析能力。

三、教学难点与重点1. 教学难点:概率的计算和应用。

2. 教学重点:数据的收集与整理、统计图的选择与应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:直尺、圆规、计算器。

五、教学过程1. 导入:通过一个实践情景引入,例如调查班级同学的身高、体重数据。

2. 新课内容:(1)数据的收集与整理:讲解数据的收集方法、整理方法,展示例题并进行讲解。

(2)概率初步:介绍概率的概念、计算方法,讲解例题,引导学生进行随堂练习。

(3)统计图的选择与应用:分析不同统计图的特点,教授如何选择合适的统计图展示数据。

六、板书设计1. 数据的收集与整理:收集方法:问卷调查、观察法等。

整理方法:分类、排序、求和、求平均数等。

2. 概率初步:概念:某事件发生的可能性。

计算方法:概率=所求事件发生的次数/总次数。

3. 统计图的选择与应用:条形图、折线图、扇形图等。

七、作业设计1. 作业题目:(1)收集并整理家庭成员的身高、体重数据,绘制合适的统计图。

(2)计算抛硬币出现正面的概率,并分析原因。

2. 答案:(1)根据实际情况绘制统计图,无固定答案。

(2)抛硬币出现正面的概率为0.5,因为硬币的两面是等概率出现的。

八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,提高了学生的学习兴趣,让学生在动手操作中掌握了知识。

2. 拓展延伸:(1)收集更多数据,研究其分布规律。

(2)探讨其他概率问题,如掷骰子的概率等。

重点和难点解析1. 教学内容的设置与安排2. 教学目标的制定3. 教学难点与重点的识别4. 教学过程中的实践情景引入5. 板书设计的关键信息展示6. 作业设计的问题设置与答案解析7. 课后反思与拓展延伸的深度详细补充和说明:一、教学内容的设置与安排确保内容与学生的生活实际紧密相关,提高学生的学习兴趣和参与度。

初中数学8上册教案文库

初中数学8上册教案文库

初中数学8上册教案文库教学目标:1. 知识与技能:理解相似多边形的概念,掌握相似多边形的性质,能够运用相似多边形的性质解决一些实际问题。

2. 过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

教学重点:1. 相似多边形的概念及性质。

2. 运用相似多边形的性质解决实际问题。

教学难点:1. 相似多边形的性质的理解和运用。

2. 解决实际问题时,如何正确运用相似多边形的性质。

教学准备:1. 教师准备多媒体课件和教学素材。

2. 学生准备笔记本和文具。

教学过程:一、导入(5分钟)1. 教师通过多媒体展示一些相似多边形的图片,让学生观察并思考:这些多边形有什么共同的特点?2. 学生回答,教师总结出相似多边形的概念。

二、新课讲解(15分钟)1. 教师讲解相似多边形的性质,通过示例和讲解,让学生理解相似多边形的性质。

2. 学生跟随教师一起操作,验证相似多边形的性质。

三、课堂练习(15分钟)1. 教师给出一些练习题,让学生独立完成,巩固对相似多边形性质的理解。

2. 学生完成后,教师进行讲解和解答。

四、小组活动(10分钟)1. 教师让学生分组,每组选择一个实际问题,运用相似多边形的性质进行解决。

2. 学生分组讨论,合作解决问题。

3. 各组汇报解题过程和结果,教师进行点评和指导。

五、总结与反思(5分钟)1. 教师引导学生总结本节课的学习内容,让学生明确相似多边形的性质及运用。

2. 学生分享自己的学习收获和感受。

教学反思:本节课通过观察、操作、猜想、验证等过程,让学生理解和掌握相似多边形的性质,通过课堂练习和小组活动,巩固学生对相似多边形性质的理解,并培养学生的空间想象能力和逻辑思维能力。

