2.3内积空间中的正交和投影

合集下载

内积空间中正交和投影

内积空间中正交和投影
x x0 d x, M
则有 x x0 M
定理 2.3.8 设 M 是希尔伯特空间 X 的线性闭子空间, 则 X 中的元素 x 在 M 中存在唯一的正交投影 x0 ,即有
x x0 y , x0 M , y M
定义232正交补中所有与m正交的矢量组成之集合定理233勾股定理若为内积空间232正交投影定义234正交投影设上的正交投影上式也称作x的正交分解
⑶ 若对 x M 和 y N 都有 x, y 0 ,则称 M 与 N 正交,记作 M N ;
⑷ 设 X 为线性空间, M , N 是 X 的两个子空间, 且 M N 。若对于某个 x X 可唯一地表示成
x yz, yM , zN
则称 X 为 M , N 的正交和,并表示成 X M N 。
定 义 2.3.2 ( 正 交 补 ) 设 X 为 内 积 空 间 , M X ,称 X 中所有与 M 正交的矢量组成之集合 为 M 的正交补,记作 M ,即
M x x X, x M
定理 2.3.3(勾股定理)若 x1, x2 ,L , xn 为内积
空间 X 中彼此正交的矢量组,则有
n

2
n
xk
xk 2
k 1
k 1
2.3.2 正交投影 定义 2.3.4(正交投影)设 M 为内积空间 X 的线
性子空间, x X ,如果 x0 M , y M ,使得
x x0 y
则称 x0 是 x 在 M 上的正交投影,上式也称作 x 的正交
分解。
定理 2.3.5(正交投影的唯一性)设 M 为内积空间 X 的线性 子空间, x X ,若 x 在 M 上有正交投影,则该投影是唯一的。
引理 2.3.6 若 M 是希尔伯特空间 X 的一个线性闭子空间, x X ,定义 x 到 M 的距离为

