变化的鱼(一)教学设计

合集下载

八年级数学 《变化的鱼》第一课时教学设计

八年级数学      《变化的鱼》第一课时教学设计

《变化的鱼》第一课时教学设计一教材分析:本节是在学习了平面直角坐标系后的巩固与应用;是本章的重点与难点;将为以后的学习函数知识打下基础。

本课时探究和掌握图形坐标的变化引起图形的平移.伸长.压缩之间的变化规律。

二学情分析:1基于学生抽象想象力较差,需要适当设计一些实际操作环节。

2基于学生独立探索与归纳能力有限,应设计自主实验与合作探究相结合。

三学习目标:1知识目标①经历图形坐标变化与图形的平移.伸长.压缩之间关系的探索过程。

发展学生形象思想能力,数形结合意识。

②;在同一直角坐标系中感受图形上点的坐标变化与图形变化之间的关系。

2:能力目标:经历图形坐标变化与图形变化之间关系的探索过程,培养学生的探索能力和动手能力.发展学生探索中的数形相结合的意识。

3:情感目标:①丰富学生多已具实空间及图形的认识,建立初步的空虚意识。

发展形象思维.。

②:通过学生亲自“鱼”变化的研究.激发其对学习的耐心与求知欲四教学环节设计:教师活动学生活动设计意图给出一组“有序数对”要求学生依次描点连线①巡视学生操作过程,展示优秀作品并搜集小组的探索结论②幻灯展示“鱼”的平移变化过程巡视.协助学困生完成描点连线过程并展示优秀作品收集各小组探索结论幻灯展示“鱼”的伸长.压缩变化过程与学生合作总结本节课的收获收集学生本节课的学情自主完成课前小测并小组内互改在学案中依次描点连线分小组完成活动一探索“鱼”的平移与坐标变化关系合作完成活动二探索“鱼”的伸长.压缩与坐标变化关系全班合作总结本节课的收获独立完成课堂检测复习点与有序数对的一一对应关系为探索“鱼”的平移作准备培养学生探索能力动手能力,交流能力学生进行美感教育和培养学生空间观进一步培养学生探索能力,动手能力,交流能力对本节课重点作总结难点,做方法的指导检测学生对本节知识的情况与探索知识。

5.3 变化的鱼(第一课时) 课堂教学设计

5.3 变化的鱼(第一课时) 课堂教学设计

与左图三角形相比,右图中的三角形发生了怎样变化。 右图中的直角三角形顶点的坐标发生怎样变化。
谈谈收获
学习目标 预 习 展 示 互 动 生成 达 标
拓 展 谈谈收获
• 对自己说,你有什么收获! • 对教师说,你有什么疑惑! • 对同学说,你有什么提示!
4
3
2 1 0 –1 –2 –3 –4 1 2 3 4
与左图三角形相比,右图中的三角形发生了怎样变化。 右图中的直角三角形顶点的坐标发生怎样变化。
4
3 2 1 –3 –2 –1 0 –1 –2 –3 –4 1 2 3 4 –4 –3 –2 –1
4
3
2 1 0 –1 –2 –3 –4 1 2 3 4
先想一想, 再做一做
新坐标:(-2,0),(3,4),(1,0),(3,1), (3,-1),(1,0),(2,-2),(-2,0).
Y 4 3
2 1
新图形
O -1 -2
1
2
3
原图
4
5
6
7
8
9
10
X
-3 与原图相比,相当于原图向左平移了2格 -4
3、将上面练习中的鱼的各“顶点” (0, 0)、 (5, 4), (3, 0), (5, 1), (5, -1), (3, 0), (4, -2), (0, 0)的横坐标保持不变, 纵坐标分别加3, 再 将所得的点用线段依次连接起来, 所得的图 案与原来的图案相比有什么变化?
先想一想,再 与同伴交流
新坐标:(2,3),(7,7),(5,3),(7,4), (7,2),(5,3),(6,1),(2,3).
Y 4 3 2 1 O -1 1
原图 新图形
2
3

