山东大学网络教育专升本入学高等数学模拟考试题及答案
专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
山东大学网络教育期末考试试题及答案-高等数学(1)模拟试卷

《高等数学》模拟题(1)年级_____________ 姓名_______________ 学号________________ 成绩__________第一题 名词解释1.区间:2. 邻域;3. 函数的单调性:4. 导数:5. 最大值与最小值定理:第二题 选择题1.函数21arccos1++-=x x y 的定义域是( )(A)1≤x ; (B)13≤≤-x ;(C))1,3(-; (D){}{}131≤≤-⋂<x x x x .2、函数)(x f 在点0x 的导数)(0x f '定义为( )(A )xx f x x f ∆-∆+)()(00;(B )xx f x x f x x ∆-∆+→)()(lim 000;(C )xx f x f x x ∆-→)()(lim 00;(D )0)()(lim 0x x x f x f x x --→; 3、 一元函数微分学的三个中值定理的结论都有一个共同点,即( ) (A ) 它们都给出了ξ点的求法 .(B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法。
(C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 .(D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 4、设)(,)(21x F x F是区间I 内连续函数)(x f 的两个不同的原函数,且0)(≠x f ,则在区间I 内必有( )(A) C x F x F =+)()(21; (B ) C x F x F =⋅)()(21;(C) )()(21x CF x F =; (D) C x F x F =-)()(21.5、=⎪⎭⎫ ⎝⎛++++++∞→2222221lim n n n n n n nn Λ ( ) (A )0; (B )21;(C )4π; (D )2π .6、曲线xyln =与直线ex 1=,e x=及0=y 所围成 的区域的面积=S ( ); (A ))11(2e-; (B )e e 1-;(C )e e 1+; (D )11+e.7、 若→a ,→b 为共线的单位向量,则它们的数量积 =⋅→→b a ( ).(A ) 1; (B )-1; (C ) 0; (D )),cos(→→b a . 8、二元函数22221arcsin 4ln y x y x z +++=的定义域是( ).(A )4122≤+≤y x ; (B )4122≤+<y x ;(C )4122<+≤y x ; (D )4122<+<y x .9、⎰⎰-xdy y x f dx 1010),(=(D )(A)⎰⎰-110),(dx y x f dy x ; (B)⎰⎰-xdx y x f dy 101),(;(C)⎰⎰11),(dx y x f dy ; (D)⎰⎰-ydx y x f dy 101),(.10、设L 为230,0≤≤=y x x ,则⎰Lds 4的值为( B).(A)04x , (B),6 (C)06x .第三题.)16(log 2)1(的定义域求函数x y x -=-第四题).0(),100()2)(1()(f x x x x x f '---=求设Λ第五题.)1(51lim 520x x x x +-+→求极限第六题.4932⎰-dx xx xx 求第七题.2sin 120⎰-πdx x 求《高等数学》模拟试卷 (1) 参考答案第四题).0(),100()2)(1()(f x x x x x f '---=求设Λ第五题解)0()(lim)0(0--='→x f x f f x )100()2)(1(lim 0---=→x x x x Λ!100=.)1(51lim 520x x x x +-+→求极限第六题.4932⎰-dx xx xx 求第七题解.2的次数为分子关于x Θ515)51(51x x +=+∴)()5()151(51!21)5(51122x o x x +⋅-⋅++=)(2122x o x x +-+=)1()](21[lim2220x x o x x x x +-+-+=→原式.21-=⎰-=dxxx1)23()23(2原式解⎰-=1)23()23(23ln 12x xd ⎰-123ln 12t dt ⎰+--=dt t t )1111(23ln21Ct t ++--=11ln )2ln 3(ln 21.2323ln )2ln 3(ln 21C xx xx ++--=tx =)23(令解 ]5)1[ln(2'+++x x Θ,112x+=]5)1[ln(5)1ln(22+++⋅+++=⎰x x d x x 原式.]5)1[ln(32232C x x ++++=)1221(1122xx xx ++⋅++=1. .2sin 120⎰-πdx x 求解⎰-=20cos sin πdxx x 原式⎰⎰-+-=2440)cos (sin )sin (cos πππdxx x dx x x .222-=。
山东专升本高数模拟题