第3讲 实内积空间汇总

第3讲 实内积空间汇总

第3讲 实内积空间内容:1. 实内积空间2. 正交基及正交补与正交投影3. 内积空间的同构4. 正交变换与对称变换在线性空间中,元素(向量)之间的运算仅限于元素(向量)的线性运算.但是,如果以向量作为线性空间的一个模型,则会发现向量的度量(即长度)与向量间的位置关系在线性空间的理论中没有得到反映,而这些性质在许多实际问题中却是很关键的.因此,将在抽象的线性空间中引进内积运算,导出内积空间,并讨论正交变换与正交矩阵及对称变换与对称矩阵.§1 内积空间在解析几何中,向量的长度与夹角等度量性质都可以通过向量的数量积来表示,而向量的数量积具有以下的代数性质:对称性),(),(αββα=;可加性 ),(),(),(γβγαγβα+=+;齐次性R k k k ∈∀=),,(),(βαβα;非负性0),(≥αα,当且仅当0=α时,0),(=αα.以数量积为基础,向量的长度与夹角可表示为: ),(ααα=,βαβαβα⋅>=<),(,cos .可见数量积的概念蕴涵着长度与夹角的概念,将该概念推广至抽象的线性空间.定义1.1 设V 是实线性空间,若对于V 中任意两个元素(向量)α和β,总能对应唯一的实数,记作),(βα,且满足以下的性质:(1) 对称性 ),(),(αββα=(2) 可加性 ),(),(),(γβγαγβα+=+(3) 齐次性 R k k k ∈∀=),,(),(βαβα(4) 非负性 0),(≥αα,当且仅当0=α时,0),(=αα. 则称该实数是V 中向量α和β的内积.称内积为实数的实线性空间V 为欧几里得(Euclid)空间,简称为欧氏空间.称定义了内积的线性空间为内积空间.例 1.1 在n 维向量空间n R 中,任意两个向量:T n x x x ),,,(21 =α,T n y y y ),,,(21 =β,若规定:βαβαT nk k k n n y x y x y x y x ==+++=∑=12211),( ,则容易验证,这符合内积的定义,是n R 中向量α和β的内积.另外,若规定:∑==nk k k y kx 1),(βα,0>k ,同样可验证,这也是n R 中向量α和β的内积.由此可见,在同一个实线性空间的元素之间,可以定义不同的内积,即内积不是唯一的.从而,同一个实线性空间在不同内积下构成不同的欧氏空间.例 1.2 在[]b a ,上连续的实函数的实线性空间[]b a C ,中,对任意函数[]b a C x g x f ,)(),(∈,定义:⎰=ba dx x g x f g f )()(),(,则可以证明这是[]b a C ,上)(x f 与)(x g 的一种内积.欧氏空间V 中的内积具有如下的性质:(1) V o o ∈∀==ααα,0),(),((2) R k V k k ∈∀∈∀=,,),,(),(βαβαβα(3) V ∈∀+=+γβαγαβαγβα,,),,(),(),((4) ),(),(1111∑∑∑∑=====n j ni j i j i n i n j j j i i y x l k y l x k事实上,由定义1.1有:0),(0),0(),(===αβαβαo ;),(),(),(),(βααβαββαk k k k ===;),(),(),(),(),(),(γαβααγαβαγβγβα+=+=+=+;因此,性质(1)至(3)成立,再结合数学归纳法容易验证性质(4)也成立.定义1.2 设α是欧氏空间V 中的任一元素(向量),则非负实数),(αα称为元素(向量)α的长度或模,记作α.称长度为1的元素(向量)称为单位元素(向量),零元素(向量)的长度为0.由定义1.2易知,元素(向量)的长度具有下列性质: (1) V R k k k ∈∀∈∀⋅=ααα,,(2) 当o ≠α时,,11=αα即αα1是一个单位元素(向量).通常称此为把非零元素(向量)α单位化.定理1.1 (Cauchy-Schwarz 不等式). 设βα,是欧氏空间V 中的任意两个元素(向量),则不等式βαβα⋅≤),(,对V ∈∀βα,均成立,并且当且仅当α与β线性相关时,等号成立.证明:当α与β至少有一个是零元素(向量)时,结论显然成立.现在设βα,均为非零元素(向量),则)),(),(,),(),((ββββααββββαα--[]0),(),(),(2≥-=βββααα, 因此有[]),(),(),(2ββααβα≤, 即βαβα⋅≤),(.而且当且仅当ββββαα),(),(=,即α与β线性相关时,等号成立.定义1.3 设x 与y 是欧氏空间V 中的任意两个元素(向量),则称yx y x ),(arccos =θ为x 与y 的夹角,记作,,><y x 即 ),0(,),(arccos ,πθ≤><≤=>=<y x yx y x y x . 例 1.3 试证明欧氏空间V 中成立三角不等式V y x y x y x ∈∀+≤+,,.证明 因),(2y x y x y x ++=+),(),(2),(y y y x x x ++=,由Schwarz Cauchy -不等式,有 222222)(2),(2y x y y x x y y x x y x +=++≤++=+, 即有 y x y x +≤+ .§2 正交基及正交补与正交投影1 正交基定义 2.1 设y x ,是欧氏空间V 中的任意两个元素(向量),如果0),(=y x ,则称元素(向量)x 与y 正交,记作.y x ⊥.由定义2.1易知,零元素(向量)与任何元素(向量)均正交.若,o x ≠由于,0),(>x x 所以非零元素(向量)不会与自身正交,即只有零元素(向量)才与自己正交.例 2.1 在2R 中,对于任意两个向量x 与y 的内积,定义:(1)y x y x T =1),(;(2) Ay x y x T =),(,其中⎥⎦⎤⎢⎣⎡=2111A .由此所得的两个欧氏空间分别记为21R 与22R ,试判断向量T x )1,1(0=与T y )1,1(0-=在21R 与22R 中是否正交?解 由于 011)1,1(),(100=⎪⎪⎭⎫⎝⎛-=y x ;01112111)1,1(),(200≠=⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=y x . 故向量x 与y 在21R 中正交,在22R 中不正交.说明:两元素(向量)正交与否由所在空间的内积确定. 此外,在欧氏空间V 中也有勾股定理,即当y x ⊥时,有 222y x y x +=+.可将其推广至多个元素(向量),即当m ααα,,,21 两两正交时,有22221221m m αααααα+++=+++ .定义2.2 欧氏空间V 中一组非零元素(向量),若两两正交,则称其为一个正交元素(向量)组.定理 2.1 若m ααα,,,21 是欧氏空间V 中一个正交元素(向量)组,则m ααα,,,21 线性无关.证明 设有一组数m k k k ,,,21 ,使o k k k m m =+++ααα 2211,在上式两边分别用),2,1(m i i =α作内积,可得),,2,1(,0),(),(),(21m i k k k i m m i i ==+++αααααα, 由于j i ≠时,0),(=j i αα故可得),,2,1(0),(m i k i i i ==αα,又 0≠i α时, 0),(>i i αα, 从而有),2,1(0m i k i ==,所以m ααα,,,21 线性无关.推论:在n 维欧氏空间中,正交元素(向量)组所含元素(向量)的个数不会超过n 个.定义2.3 在n 维欧氏空间V 中,由n 个元素(向量)构成的正交元素(向量)组称为V 的正交基;由单位元素(向量)组成的正交基叫作标准正交基.定理 2.2 (Schmidt 正交化方法) 设n ααα,,,21 是n 维欧氏空间V 的任意一个基,则总可将其进行适当运算后化为V 的一个正交基,进而将其化为一个标准正交基.