变化的鱼教案

变化的鱼教案

《变化的“鱼”》(第一课时)
义务教育课程标准实验教科书
(北师大版)八年级上册第五章第三节《变化的“鱼”》(P162--166)
一、教学目标
(1)知识技能:在同一直角坐标系中,感受图形上点的坐标变化与图形平移、压缩、拉伸等变换之间的关系。

(2)数学思考:使学生认识到平面直角坐标系是数与形之间的桥梁,感受数与形的相互关系,初步建立空间观念。

(3)问题解决:通过探究,归纳出图形上点的坐标变化与图形变换之间的变化规律,积累数学活动经验,发展学生的形象思维能力和数形结合意识。

(4)情感与态度:通过对有趣的图形—“鱼”的研究,感受图形的平移、伸缩的变化之美,增强学生学习数学的兴趣。

二、.教学重、难点
重点:探索并掌握图形点的坐标变化与图形的平移、伸缩等变换之间的关系。

难点:在探究学习过程中,由坐标的变化探索新旧图形之间的变化规律。

三、教法与学法
教法:目标教学,小组合作,师生互动探究。

学法:自主探究,合作交流研讨式
四、教学过程
图1
活动2:亲身经历初探新知
问题与情境
)将图1的“鱼”的顶点纵坐标保持不变,横
坐标分别加3,所得各点坐标分别是什么?再将
得到的点用线段依次连接起来,并观察所得的“鱼”与原来的“鱼”相比有什么变化?
附:板书设计§5.3.1 变化的“鱼”
《变化的“鱼”》(第一课时)义务教育课程标准实验教科书(北师大版)
八年级上册第五章第三节《变化的“鱼”》(P162--166)
平顶山市二十八中
张志明
2003-6。

变化的鱼-1

变化的鱼-1

北师大版八年级上册第五章第三节第一课时教案变化的鱼《变化的鱼》这一节课是义务教育课程标准实验教科书北师大版八年级上册第五章《位置的确定》中第三节的第一课时,现就这节课的教学内容、目标、方法、教学过程作以下说明。

一、教学内容及其地位新教材的一个重要特点就是具有高度的拓展性、开发性和探索性。

《变化的鱼》这节课也同样具有这一特征,它将图形坐标的变化与图形形状、大小、方向及位置的变化之间的关系巧妙地结合在一起。

通过《变化的鱼》教学让学生亲身体验数学,从而形成数学的思想方法及数学观念和基本的数学素质。

让学生经历图形坐标变化与图形的平移、伸缩、翻折、旋转之间关系的探索过程,发展学生的形象思维能力和数形结合意识,感受到图形坐标的变化决定着图形的变化(平移、伸缩、翻折),图形的变化又影响着图形坐标的变化这种辨证统一的思想。

《变化的鱼》即体现几何图形的现实性、趣味性,又不失数学内容的深刻性。

二、教学目标[知识目标] 在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、轴对称、伸长、压缩之间的关系。

[能力目标] 经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。

[情感目标] 通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、总结能力,加强对数形结合的理解和认识。

三、教法与学法分析1、为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,在教学中启发、诱导贯穿教学始终,通过先进的多媒体课件教学,激发学生的学习动机,唤起学生的求知欲望,促使学生动手、动脑、动嘴,积极参与教学全过程,使学生在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。

2、借助多媒体辅助教学,通过互动的参与,提高学生学习数学的兴趣,利用先进的教学手段,让学生实际动手操作,总结出结论,主动愉快地获取新知识,提高教与学的效率。

3_变化的鱼_第一课时

3_变化的鱼_第一课时

课题:变化的鱼第一课时教学目标:【知识目标】:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。

2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系。

【能力目标】:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。

2、通过图形的平移,轴对称等,培养学生的探索能力。

【情感目标】1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。

教学难点:由坐标的变化探索新旧图形之间的变化。

教学方法:导学法教学准备:图5—15挂图一幅教学过程设计:一、创设问题情境,弓I入新课『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。

如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。

坐标是(0, 0),(5, 4),(3, 0),(5, 1),(5,—1),(3, 0),(4,—2),(0, 0)。

『师』:你们画出的图形和我这里的图形(挂图)是否相同?『生』:相同。

『师』:观察所得的图形,你们决定它像什么?『生』:像“鱼”。

变化的鱼(一)