在教学过程中,要注意关注学生的学习情况,及时进行指导和解答,确保学生能够正确理解和运用相似多边形的性质。

2024年华师大版初中八年级数学上册全套教案

2024年华师大版初中八年级数学上册全套教案

2024年华师大版初中八年级数学上册全套教案一、教学内容1. 第五章:一元二次方程5.1 一元二次方程及其解法5.2 一元二次方程的判别式5.3 一元二次方程的根与系数的关系2. 第六章:二次函数6.1 二次函数及其图像6.2 二次函数的性质6.3 二次函数的应用二、教学目标1. 理解一元二次方程的概念,掌握解一元二次方程的几种常用方法。

2. 了解一元二次方程的判别式,掌握根与系数的关系。

3. 掌握二次函数的定义、图像、性质,并能解决实际问题。

三、教学难点与重点1. 教学难点:一元二次方程的解法、二次函数图像的性质。

2. 教学重点:一元二次方程的判别式、根与系数的关系、二次函数的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过实际情景引入,如“一块长方形的地,面积为100平方米,长比宽多5米,求长和宽”。

2. 知识讲解:(1)一元二次方程的概念、解法。

(2)一元二次方程的判别式、根与系数的关系。

(3)二次函数的定义、图像、性质。

3. 例题讲解:(1)解一元二次方程:x^2 5x + 6 = 0。

(2)求一元二次方程2x^2 4x 6 = 0的判别式和根与系数的关系。

(3)二次函数y = x^2 2x 3的图像和性质。

4. 随堂练习:(1)解一元二次方程:x^2 3x 4 = 0。

(2)求一元二次方程x^2 2x + 1 = 0的判别式和根与系数的关系。

(3)分析二次函数y = x^2 + 2x + 1的图像和性质。

六、板书设计1. 一元二次方程及其解法。

2. 一元二次方程的判别式、根与系数的关系。

3. 二次函数的定义、图像、性质。

七、作业设计1. 作业题目:(1)解一元二次方程:x^2 + 5x + 6 = 0。

(2)求一元二次方程3x^2 6x + 2 = 0的判别式和根与系数的关系。

(3)分析二次函数y = x^2 + 4x 5的图像和性质。

初中数学八上说课教案

初中数学八上说课教案

《初中数学八上》说课教案一、教材分析《初中数学八上》是人教版数学课程标准实验教科书,本册教材是在学生掌握了七年级数学知识的基础上进行进一步学习的。

本节课的主要内容是多项式的乘法,这是初中数学中的一个重要概念,也是学生进一步学习函数、不等式等知识的基础。

二、教学目标1. 知识与技能目标:使学生掌握多项式乘法的运算法则,能够熟练地进行多项式的乘法运算。

2. 过程与方法目标:通过自主学习、合作交流的方式,培养学生的逻辑思维能力和团队协作能力。

3. 情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的自主学习能力,使学生感受到数学在生活中的应用。