证明 因为m ααα,,,21 线性无关,所以),,2,1(0n i i =≠α. 首先, 取11αβ=;其次, 令1111222),(),(ββββααβ-=,则可得两个正交元素(向量)21,ββ;再次, 令222231111333),(),(),(),(ββββαββββααβ--=,则得到三个正交元素(向量).,,321βββ依此进行下去,一般有),,3,2(),(),(),(),(),(),(111122221111n i i i i i i i i i i =----=----ββββαββββαββββααβ 这样得到V 的一个正交基.再将其单位化,令 ),,2,1(1n i i i i ==ββγ,则可得V 的一组标准正交基n γγγ,,,21 .例2.1 在4R 中,将基T )0,0,1,1(1=α,T )0,1,0,1(2=α,T )1,0,0,1(3-=α, T )1,1,1,1(4--=α,用Schmidt 正交化方法化为标准正交基.解 先正交化令 ;)0,0,1,1(11T ==αβ ;)0,1,21,21(),(),(1111222T -=-=ββββααβ ;)1,31,31,31(),(),(),(),(222231111333T -=--=ββββαββββααβ T )1,1,1,1(),(),(),(),(),(),(33334222241111444--=---=ββββαββββαββββααβ 再单位化令 T )0,0,21,21(1111==ββγ T)0,62,61,61(1222-==ββγ T )123,121,121,121(1333-==ββγ T )21,21,21,21(1444--==ββγ则 4321,,,γγγγ 就是所要求的标准正交基.例2.2 设n εεε,,,21 是n 维欧氏空间V 的一个标准正交基, n n x x x x εεε+++= 2211,n n y y y y εεε++= 2211,则有),(),(11∑∑===n j j j n i i i y x y x εε∑==n i ii y x 1.在标准正交基下,V 中任意两个元素(向量)的内积等于它们对应坐标的乘积之和.定义2.4 设n εεε,,,21 是n 维欧氏空间V 的一个基,x ,y 在其基下的坐标表示分别为T n x x x x ),,,(21 =,T n y y y y ),,,(21 =,(∑==n i i i x x 1ε,∑==n i i i y y 1ε),则有Gy x y g x y x y x y x T j nj i ij i j j n j i i i n j j j n i i i ====∑∑∑∑======111111),(),(),(εεεε.其中,)(ij g G G =为n 阶方阵,n j i g j i ij ,,2,1,),,( ==εε.称G 为度量矩阵,它为对称可逆矩阵.2 正交补与正交投影定义 2.5 设1W 和2W 是欧氏空间V 的两个子空间,若对任意的21,W y W x ∈∈总有0),(=y x 成立,则称1W 与2W 正交,记作21W W ⊥.若对某个确定的x 及任意的W y ∈,总有0),(=y x 成立,则称x 与W 正交,记作x W ⊥.例 2.3 设{}R y x y x W ∈=,)0,,(1,{}R z z W ∈=),0,0(2 ,则容易得1W 和2W 均为3R 的子空间,且 12W W ⊥.定理2.3 设s W W W ,,,21 是欧氏空间V 的子空间,且两两正交,则s W W W +++ 21是直和.证明 设),,2,1(s i W i i =∈α且 o s =+++ααα 21,分别用iα在上式两边作内积,得0),(=i i αα,即),,2,1(s i oi ==α,即s W W W +++ 21是直和.定义 2.6 设1W 和2W 是欧氏空间V 的两个子空间,若21W W ⊥,且V W W =+21,则称1W 与2W 互为正交补,记作⊥=21W W 或12W W V ⊕=. 定理 2.4 欧氏空间V 的任一个子空间W ,都存在唯一的正交补W ⊥.证明 先证存在性.设m εεε,,,21 是子空间W 的一个标准正交基,则可以扩充为V 的一个标准正交基:n m m εεεεε,,,,,1,21 +,显然:),,(1n m L W εε +⊥=.再证唯一性.设1W 与2W 都是W 的正交补,则1W W V ⊕=,2W W V ⊕=,令任意的o x W x ≠∈,2,则 W x ∉,且W y y x ∈∀=,0),(,所以1W x ∈ ,即12W W ⊂.同理有 21W W ⊂.因此得 12W W =.定理2.4既证明了欧氏空间中任意子空间的正交补是存在且唯一的,又给出了正交补的计算方法.另外,V 中的任一向量x 都可唯一地分解为⊥∈∈+=W z W y z y x ,,.由此可引进正投影的概念.定义2.7 设x 是欧氏空间V 中任意的一个元素(向量),W 是V 的一个子空间,且x 被分解为.,,⊥∈∈+=W z W y z y x ,则称y 元素(向量)为x 元素(向量)在子空间W 上的正投影(又称内投影).显然W W =⊥⊥)(,故z 为元素(向量)x 在⊥W 上的正投影.例2.4 设 {}R x x W ∈=)0,0,(,则W 是3R 的一个子空间,且它的正交补为{}R z y z y W ∈=⊥,),,0(.若3),,(R c b a ∈=α,α在W 上的正投影为)0,0,(a ,在⊥W 上的正投影为),,0(c b .§3 实内积空间的同构定义3.1 设V 与U 是两个欧氏空间,若存在V 到U 的一个一一对应σ,使(1) U V ∈∈∀+=+)(),(;,),()()(βσασβαβσασβασ(2) U k R k V k k ∈∈∀∈∀=)(;,),()(ασαασασ(3) U V ∈∈∀=)(),(;,),,())(),((βσασβαβαβσασ则称σ为V 到U 的一个同构映射,并称欧氏空间V 与U 同构.同构作为欧氏空间的关系与线性空间的同构相同,因此有:同构的有限维欧氏空间必有相同的维数;任意一个n 维欧氏空间均与n R 同构.此外,欧氏空间的同构还具有以下性质:反身性:任意一个欧氏空间V 均与自己同构;对称性:若V 与V '同构,则V '与V 同构;传递性:若V 与V '同构, V '与V ''同构,则V 与V ''同构.事实上,(1) V 到V 的恒等映射是一个同构映射;(2)设σ是V 到V '的同构映射,记1-σ为σ的逆映射,则对V ∈∀βα,有βαβασσβσασσ+=+=+--))(())()((11))(())((11βσσασσ--+=, ))(())(())((111ασσαασσασσ---===k k k k ,))(),((),()))(()),(((11βσασβαβσσασσ==--,即1-σ是V '到V 的一个同构映射.(3) 传递性的证明留作习题.§4 正交变换与对称变换1 正交变换与正交矩阵定义 4.1 设V 是一个欧氏空间,σ是V 上的线性变换,如果对任意的元素(向量)V ∈βα,,均有),())(),((βαβσασ=成立,则称σ是V 上的一个正交变换.例如,恒等变换是一个正交变换,坐标平面上的旋转变换也是一个正交变换.正交变换可以从以下几个方面来刻画.定理4.1 设σ是欧氏空间V 上的一个线性变换,则下列命题是等价的:(1) σ是一个正交变换;(2) 保持元素(向量)的长度不变,即对任意的V ∈α,有αασ=)(;(3) V 中的任意一个标准正交基在下的象仍是一个标准正交基;(4) 在任一个标准正交基下的矩阵是正交矩阵,即E A A AA T T ==.证明 采用循环证法。