变化的鱼(一)

班级:姓名:学习目标:在同一直角坐标系中,经历图形上点的坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,了解坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化之后,图形的变化规律。

学习重点:经历图形坐标变化与图形的平移、伸长、压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。

学习难点:由坐标的变化探索新旧图形之间的变化。

学习准备:准备一张方格纸学习过程:一、前置准备:(请注意下面画图的笔的颜色)拿出方格纸,并在方格纸上建立直角坐标系,根据以下点的坐标在纸上找到相应的点,并依次用铅笔线段将这些点连接起来。

坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

二、探究新知:1、探究一:(纵坐标不变,横坐标变化)将上图中的点做以下变化:(1)纵坐标保持不变,横坐标分别加3。

变化后的坐标为:再描点、将所得的点用红色线段依次连接起来。

所得的图案与原来的图案相比有什么变化?议一议:纵坐标保持不变,横坐标分别加 -2,所得的图案与原来的图案相比有什么变化呢?归纳:1. 纵坐标不变,横坐标分别增加(减少)a个单位时,图形平移 a个单位;2、探究二:(横坐标不变,纵坐标变化和横、纵坐标都变化)将上图中的点做以下变化:(用不同颜色笔区分下图) (1)横坐标保持不变,纵坐标分别加3。

变化后的坐标为:描点、再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?议一议:横坐标保持不变,纵坐标分别加 -1,所得的图案与原来的图案相比有什么变化呢?(3)横坐标分别加2,纵坐标分别加3。

变化后的坐标为:描点,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?归纳:1.横坐标不变,纵坐标分别增加(减少) a 个单位时,图形 平移a 个单位; 2、当横坐标分别增加(减少) a 个单位、纵坐标分别增加(减少)b 个单位时,原图案先向 平移a 个单位,再向 平移b 个单位;3、探究三:(横、纵坐标的倍数变化)(1)纵坐标保持不变,横坐标分别变成原来的2倍,变化后的坐标为:在下图描点、再将所得的点用黑色线段依次连接起来,我会发现:当纵坐标保持不变,横坐标分别变成原来的2倍,原图案被 向 为原来的2倍。

八年级数学教案变化的鱼

八年级数学教案变化的鱼

八年级数学教案《变化的鱼》一、教学目标:1. 知识与技能:(1)让学生了解和掌握鱼群问题的基本概念和原理;(2)培养学生运用坐标系和函数思想解决实际问题的能力。

2. 过程与方法:(1)通过观察、分析和讨论,培养学生合作探究的能力;(2)利用现代信息技术,如计算机软件,进行图形绘制和分析。

3. 情感态度与价值观:(1)培养学生对数学美的感受和欣赏能力;(2)培养学生勇于探索、创新的精神。

二、教学重点与难点:1. 教学重点:(1)鱼群问题的基本概念和原理;(2)坐标系和函数思想在鱼群问题中的应用。

2. 教学难点:(1)鱼群问题的建模和求解;(2)利用计算机软件进行图形绘制和分析。

三、教学准备:1. 教师准备:(1)熟悉鱼群问题的相关知识和方法;(2)掌握现代信息技术,如计算机软件的使用。

2. 学生准备:(1)掌握坐标系和函数的基本知识;(2)具备一定的数学思维能力。

四、教学过程:1. 导入:通过展示一些实际的鱼群图片,引导学生关注鱼群问题的实际意义,激发学生的学习兴趣。

2. 新课导入:(1)介绍鱼群问题的基本概念和原理;(2)讲解坐标系和函数思想在鱼群问题中的应用。

3. 案例分析:(1)给出一个具体的鱼群问题案例;(2)引导学生运用坐标系和函数思想进行分析和解决。

4. 实践操作:(1)让学生利用计算机软件,如几何画板,绘制鱼群问题的图形;(2)引导学生通过观察和分析图形,总结规律和结论。

5. 总结提升:(1)对本节课的内容进行总结;(2)强调鱼群问题在实际生活中的应用价值。

五、作业布置:1. 完成课后练习,巩固所学知识;2. 结合生活实际,找一个鱼群问题的案例,下节课进行分享。

六、教学反思:教师需对整个教学过程进行反思,包括:1. 学生对鱼群问题的理解和掌握程度;2. 学生在解决实际问题时,坐标系和函数思想的运用情况;3. 学生在实践操作中,对现代信息技术(如计算机软件)的掌握和运用程度;4. 教学方法和教学内容的适用性,是否需要调整。