三、教学重点与难点1. 教学重点:多项式乘法的运算法则。

2. 教学难点:如何引导学生理解并掌握多项式乘法的过程。

四、教学方法采用自主学习、合作交流、讲解演示的教学方法,引导学生主动探究多项式乘法的运算法则,通过师生互动、生生互动,提高学生的学习兴趣和参与度。

五、教学过程1. 导入新课通过复习七年级学习的多项式知识,引导学生回顾并巩固多项式的概念,为新课的学习做好铺垫。

2. 自主学习让学生自主探究多项式乘法的运算法则,引导学生通过观察、分析、归纳总结出多项式乘法的规律。

3. 合作交流在学生自主学习的基础上,组织学生进行合作交流,分享各自的成果和困惑,引导学生通过讨论、互助解决疑难问题。

4. 讲解演示教师对多项式乘法的运算法则进行讲解,通过示例演示,使学生更加直观地理解多项式乘法的过程。

5. 练习巩固设计一些具有针对性的练习题,让学生进行巩固练习,及时发现并纠正学生的错误,提高学生的运算能力。

6. 课堂小结对本节课的学习内容进行总结,使学生明确多项式乘法的运算法则,引导学生体会数学知识之间的联系。

7. 课后作业布置一些课后作业,让学生进一步巩固所学知识,提高学生的自主学习能力。

六、教学反思在教学过程中,要注意关注学生的学习情况,及时调整教学策略,使学生能够更好地理解和掌握多项式乘法的知识。

湘教版初中数学八年级上册教案

湘教版初中数学八年级上册教案

湘教版初中数学八年级上册教案一、教学目标1. 熟悉八年级上册数学教材的内容框架和知识点。

2. 培养学生的数学思维能力和解决实际问题的能力。

3. 培养学生的合作研究和实践操作能力。

二、教学重点1. 掌握八年级上册数学教材中的重要知识点。

2. 培养学生的数学思维能力,提高解决问题的能力。

三、教学内容本教案分为以下章节:第一章数与代数1. 数的认识2. 自然数的加减法3. 常见乘法口诀4. 等式和不等式第二章几何1. 几何图形的认识2. 平行线与三角形3. 相交线与平行线第三章数据与图表1. 统计调查2. 统计图表的制作和分析3. 平均数的计算第四章方程与函数1. 等式的解2. 函数的概念3. 一元一次方程第五章研究生活中的现象1. 比例与相似2. 棱柱和棱锥的计算3. 利润与利率的计算第六章三角函数1. 角的概念和性质2. 正弦、余弦和正切的计算四、教学方法本教案采用多种教学方法,包括讲授、实践操作、小组合作研究和讨论等。

通过多样化的教学活动,激发学生的研究兴趣,提高研究效果。

五、教学评价教师将根据学生的课堂表现、小组活动成果和个人作业完成情况等多方面进行评价,并及时给予反馈。

评价旨在帮助学生发现自身的优点和不足,进一步提高研究成绩。

六、教学资源教师将准备充足的教学资源,包括课本、教辅资料、实验器材等,以支持学生的研究和实践操作。

七、教学安排本教案将按照教学进度详细安排每一个章节的教学内容和相应的教学活动,确保教学顺利进行。

八、教学效果通过本教案的实施,教师将帮助学生全面掌握数学知识和思维方法,培养学生的数学能力和解决问题的能力,提高学生的学习兴趣和学习成绩。

华师大版初中八年级数学上册全套教案

华师大版初中八年级数学上册全套教案

华师大版初中八年级数学上册全套教案教案:华师大版初中八年级数学上册一、教学内容1. 第一章:整式与不等式本章主要介绍整式的概念、运算性质以及不等式的解法等。

2. 第二章:函数本章主要介绍一次函数、二次函数的图像和性质,以及函数的定义和表示方法等。

3. 第三章:几何本章主要介绍几何图形的性质和计算,包括三角形、四边形、圆等。

二、教学目标1. 学生能够掌握整式的概念和运算性质,能够进行整式的运算和简化。

2. 学生能够理解函数的定义和表示方法,能够绘制一次函数和二次函数的图像,并理解其性质。

3. 学生能够运用几何图形的性质和计算方法解决实际问题。

三、教学难点与重点1. 教学难点:整式的运算和简化,二次函数的图像和性质。

2. 教学重点:函数的概念和表示方法,几何图形的性质和计算方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教具等。