第二章内积空间

第二章内积空间
y1 n n 则 (α , β ) = ∑∑ xi y j (α i ,α j ) = (x1 , x2 ,L , xn )A y2 = x H Ay M i =1 j =1 y n
定理4:设 ε1 , ε 2 ,L, ε n 与 η1 ,η 2 ,L,η n 为n维酉空间V的基,它们 定理4 维酉空间V的基, 的度量矩阵为A和B,,C是 ε1 , ε 2 ,L, ε n 到 η1 ,η 2 ,L,η n 的过渡 的度量矩阵为A ,,C
(α ,α )
.
∀α ≠ 0 ∈ V ,

α α
为α 的规范化单位向量
定义 α , β 的距离为 d (α , β ) = α − β 2、向量长度的性质
(1) α ≥ 0, 当且仅当 α = 0时等式成立; 时等式成立; (2) kα = k α ;
引理(Chauchy不等式) 引理(Chauchy不等式)设V是酉(欧氏)空间, ∀α , β ∈ V , 不等式 是酉(欧氏)空间, 向量的长度满足 证明: 证明:
y1 n n y2 (α , β ) = ∑∑ xi y j (α i ,α j ) = (x1 , x2 ,L, xn )A = xT Ay M i =1 j =1 y n

即抽象的向量的内积可通过他们在基下的坐标及度量矩阵 的双线性函数来计算。 的双线性函数来计算。 定理2:设 ε1 , ε 2 ,L, ε n 与 η1 ,η 2 ,L,η n 为n维欧氏空间V的基,它们 定理2 维欧氏空间V的基, 的度量矩阵为A ,,C 的度量矩阵为A和B,,C是 ε1 , ε 2 ,L, ε n 到 η1 ,η 2 ,L,η n 的过渡 证明详见P26-27) (证明详见 ) 矩阵,则 B = C AC 矩阵, 即同一欧氏空间不同基的度量矩阵是相合矩阵。 欧氏空间不同基的度量矩阵是相合矩阵 即同一欧氏空间不同基的度量矩阵是相合矩阵。

内积空间的标准正交基

内积空间的标准正交基
线性无关性的证明
线性无关性的证明可以通过构造一个行列式来证明,该行列式的值等于所有线性组合系数的乘积,如 果该行列式的值为零,则说明存在一组不全为零的实数,使得线性组合等于零向量,从而证明了线性 无关性。
03 标准正交基的构造方法
正交化过程
01
选取一组线性无关的向量作为初始基底。
02
通过正交化过程,将这组线性无关的向量转化为正交向量组。
内积空间的标准正交基
目录
• 引言 • 标准正交基的性质 • 标准正交基的构造方法 • 标准正交基的应用 • 标准正交基的例子
01 引言
什么是内积空间
交换律
01
x·y=y·x
分配律
02
z·(x+y)=z·x+z·y
非负性
03
x·y≥0
内积空间的标准正交基的定义
• 标准正交基是指由单位向量组成的向量组,这些单位向量两两正交,即它们的点积为0。对于一个内积空间,如果存在一组 线性无关的向量,它们两两正交并且模长为1,那么这组向量就构成了该内积空间的标准正交基。
VS
描述
这n个基向量是正交的,即它们的内积都为 0。同时,它们的模都为1,即对于每一个 基向量,其各分量平方和都等于1。
THANKS FOR WATCHING
感谢您的观看
正交性
两两正交
标准正交基中的向量两两正交,即对于任意两个不同的向量$e_i$和$e_j$,如果$i neq j$,则$e_i cdot e_j = 0$。
正交化过程
在构造标准正交基时,需要先选择一组线性无关的向量,然后通过正交化过程将 它们转化为正交基。
基的唯一性
唯一性定理
对于同一个内积空间,如果存在两个不同的标准正交基,则 这两个基之间可以通过一个可逆线性变换相互转化。

内积空间的正交基与正交投影

内积空间的正交基与正交投影

内积空间的正交基与正交投影内积空间是数学中一个重要的概念,它在向量空间中定义了向量之间的内积运算。

在内积空间中,有两个重要的概念:正交基和正交投影。

本文将介绍内积空间的概念,探讨正交基的性质以及正交投影的应用。

一、内积空间的定义和性质内积空间是一个向量空间,其中定义了向量间的内积运算。

一个内积空间必须满足以下条件:1. 正定性:对于任意非零向量x,有内积⟨x, x⟩大于0,并且仅当x 为零向量时等于0。

2. 线性性:对于任意向量x、y和标量a,有内积的线性性质:⟨ax + y, z⟩ = a⟨x, z⟩ + ⟨y, z⟩。

3. 对称性:对于任意向量x和y,有内积的对称性质:⟨x, y⟩ = ⟨y, x⟩。

内积空间的一个重要性质是Cauchy-Schwarz不等式,它表明对于任意向量x和y,有|⟨x, y⟩| ≤ ∥x∥∥y∥,其中∥x∥和∥y∥分别表示向量x和y的范数。