类型:[A] [B] [C] ◎山东省2024年普通高等教育专升本统一模拟考试高等数学I 试题本试卷共4页,试题满分100分,考试用时120分钟。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写到试卷和答题卡指定的位置,并在答题卡指定位置中粘贴考生条形码。
2.作答选择题时,选出每小题答案后,须用2B 铅笔把答题卡上对应题目的答案标号涂黑:如需改动用橡皮擦干净后,再选涂其他答案标号。
作答非选择题时,须用0.5毫米黑色签字笔将答案写在答题卡各题目指定区域内相应的位置。
答在本试卷上无效。
3.考试结束后,将试卷和答题卡一并收回。
一.选择题(本大题共5小题,每小题3分,共15分)1.下列关于函数y =2e x 在R 上的基本特性说法正确..的是() A.y 是有界的 B. y 是奇函数C. y 是单增的D. y 有周期性2.已知lim x→0bc[f (x 0+1b )−f(x 0−1b )]=d (b ≠0)的必要条件f ′(0)=() A.d 2c B .c b C.d c D.2d b3. 方程y′′+2y′+3y =0的通解为()A.y =e −2x (cos √2x +sin √2x)B.y =e −x (cos √3x +sin √3x)C.y =e −2x (cos √3x +sin √3x)D.y =e −x (cos √2x +sin √2x)4.直线L:x−13=y−31=z+1−1与平面π:6x+2y −2z −7=0的位置关系是()A.平行B.垂直C. 相交D.直线在平面上5.下列反常积分发散的是()A .∫11+x 2+∞0dx B.∫√1−9x 20 C.∫ln x x +∞0dx D.∫e −x +∞0dx二.填空题(本大题共5小题,每小题3分,共15分)6. 求极限lim x→0(xsin 1x +1x sinx)=_______ 7.曲线y =x 2−4x 2−5x+6渐近线的个数是______8.直线上一点(1,0,1)到直线x +z =0的距离为_______9.设f(x ,y)=(x 2+y 2)earctan yx ,则f ′x (1,0)f ′y (1,0)=_______ 10.若幂级数∑(x+1)n na n ∞n=1的收敛域为[-3,1), 则常数a=_______三.计算题(本大题共8小题,每小题6分,共48分)11.已知极限lim x→∞(x 2x+1−2ax −b)=5,求常数a 、b 的值.12.求不定积分√1−x 2.13.设y =y (x )是由方程x 2y =e 2x+y +ln (5x +1)所确定的函数,求dy dx .14.求微分方程(x 2+2y )dx −2xdy =0的通解.15.若直线l 过点A (2,1,1)且过直线l 1:x−34=y−53=z 1垂直,与平面π:2x +y +z +7=0平行,求直线l 的方程.16.设z =f(sinx ,xy),其中f 具有二阶连续偏导数,求ð2z ðxðy .17.计算二重积分∬√x 22 ,其中D ={x ,y|0≤y ≤√3x,1≤x 2+y 2≤4}.18.求幂级数∑x n+2(n+2)n!∞n=1的收敛域与和函数.四.应用题(本大题共2小题,每小题7分,共14分)19.求由直线y=√33x,曲线y=√9−x2与y轴所围成的图形绕x轴旋转一周围成的旋转体的体积.20.求函数f(x)=(2x−3)e x−x2+x的极值.五.证明题(本大题共1小题,每小题8分,共8分)21.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.常数a>0,b>0.证明:(1)存在ξ∈(0,1),使f(ξ)=aa+b.(2)存在η,ξϵ(0,1),η≠ξ,使af′(η)+bf′(ξ)=a+b.。
山东大学网络教育专升本入学模拟考试高等数学模拟题及1

山东大学网络教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=(A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =(D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 偶函数 3、=-+∞→531002lim 33x x x x 234、13+=x y 的反函数是 3y=log (1)(1,)x x -∈+∞5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lime 7、设x x x y -=ln ,则y '= Inx8、曲线22xy =在)2,1(处的切线方程是 y=-4x+69、设x x y sin =,则''y = 2cosx-xsinx10、=-=dy x y 则设,)1(43 ()332121x x dx -11、不定积分⎰=+dx x 121()1212In x c ++ 12、不定积分⎰dxx xe = ()1xx e c -+ 13、定积分dx x⎰-+11211= 2∏ 14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则=三、计算题:本大题共10个小题,每小题6分, 共60分。
专升本高数试题及答案