2. 学具:练习本、尺子、圆规、量角器等。

五、教学过程1. 实践情景引入:通过实际问题引入整式和不等式的概念,让学生感受数学与生活的联系。

2. 知识讲解:讲解整式的概念、运算性质以及不等式的解法,通过例题演示解题过程。

3. 随堂练习:布置一些整式和不等式的问题,让学生独立解答,巩固所学知识。

4. 知识讲解:讲解一次函数和二次函数的定义和表示方法,通过例题演示绘制图像和解题过程。

5. 随堂练习:布置一些一次函数和二次函数的问题,让学生独立解答,巩固所学知识。

6. 知识讲解:讲解几何图形的性质和计算方法,通过例题演示解题过程。

7. 随堂练习:布置一些几何图形的问题,让学生独立解答,巩固所学知识。

六、板书设计板书设计要清晰、简洁,能够突出本节课的重点和难点。

可以采用流程图、图像、列表等形式进行设计。

七、作业设计1. 作业题目:(2) 一次函数和二次函数:绘制y = 2x + 1和y = x^2的图像,并解释其性质。

(3) 几何图形的性质和计算:计算一个等边三角形的面积,给定边长为6cm。

人教版八年级数学上册教学计划五篇

人教版八年级数学上册教学计划五篇人教版八年级数学上册教学计划1一、扎扎实实打好基础。

1、重视课本,系统复习。

初中数学基础包括基础知识和基本技能两方面。

现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。

尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和,做到举一反三。

2、充实基础,学会思考。

中考时基础分很多,所以在应用基础知识时做到熟练、正确、迅速。

上课要边听边悟,敢于质疑。

3、重视基础知识的理解和方法的学习。

基础知识既是初中所涉及的概念、公式、公理、定理等。

掌握知识间的联系,要做到理清知识结构,形成整体知识,并能综合运用。

例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也涉及到几何中的相似三角形,比例推导等。

还重视数学方法的考察。

如:配方法、判别式等方法。

二、综合运用知识,提高自身的各种能力。

初中数学基本能力有运算能力、思维能力、空间想象能力以及体现数学与生产、生活相关学科相联系的能力等等。

1、提高综合运用数学知识解题的能力。

要求学生必须把各章节的知识联系起来,并能综合运用,做到触类旁通。

目前应根据自身的实际,有针对性地复习,查漏补缺做好知识归纳、解题方法地归纳。

2、狠抓重点内容,适当练习热点题型。

几年来,初中的数学的方程、函数、直线型一直是中考的重点内容。

方程思想、函数思想贯穿试卷始终。

另外,开放题、探索题、阅读理解题、设计、动手操作等问题也是中考的热点题型,所以应重视这方面的学习与训练,以便适应这类题型。

首先,我们必须了解中考的有关的政策,避免走弯路,走错路。

研读了《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。

避免解题中出现“跳步”现象。

三、习题。

1、初三下学期刚开始,每一周末安排一次综合练习。

让学生开始接触中考题型、题量,3月底后就每周一次综合模拟测试。

2、每天利用几分钟时间练习。

浙教版初中八年级数学上册全套教案

(2)重要知识点要用不同颜色粉笔标注,突出重点;
(3)板书布局合理,避免信息过载。
五、作业设计的针对性与答案的准确性
(1)作业题目要针对教学难点和重点,有助于巩固课堂所学;
(2)作业答案要准确无误,避免误导学生;
(3)作业量适中,既能巩固知识,又不增加学生负担。
六、课后反思与拓展延伸的深度
(1)教师要在课后反思本次课程的教学效果,分析学生的掌握情况,找出不足之处,为下一次教学做好准备;
2.几何图形:
(1)平行四边形;
(2)矩形、菱形、正方形;
(3)梯形。
3.概率初步:
(1)随机事件与概率;
(2)组合与概率的加法法则;
(3)条件概率与独立事件。
七、作业设计
1.作业题目:
(1)解一元二次方程:x^2 - 5x + 6 = 0;
(2)判断以下图形是否为平行四边形,若是,判断其是否为矩形、菱形、正方形或梯形;
浙教版初中八年级数学上册全套教案
一、教学内容
本教案依据浙教版初中八年级数学上册教材,主要涵盖以下章节内容:
1.第十一章:一元二次方程
1.1一元二次方程的定义与一般形式
1.2解一元二次方程的几种方法
1.3一元二次方程的根与系数的关系
2.第十二章:几何图形
2.1平行四边形
2.2矩形、菱形、正方形
2.3梯形
(1)让学生独立完成一元二次方程的求解;
(2)让学生绘制几何图形,并判断其性质;
(3)让学生计算给定概率问题。
4.小组讨论与合作:
(1)讨论一元二次方程的求解方法;
(2)探讨几何图形的性质与判定;
(3)研究概率的计算方法。
六、板书设计
1.一元二次方程:

数学八年级上册教案

数学八年级上册教案【篇一:新人教版数学八年级上册教案(全册整理版)】第11章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。

教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于180的基础上,进行推理论证,从而得出三角形外角的性质。