二、正交基的定义和性质在内积空间中,如果一个向量组中的向量两两正交且非零,那么这个向量组称为正交基。

正交基的一个重要性质是,内积空间中的任意向量都可以由正交基线性表示。

假设V是一个n维内积空间,{v_1, v_2, ..., v_n}是V的一个正交基,那么对于任意向量x ∈ V,可以将x表示为线性组合的形式:x =c_1v_1 + c_2v_2 + ... + c_nv_n,其中c_1, c_2, ..., c_n为常数。

三、正交投影的定义和应用正交投影是内积空间中的一个重要应用,它可以将一个向量投影到另一个向量上,得到其在后者上的正交投影。

设V是一个内积空间,W是V的一个子空间,对于任意向量x ∈V,将其正交投影到W上的向量记作Proj_W(x)。

那么Proj_W(x)满足以下两个条件:1. Proj_W(x) ∈ W,即正交投影的结果在子空间W中。

2. 向量x - Proj_W(x)与W上的所有向量正交,即内积⟨x -Proj_W(x), w⟩ = 0,对于任意w ∈ W成立。

第3讲 实内积空间

第3讲 实内积空间

第3讲 实内积空间内容:1. 实内积空间2. 正交基及正交补与正交投影3. 内积空间的同构4. 正交变换与对称变换在线性空间中,元素(向量)之间的运算仅限于元素(向量)的线性运算.但是,如果以向量作为线性空间的一个模型,则会发现向量的度量(即长度)与向量间的位置关系在线性空间的理论中没有得到反映,而这些性质在许多实际问题中却是很关键的.因此,将在抽象的线性空间中引进内积运算,导出内积空间,并讨论正交变换与正交矩阵及对称变换与对称矩阵.§1 内积空间在解析几何中,向量的长度与夹角等度量性质都可以通过向量的数量积来表示,而向量的数量积具有以下的代数性质:对称性),(),(αββα=;可加性 ),(),(),(γβγαγβα+=+;齐次性R k k k ∈∀=),,(),(βαβα;非负性0),(≥αα,当且仅当0=α时,0),(=αα.以数量积为基础,向量的长度与夹角可表示为: ),(ααα=,βαβαβα⋅>=<),(,cos .可见数量积的概念蕴涵着长度与夹角的概念,将该概念推广至抽象的线性空间.定义1.1 设V 是实线性空间,若对于V 中任意两个元素(向量)α和β,总能对应唯一的实数,记作),(βα,且满足以下的性质:(1) 对称性 ),(),(αββα=(2) 可加性 ),(),(),(γβγαγβα+=+(3) 齐次性 R k k k ∈∀=),,(),(βαβα(4) 非负性 0),(≥αα,当且仅当0=α时,0),(=αα. 则称该实数是V 中向量α和β的内积.称内积为实数的实线性空间V 为欧几里得(Euclid)空间,简称为欧氏空间.称定义了内积的线性空间为内积空间.例 1.1 在n 维向量空间n R 中,任意两个向量:T n x x x ),,,(21 =α,T n y y y ),,,(21 =β,若规定:βαβαT nk k k n n y x y x y x y x ==+++=∑=12211),( ,则容易验证,这符合内积的定义,是n R 中向量α和β的内积.另外,若规定:∑==nk k k y kx 1),(βα,0>k ,同样可验证,这也是n R 中向量α和β的内积.由此可见,在同一个实线性空间的元素之间,可以定义不同的内积,即内积不是唯一的.从而,同一个实线性空间在不同内积下构成不同的欧氏空间.例 1.2 在[]b a ,上连续的实函数的实线性空间[]b a C ,中,对任意函数[]b a C x g x f ,)(),(∈,定义:⎰=ba dx x g x f g f )()(),(,则可以证明这是[]b a C ,上)(x f 与)(x g 的一种内积.欧氏空间V 中的内积具有如下的性质:(1) V o o ∈∀==ααα,0),(),((2) R k V k k ∈∀∈∀=,,),,(),(βαβαβα(3) V ∈∀+=+γβαγαβαγβα,,),,(),(),((4) ),(),(1111∑∑∑∑=====n j ni j i j i n i n j j j i i y x l k y l x k事实上,由定义1.1有:0),(0),0(),(===αβαβαo ;),(),(),(),(βααβαββαk k k k ===;),(),(),(),(),(),(γαβααγαβαγβγβα+=+=+=+;因此,性质(1)至(3)成立,再结合数学归纳法容易验证性质(4)也成立.定义1.2 设α是欧氏空间V 中的任一元素(向量),则非负实数),(αα称为元素(向量)α的长度或模,记作α.称长度为1的元素(向量)称为单位元素(向量),零元素(向量)的长度为0.由定义1.2易知,元素(向量)的长度具有下列性质: (1) V R k k k ∈∀∈∀⋅=ααα,,(2) 当o ≠α时,,11=αα即αα1是一个单位元素(向量).通常称此为把非零元素(向量)α单位化.定理1.1 (Cauchy-Schwarz 不等式). 设βα,是欧氏空间V 中的任意两个元素(向量),则不等式βαβα⋅≤),(,对V ∈∀βα,均成立,并且当且仅当α与β线性相关时,等号成立.证明:当α与β至少有一个是零元素(向量)时,结论显然成立.现在设βα,均为非零元素(向量),则)),(),(,),(),((ββββααββββαα--[]0),(),(),(2≥-=βββααα, 因此有[]),(),(),(2ββααβα≤, 即βαβα⋅≤),(.而且当且仅当ββββαα),(),(=,即α与β线性相关时,等号成立.