变化的鱼1学案

变化的鱼1学案

变化的鱼(一)主备人:王军 审核人: 姓名 班级学习目标:1.经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。

2.在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系。

学习重点:经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。

学习难点:由坐标的变化探索新旧图形之间的变化。

预习导学:图案平移1、动手画 1)在右边的平面直角坐标系中,依次描出下列 各点:(0,0),(5,4),(3,0),(5,1), (5,-1),(3,0),(4,-2),(0,0)。

再用线段顺次连结各点,得到一个图形象______。

2)上述各点的纵坐标不变,将横坐标分别加5 得到各个点的坐标分别是: _ , 描出这几个点,再用线段顺次连接起来,这 样得到的图形与原来的图形有什么变化? 先猜一猜,再动手画。

答:____________________________3)1)中的各点的横坐标不变,纵坐标分别加3得到各个点的坐标分别是: _ ,描出这几个点,再用线段顺次连接起来(仍在上图画),这样得到的图形与原来的图形有什么变化?先猜一猜,再动手画。

答:____________________________◇根据第3题2)、3),大胆猜想:1)若将一个图形各点的横坐标都加上3个单位(纵坐标不变),则图形会向 平移 单位。

2)若将一个图形各点的纵坐标都减去6学习研讨:图案拉长(或压缩)1各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

再用线段顺次连结各点,得到一个图形象______。

2)上述各点的纵坐标不变,横坐标分别变为原 来的2倍,得到各个点的坐标分别是: _ ,描出这几个点,再用线段顺次连接起来,这 样得到的图形与原来的图形有什么变化? 先猜一猜,再动手画。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章位置的确定3.变化的鱼(一)西安高新第一中学刘占权一、学生起点分析学生的知识技能基础:学生已学习了运用多种方法确定物体的位置,使学生感受到了丰富的确定位置的现实背景;系统学习了平面直角坐标系的基本概念,能在平面直角坐标系中准确地表示物体的位置,清楚地认识了点和坐标之间的对应关系;能确定点的坐标及根据坐标描点、进而连线形成图形。

学生的活动经验基础:学生有了一定的合作学习的基础,有了一定的学习能力,教学中要安排一定的合作交流与自主学习的机会,加强学生之间的交流。

二、学习任务分析本节课学生通过“变化的鱼”这样一个趣味性较强的话题,深切感受图形坐标的变化与图形形状的变化之间的密切关系,也进一步加深对“数形结合思想”的认识.具体的教学目标如下:【知识目标】:1.经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。

2.在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系。

【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“变化的鱼”,让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。

教学难点:由坐标的变化探索新旧图形之间的变化。

教学方法:引导发现法三、 教学过程设计本节课设计了六个教学环节:○1创设情境;○2探究新知;○3归纳结论;○4练习提高;○5课堂小结;○6布置作业第一环节 创设问题情境,引入新课『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。

如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。

坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

『师』:你们画出的图形和我这里的图形(挂图)是否相同?『生』:相同。

『师』:观察所得的图形,你们觉得它像什么?『生』:像“鱼”。

『师』:鱼是营养价值极高的食物,大家肯定愿意吃鱼,但上面的这条鱼太小了,下面我们把坐标适当地作些变化,这条鱼就能变大或变胖,即变化的鱼。

(板书课题)第二环节 探究新知:例1 将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0), (4,-2),(0,0)做以下变化: (1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?『师』:先根据题意把变化前后的坐标作一对比。

如下:(1)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)-2-1O 14321xy23456(0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0)(2)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0) (3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2),(3,0) 根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来。