接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。

这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。

最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标等于180,了解三角形外角的性质。

4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。

5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。

〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于180的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。

课时分配11.1与三角形有关的线段 ??????????????? 2课时 11.2 与三角形有关的角 ???????????????? 2课时 11.3多边形及其内角和 ???????????????? 2课时本章小结 ?????????????????????? 2课时11.1.1三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

浙教版初中八年级数学上册全套教案

浙教版初中八年级数学上册全套教案教案:浙教版初中八年级数学上册一、教学内容1. 第一章:整式与方程1.1 整式的概念与运算1.2 方程的概念与解法2. 第二章:函数2.1 函数的概念与性质2.2 一次函数与二次函数3. 第三章:几何3.1 三角形的性质3.2 四边形的性质二、教学目标1. 学生能够掌握整式与方程的基本概念和运算方法。

2. 学生能够理解函数的概念和性质,能够绘制一次函数和二次函数的图像。

3. 学生能够了解三角形的性质,能够应用三角形的性质解决实际问题。

三、教学难点与重点1. 教学难点:函数图像的绘制和几何图形的性质证明。

2. 教学重点:整式与方程的运算方法,函数的概念和性质,几何图形的性质。

四、教具与学具准备1. 教具:黑板、粉笔、PPT播放器。

2. 学具:笔记本、尺子、圆规、橡皮擦。

五、教学过程1. 实践情景引入:通过生活中的实际问题,引入整式与方程的概念。

2. 知识讲解:讲解整式与方程的基本概念和运算方法。

3. 例题讲解:通过例题讲解,让学生掌握整式与方程的解法。

4. 随堂练习:学生独立完成随堂练习,巩固所学知识。

5. 知识讲解:讲解函数的概念和性质,一次函数和二次函数的图像。

6. 例题讲解:通过例题讲解,让学生掌握函数的解法。

7. 随堂练习:学生独立完成随堂练习,巩固所学知识。

8. 知识讲解:讲解几何图形的性质,如三角形的性质。

9. 例题讲解:通过例题讲解,让学生应用几何图形的性质解决问题。

10. 随堂练习:学生独立完成随堂练习,巩固所学知识。

六、板书设计板书设计将包括本节课的主要知识点,如整式与方程的概念、运算方法,函数的概念、性质和图像,几何图形的性质等。

七、作业设计1. 作业题目:请完成课后练习第一题至第五题。

2. 答案:第一题:略第二题:略第三题:略第四题:略第五题:略八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解整式与方程的应用。

通过例题讲解和随堂练习,让学生掌握整式与方程的解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学八年级上册教案有哪些13.2.3三角形全等的条件(三)教学目标1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角”“角角边”条件.4.能运用全等三角形的条件,解决简单的推理证明问题.教学重点已知两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学过程Ⅰ.提出问题,创设情境1.复习:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课问题1:三角形中已知两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,•你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,•能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.②画线段A′B′,使A′B′=AB.③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.④射线A′D与B′E交于一点,记为C′即可得到△A′B′C′.将△A′B′C′与△ABC重叠,发现两三角形全等.两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?探究问题4:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC 与△DEF全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D,∠B=∠E∴∠A+∠B=∠D+∠E∴∠C=∠F在△ABC和△DEF中∴△ABC≌△DEF(ASA).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.[分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.证明:在△ADC和△AEB中所以△ADC≌△AEB(ASA)所以AD=AE.Ⅲ.随堂练习(一)课本P99练习1、2.(二)补充练习图中的两个三角形全等吗?请说明理由.答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.Ⅳ.课时小结至此,我们有五种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.Ⅴ.作业1.课本习题13.2─5、6、11题.课后作业:<<课堂感悟与探究>>板书设计13.2.3三角形全等的条件---直角三角形全等的判定(四)教学目标1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。