定义1.3 设x 与y 是欧氏空间V 中的任意两个元素(向量),则称yx y x ),(arccos =θ为x 与y 的夹角,记作,,><y x 即 ),0(,),(arccos ,πθ≤><≤=>=<y x yx y x y x . 例 1.3 试证明欧氏空间V 中成立三角不等式V y x y x y x ∈∀+≤+,,.证明 因),(2y x y x y x ++=+),(),(2),(y y y x x x ++=,由Schwarz Cauchy -不等式,有 222222)(2),(2y x y y x x y y x x y x +=++≤++=+, 即有 y x y x +≤+ .§2 正交基及正交补与正交投影1 正交基定义 2.1 设y x ,是欧氏空间V 中的任意两个元素(向量),如果0),(=y x ,则称元素(向量)x 与y 正交,记作.y x ⊥.由定义2.1易知,零元素(向量)与任何元素(向量)均正交.若,o x ≠由于,0),(>x x 所以非零元素(向量)不会与自身正交,即只有零元素(向量)才与自己正交.例 2.1 在2R 中,对于任意两个向量x 与y 的内积,定义:(1)y x y x T =1),(;(2) Ay x y x T =),(,其中⎥⎦⎤⎢⎣⎡=2111A .由此所得的两个欧氏空间分别记为21R 与22R ,试判断向量T x )1,1(0=与T y )1,1(0-=在21R 与22R 中是否正交?解 由于 011)1,1(),(100=⎪⎪⎭⎫⎝⎛-=y x ;01112111)1,1(),(200≠=⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=y x . 故向量x 与y 在21R 中正交,在22R 中不正交.说明:两元素(向量)正交与否由所在空间的内积确定. 此外,在欧氏空间V 中也有勾股定理,即当y x ⊥时,有 222y x y x +=+.可将其推广至多个元素(向量),即当m ααα,,,21 两两正交时,有22221221m m αααααα+++=+++ .定义2.2 欧氏空间V 中一组非零元素(向量),若两两正交,则称其为一个正交元素(向量)组.定理 2.1 若m ααα,,,21 是欧氏空间V 中一个正交元素(向量)组,则m ααα,,,21 线性无关.证明 设有一组数m k k k ,,,21 ,使o k k k m m =+++ααα 2211,在上式两边分别用),2,1(m i i =α作内积,可得),,2,1(,0),(),(),(21m i k k k i m m i i ==+++αααααα, 由于j i ≠时,0),(=j i αα故可得),,2,1(0),(m i k i i i ==αα,又 0≠i α时, 0),(>i i αα, 从而有),2,1(0m i k i ==,所以m ααα,,,21 线性无关.推论:在n 维欧氏空间中,正交元素(向量)组所含元素(向量)的个数不会超过n 个.定义2.3 在n 维欧氏空间V 中,由n 个元素(向量)构成的正交元素(向量)组称为V 的正交基;由单位元素(向量)组成的正交基叫作标准正交基.定理 2.2 (Schmidt 正交化方法) 设n ααα,,,21 是n 维欧氏空间V 的任意一个基,则总可将其进行适当运算后化为V 的一个正交基,进而将其化为一个标准正交基.证明 因为m ααα,,,21 线性无关,所以),,2,1(0n i i =≠α. 首先, 取11αβ=;其次, 令1111222),(),(ββββααβ-=,则可得两个正交元素(向量)21,ββ;再次, 令222231111333),(),(),(),(ββββαββββααβ--=,则得到三个正交元素(向量).,,321βββ依此进行下去,一般有),,3,2(),(),(),(),(),(),(111122221111n i i i i i i i i i i =----=----ββββαββββαββββααβ 这样得到V 的一个正交基.再将其单位化,令 ),,2,1(1n i i i i ==ββγ,则可得V 的一组标准正交基n γγγ,,,21 .例2.1 在4R 中,将基T )0,0,1,1(1=α,T )0,1,0,1(2=α,T )1,0,0,1(3-=α, T )1,1,1,1(4--=α,用Schmidt 正交化方法化为标准正交基.解 先正交化令 ;)0,0,1,1(11T ==αβ ;)0,1,21,21(),(),(1111222T -=-=ββββααβ ;)1,31,31,31(),(),(),(),(222231111333T -=--=ββββαββββααβ T )1,1,1,1(),(),(),(),(),(),(33334222241111444--=---=ββββαββββαββββααβ 再单位化令 T )0,0,21,21(1111==ββγ T)0,62,61,61(1222-==ββγ T )123,121,121,121(1333-==ββγ T )21,21,21,21(1444--==ββγ则 4321,,,γγγγ 就是所要求的标准正交基.例2.2 设n εεε,,,21 是n 维欧氏空间V 的一个标准正交基, n n x x x x εεε+++= 2211,n n y y y y εεε++= 2211,则有),(),(11∑∑===n j j j n i i i y x y x εε∑==n i ii y x 1.