你们画出的图形与下面的图形相同吗?『生』:相同。

『师』:这个图形与原来的图形相比有什么变化呢?『生』:比原来的鱼长了。

『师』:将各点用线段依次连接起来,所得图案与原图案相比,整条鱼横向拉长为原来的的2倍。

即鱼变长了。

(师选一生的第(2)题的图对比)『师』:大家的图形和他画的是否相同? 『生』:相同。

『师』变胖了? 『生』:没变。

『师』不变,整条鱼向右平移了3个长度单位。

小结:从上面的两种变化情况来看,加3,纵坐标不变时,整个图案向右平移了3当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的2倍。

这两种情况都是横坐标变化,纵坐标不变,图形是被拉长或向右移动,当纵坐标发生变化,横坐标不变时,鱼会怎样变化呢?例2 将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化?(2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化?(指导学生先做第(1)题:描述坐标的变化,再画图)『师』:图形应变成什么图形?-4-3-2-1O 14321xy 2345657891011-4-3-2-1O 14321xy2345657891011-4-3-2-1O 14321xy2345657891011432y 5678『生』:图形和原来图形相比,好像鱼沿x 轴翻了个身。

『师』:是的,所得的图案与原图案关于横轴成轴对称。

(指导学生做第(2)题,方法同上)『师』:图形应变成什么样了? 『生』:所得的图案与原图案相比,形状不变、大小放大了一倍。

『师』:即鱼长大长胖了。

3. 分小组讨论:当坐标如何变化时,鱼就长大了;什么情况下,鱼就向右移动了;什么情况下,鱼就翻身了;什么情况下,鱼既长长又长胖。

『生』:(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。

(2)当横坐标变为原来的2倍,纵坐标不变时,鱼长长了,没胖。

(3)当横坐标不变,纵坐标分别乘以-1时,鱼翻身了,即后来的鱼和原来的鱼关于x 轴对称。

(4)当横、纵坐标分别变成原来的2倍时,鱼既长长又长胖了。

『师』:当坐标如何变化时,鱼就长胖了?当坐标如何变化时,鱼就关于原点对称了?当坐标如何变化时,鱼就向上移动了?当坐标如何变化时,鱼就关于y 轴成轴对称?-4-3-2-1O14321xy 234567567-1-2-3-4-5-4-3-2-1O14321xy 234567567-1-2-3-4-5-4-3-2-1O14321xy 234567567-1-2-3-4-5『师』:以上我们对不同的情况进行了探索整理,也找到了规律,在以后的学习中大家要多思考,找规律。

这样理解得深,学的知识比较牢固。

第三环节 归纳结论从上面的两种变化情况来看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的1432y 5672倍。

(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。

(2)当横坐标变为原来的2倍,纵坐标不变时,鱼长长了,没胖。

(3)当横坐标不变,纵坐标分别乘以-1时,鱼翻身了,即后来的鱼和原来的鱼关于x轴对称。

(4)当横、纵坐标分别变成原来的2倍时,鱼既长长又长胖了。

第四环节练习提高(1)将右图中的各个点的纵坐标不变,横坐标都乘-1,与原图案相比,所得的图案有什么变化?(2)将右图中的各个点的横坐标不变,纵坐标都乘-1,与原图案相比,所得的图案有什么变化?(3)将上图中各个点的横坐标都乘-2,纵坐标都乘-2,与原图形相比,所得的图案有什么变化?第五环节课堂小结平移:1.纵坐标不变,横坐标分别增加(减少)a个单位时,图形平移 a个单位;2.横坐标不变,纵坐标分别增加(减少) a个单位时,图形平移a个单位;缩放:1.纵坐标不变,横坐标分别变为原来的a倍,图形为原来的a倍(a>1)2.横坐标不变,纵坐标分别变为原来的a倍,图形为原来的a倍(a>1)3.横坐标与纵坐标同时变为原来的a倍,图形为原来的a倍(a>1)对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于Y轴对称;2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于 X轴对称;3.横坐标与纵坐标都乘-1,所得图形与原图形关于坐标原点中心对称。

第六环节布置作业习题5.6 1,2,3四、教学反思通过“变化的鱼”,经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。

教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。

事先一定要准备好坐标纸等,提高课堂效率。

相关文档
最新文档