3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。

教学重点运用直角三角形全等的条件解决一些实际问题。

教学难点熟练运用直角三角形全等的条件解决一些实际问题。

教学过程Ⅰ.提出问题,复习旧知1、判定两个三角形全等的方法:、、、2、如图,Rt△ABC中,直角边是、,斜边是3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(4)若AB=DE,BC=EF,AC=DF则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)Ⅱ.导入新课(一)探索练习:(动手操作):已知线段a,c(a<c)和一个直角利用尺规作一个Rt△ABC,使∠C=∠,AB=c,CB=a1、按步骤作图:ac①作∠MCN=∠=90°,②在射线CM上截取线段CB=a,③以B为圆心,C为半径画弧,交射线CN于点A,④连结AB2、与同桌重叠比较,是否重合?3、从中你发现了什么?斜边与一直角边对应相等的两个直角三角形全等.(HL)(二)巩固练习:1.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC(填“全等”或“不全等”)根据(用简写法)2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据(4)若AC=BD,AE=BF,CE=DF。

则△ACE≌△BDF,根据(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据3、判断两个直角三角形全等的方法不正确的有()(A)两条直角边对应相等(B)斜边和一锐角对应相等(C)斜边和一条直角边对应相等(D)两个锐角对应相等4、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由答:理由:∵AF⊥BC,DE⊥BC(已知)∴∠AFB=∠DEC=°(垂直的定义)在Rt△和Rt△中∴≌()∴∠=∠()∴(内错角相等,两直线平行)5、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。

(三)提高练习:1、判断题:(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。

()(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等()(3)一个锐角与一斜边对应相等的两个直角三角形全等()(4)两直角边对应相等的两个直角三角形全等()(5)两边对应相等的两个直角三角形全等()(6)两锐角对应相等的两个直角三角形全等()(7)一个锐角与一边对应相等的两个直角三角形全等()(8)一直角边和斜边上的高对应相等的两个直角三角形全等()2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的()内写出判定全等的依据。

(1)()(2)()(3)()(4)()课时小结至此,我们有六种判定三角形全等的方法:1.全等三角形的定义2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)6.HL(仅用在直角三角形中)作业1.课本习题13.2─10、12题.课后作业:<<课堂感悟与探究>>13.3角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程Ⅰ.提出问题,创设情境问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?Ⅱ.导入新课在学直角三角形全等的条件时做过这样一个题:在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC 与NC交于C点.求证:∠MOC=∠NOC.通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.受这个题的启示,我们能不能这样做:在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC•与NC交于C点,连接OC,那么OC就是∠AOB 的平分线了.思考:这个方案可行吗?(学生思考、讨论后,统一思想,认为可行)议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A 放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.看看条件够不够.所以△ABC≌△ADC(SSS).所以∠CAD=∠CAB.即射线AC就是∠DAB的平分线.作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB 内部交于点C.(3)作射线OC,射线OC即为所求.议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB 的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练:任意画一角∠AOB,作它的平分线.探索活动按以下步骤折纸1、在准备好的三角形的每个顶点上标好字母;A、B、C。

把角A 对折,使得这个角的两边重合。

2、在折痕(即平分线)上任意找一点C,3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。

4、将纸打开,新的折痕与OB边交点为E。

角平分线的性质:角平分线上的点到角的两边的距离相等.下面用我们学过的知识证明发现:如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC。

求证:OE=OD。

Ⅲ.随堂练习课本P106练习.练后总结:平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB•也垂直.Ⅳ.课时小结本节课中我们利用已学过的三角形全等的知识,•探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.Ⅴ.课后作业1.课本P108习题13.2─1、2.课后作业:<<课堂感悟与探究>>思考1.在一节数学课上,老师要求同学们练习一道题,题目的图形如图所示,•图中的BD是∠ABC的平分线,在同学们忙于画图和分析题目时,小明同学忽然兴奋地大声说:“我有个发现!”原来他自己创造了一个在直角三角形中画锐角的平分线的方法.他的方法是这样的,在AB上取点E,使BE=BC,然后画DE⊥AB交AC于D,•那么BD•就是∠ABC的平分线.有的同学对小明的画法表示怀疑,你认为他的画法对不对呢?请你来说明理由.板书设计猜你喜欢:。

相关文档
最新文档