在标准正交基下,V 中任意两个元素(向量)的内积等于它们对应坐标的乘积之和.定义2.4 设n εεε,,,21 是n 维欧氏空间V 的一个基,x ,y 在其基下的坐标表示分别为T n x x x x ),,,(21 =,T n y y y y ),,,(21 =,(∑==n i i i x x 1ε,∑==n i i i y y 1ε),则有Gy x y g x y x y x y x T j nj i ij i j j n j i i i n j j j n i i i ====∑∑∑∑======111111),(),(),(εεεε.其中,)(ij g G G =为n 阶方阵,n j i g j i ij ,,2,1,),,( ==εε.称G 为度量矩阵,它为对称可逆矩阵.2 正交补与正交投影定义 2.5 设1W 和2W 是欧氏空间V 的两个子空间,若对任意的21,W y W x ∈∈总有0),(=y x 成立,则称1W 与2W 正交,记作21W W ⊥.若对某个确定的x 及任意的W y ∈,总有0),(=y x 成立,则称x 与W 正交,记作x W ⊥.例 2.3 设{}R y x y x W ∈=,)0,,(1,{}R z z W ∈=),0,0(2 ,则容易得1W 和2W 均为3R 的子空间,且 12W W ⊥.定理2.3 设s W W W ,,,21 是欧氏空间V 的子空间,且两两正交,则s W W W +++ 21是直和.证明 设),,2,1(s i W i i =∈α且 o s =+++ααα 21,分别用iα在上式两边作内积,得0),(=i i αα,即),,2,1(s i oi ==α,即s W W W +++ 21是直和.定义 2.6 设1W 和2W 是欧氏空间V 的两个子空间,若21W W ⊥,且V W W =+21,则称1W 与2W 互为正交补,记作⊥=21W W 或12W W V ⊕=. 定理 2.4 欧氏空间V 的任一个子空间W ,都存在唯一的正交补W ⊥.证明 先证存在性.设m εεε,,,21 是子空间W 的一个标准正交基,则可以扩充为V 的一个标准正交基:n m m εεεεε,,,,,1,21 +,显然:),,(1n m L W εε +⊥=.再证唯一性.设1W 与2W 都是W 的正交补,则1W W V ⊕=,2W W V ⊕=,令任意的o x W x ≠∈,2,则 W x ∉,且W y y x ∈∀=,0),(,所以1W x ∈ ,即12W W ⊂.同理有 21W W ⊂.因此得 12W W =.定理2.4既证明了欧氏空间中任意子空间的正交补是存在且唯一的,又给出了正交补的计算方法.另外,V 中的任一向量x 都可唯一地分解为⊥∈∈+=W z W y z y x ,,.由此可引进正投影的概念.定义2.7 设x 是欧氏空间V 中任意的一个元素(向量),W 是V 的一个子空间,且x 被分解为.,,⊥∈∈+=W z W y z y x ,则称y 元素(向量)为x 元素(向量)在子空间W 上的正投影(又称内投影).显然W W =⊥⊥)(,故z 为元素(向量)x 在⊥W 上的正投影.例2.4 设 {}R x x W ∈=)0,0,(,则W 是3R 的一个子空间,且它的正交补为{}R z y z y W ∈=⊥,),,0(.若3),,(R c b a ∈=α,α在W 上的正投影为)0,0,(a ,在⊥W 上的正投影为),,0(c b .§3 实内积空间的同构定义3.1 设V 与U 是两个欧氏空间,若存在V 到U 的一个一一对应σ,使(1) U V ∈∈∀+=+)(),(;,),()()(βσασβαβσασβασ(2) U k R k V k k ∈∈∀∈∀=)(;,),()(ασαασασ(3) U V ∈∈∀=)(),(;,),,())(),((βσασβαβαβσασ则称σ为V 到U 的一个同构映射,并称欧氏空间V 与U 同构.同构作为欧氏空间的关系与线性空间的同构相同,因此有:同构的有限维欧氏空间必有相同的维数;任意一个n 维欧氏空间均与n R 同构.此外,欧氏空间的同构还具有以下性质:反身性:任意一个欧氏空间V 均与自己同构;对称性:若V 与V '同构,则V '与V 同构;传递性:若V 与V '同构, V '与V ''同构,则V 与V ''同构.事实上,(1) V 到V 的恒等映射是一个同构映射;(2)设σ是V 到V '的同构映射,记1-σ为σ的逆映射,则对V ∈∀βα,有βαβασσβσασσ+=+=+--))(())()((11))(())((11βσσασσ--+=, ))(())(())((111ασσαασσασσ---===k k k k ,))(),((),()))(()),(((11βσασβαβσσασσ==--,即1-σ是V '到V 的一个同构映射.(3) 传递性的证明留作习题.§4 正交变换与对称变换1 正交变换与正交矩阵定义 4.1 设V 是一个欧氏空间,σ是V 上的线性变换,如果对任意的元素(向量)V ∈βα,,均有),())(),((βαβσασ=成立,则称σ是V 上的一个正交变换.例如,恒等变换是一个正交变换,坐标平面上的旋转变换也是一个正交变换.正交变换可以从以下几个方面来刻画.定理4.1 设σ是欧氏空间V 上的一个线性变换,则下列命题是等价的:(1) σ是一个正交变换;(2) 保持元素(向量)的长度不变,即对任意的V ∈α,有αασ=)(;(3) V 中的任意一个标准正交基在下的象仍是一个标准正交基;(4) 在任一个标准正交基下的矩阵是正交矩阵,即E A A AA T T ==.证明 采用循环证法。

数值分析(03)内积空间与内积空间中的正交系

数值分析(03)内积空间与内积空间中的正交系
b a
b
a
f ( x ) dx ) ( g ( x ) dx )
2 a
2
1 2
b
1 2
思考 : ( f , g ) ( x ) f ( x ) g( x )dx 写出Cauchy Schwarz不等式的表达形式.
数值分析
数值分析
用内积范数表示 Schwarz不 等 式 的 形 式 是 ( , )
数值分析
数值分析
由Schwarz不 等 式, 当 , 不 是 零 向 量 时 ( , )

1,

1
( , )

1
定义 V 定义2-15 内 积 空 间 中 任 意 两 个 向 量 和 的 夹 角
arccos
( , )

, 且 [0, ]
x, x
2 2 2 x1 x 2 x n ,
称 x 为 n 维向量 x 的内积范数 .
(2) x R n , A为n阶对称正定矩阵, x的A范数定义为 x
A

xT Ax
i , j 1
xa
i
n
ij
xj
特别,A为n阶对角阵, x的A范数,定义为 x
A

x T Ax
(1) R 中, x , y R ,
n n
( x, y)
x y
i 1 i
n
i
( x i ) ( yi ) x y
i 1 i 1
n
1 2 2
n
1 2 2
(2)C [a , b]中, f ( x ), g( x ) C [a , b]

内积空间中的正交和投影

内积空间中的正交和投影
投影可以用数学表达式表示为$mathbf{P}_{U}(mathbf{a}) = arg min_{mathbf{x} in U} |mathbf{a} mathbf{x}|^{2}$。
投影的性质
投影是非扩张的,即 $|mathbf{P}_{U}(mathbf{a})| leq
|mathbf{a}|$。
正交在解析几何、线性代数和物理等领域中都有广泛的应用,例如在解决物理问题、 图像处理和机器学习等领域中经常需要用到向量的正交。
02
内积空间中的投影
投影的定义
投影是将一个向量从内积空间投影到另一个子空间的过程。具体来说,给定向量$mathbf{a}$和子空间 $U$,投影$mathbf{P}_{U}(mathbf{a})$是满足$mathbf{P}_{U}(mathbf{a}) in U$且使 $mathbf{P}_{U}(mathbf{a}) perp mathbf{u}$的向量,其中$mathbf{u} in U$。
当子空间是超平面时,投影表示将向量投射到超平面 的法线方向上,使向量与超平面的距离最近。
投影在优化和机器学习中有广泛应用,例如在求解约 束优化问题时,可以将目标函数在约束条件下的解看
作是原问题解在约束子空间上的投影。
03
投影和正交的应用
在线性代数中的应用
线性子空间
投影可以将一个向量投射到指定的线性子空间上,通过计算向量的投影,可以得 到向量在子空间上的分量。
内积空间中的正交和投影的重要性
• 正交和投影是内积空间中的重要概念,它们在数学、物理和工程等领域中有着广泛的应用。正交表示两个向量相互垂直, 而投影则表示一个向量在另一个向量上的分量。这些概念在解决实际问题时非常有用,例如在信号处理、图像处理、量子 力学等领域中都有广泛的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x x0 y , x0 M , y M

2.3内积空间中的正交和投影
2.3.1正交性
定义 2.3.1(正交性) 设 X 为内积空间, x, y X , M , N X , ⑴ 若 x, y 0 ,则称
x 与 y 正交,记作
x y;
⑵ 若 y M 都有 x, y 0 ,则称 x 与 M 正交,记作 x M ;
⑶ 若对 x M 和 y N 都有 x, y 0 ,则称

M x x X , x M

定理 2.3.3(勾股定理)若 x1 , x2 ,, xn 为内积 空间 X 中彼此正交的矢量组,则有
n 2 n
x
k 1
k
xk
k 1
2
2.3.2 正交投影 定义 2.3.4(正交投影)设 M 为内积空间 X 的线 性子空间, x X ,如果 x0 M , y M ,使得
d x, M inf x y
yM
则必存在 x0 M ,使得
d x, M x x0
引理 2.3.7 若 M 是希尔伯特空间 X 的一个线性闭子 空间, x M , x0 M ,使得
x x0 d x, M
则有 x x0 M
定理 2.3.8 设 M 是希尔伯特空间 X 的线性闭子空间, 则 X 中的元素 x 在 M 中存在唯一的正交投影 x0 ,即有
x x0 y
则称 x0 是 x 在 M 上的正交投影,上式也称作 x 的正交 分解。
定理 2.3.5 (正交投影的唯一性) 设 M 为内积空间 X 的线性 子空间, x X ,若 x 在 M 上有正交投影,则该投影是唯一的。
引理 2.3.6 若 M 是希尔伯特空间 X 的一个线性闭子空间, x X ,定义 x 到 M 的距离为
M 与 N 正交,记作 M N ;
⑷ 设 X 为线性空间, M , N 是 X 的两个子空间, 且 M N 。若对于某个 x X 可唯一地表示成
Hale Waihona Puke x y z,yM ,
zN
则称 X 为 M , N 的正交和,并表示成 X M N 。
定 义 2.3.2 ( 正 交 补 ) 设 X 为 内 积 空 间 , M X ,称 X 中所有与 M 正交的矢量组成之集合 为 M 的正交补,记作 M ,即
相关文档
最新文档