专升本高数试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=x^2-6x+8,求f(3)的值。
A. 1B. 5C. 9D. 11答案:C2. 计算定积分∫(0,2) (x^2-3x+2)dx的值。
A. 2B. 4C. 6D. 8答案:B3. 设函数f(x)=x^3-3x+1,求f'(x)。
A. 3x^2-3B. x^2-3C. 3x^2-1D. x^2+3答案:A4. 求极限lim(x→0) [sin(x)/x]。
A. 0B. 1C. -1D. ∞答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为______。
答案:32. 已知等比数列的前三项分别为2,4,8,则该数列的公比q为______。
答案:23. 设函数f(x)=ln(x),求f'(x)=______。
答案:1/x4. 计算级数1+2+3+...+100的和为______。
答案:5050三、解答题(每题15分,共30分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11。
令f'(x)=0,解得x=1或x=11/3。
检查二阶导数f''(x)=6x-12。
当x=1时,f''(1)<0,说明x=1是极大值点。
当x=11/3时,f''(11/3)>0,说明x=11/3是极小值点。
2. 计算定积分∫(0,1) x^2 dx。
答案:∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。
四、证明题(每题10分,共20分)1. 证明:若x>0,y>0,则x+y≥2√(xy)。
答案:证明:(x+y)^2 = x^2 + 2xy + y^2 ≥ 4xy(因为x^2 + y^2 ≥ 2xy)。
所以,x+y ≥ 2√(xy)。
本科高等数学(二)题目和答案

山东大学网络教育专升本入学考试高等数学(二)模拟题 (1)一、选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,) D 、(0,3) 2、xx 1sinlim ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在3、设()()()()()4321----=x x x x x x f 则()2f '=( D )A 、0B 、1C 、2D 、4 4、设函数()x x f =,则)1(f '等于 ( C )A.1B.-1C.21 D.-215、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y 二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设()112--=+x x x f ,则()x f =132+-x x2、判断函数的奇偶性:()x x x f cos 3= 是 奇函数3、=-+∞→531002lim33x x x x 324、13+=xy 的反函数是 C5、已知()32tan lim0=→xkx x ,则k = 66、=⎪⎭⎫⎝⎛++∞→xx x x 12lim e7、设x x x y -=ln ,则y '=x ln8、曲线22xy =在()2,1处的切线方程是064=-+y x 9、设x x y sin =,则y ''=x x x sin cos 2- 10、设()431-=x y ,则=dy ()dx x x 233314⋅-11、不定积分⎰+dx x 121= ()C x ++12ln 2112、不定积分⎰=dx xe x C e xe xx +-13、定积分=+⎰-11211dx x 2π 14、定积分=⎰exdx 1ln 115、设()dt t t x x⎰-+⋅=321φ,则()='x φ 三、计算题:本大题共10个小题,每小题6分,共60分。
山东大学网络教育高升专入学考试样题(1)

( ) 23. " Listen, Mary is singing in the room." "That be Mary. She is in hospital. "
( ) 18. Everything stood , bathed in the bright and cool moonlight.
A. quiet B. quite C. silent D. straight
A. but B. however C. and D.不填
III. 完型填空(20分)
通读下面的短文,掌握其大意。然后从每小题的四个选项中选出可填入相应空白处的最佳选项,并把它前面的大写字母填入左边的括号里。
( ) 9. Our concert turned out to be a great success, they had never expected.
A. what B. that C. when D. which
A. come B. gone C. fallen D. turned
( ) 14. I am afraid you don't quite the moral of the story.
A. observe B. notice C. watch D. see
A. having improved B. has improved C. improved D. improving
( ) 27. I won't excuse him me about what happened to my best friend Fried.
山东大学网络教育入学测试-专科数学(答案全)

专科数学模拟题 卷1一、选择题:本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在-3,21,π,0.35中,无理数是( C ) A .3- B .21 C .π D .0.35 2.下列事件中,必然事件是( B ) A .6月14日晚上能看到月亮 B .早晨的太阳从东方升起C .打开电视,正在播放新闻D .任意掷一枚均匀的硬币,正面朝上3.下面的几何体中,俯视图为三角形的是 ( D )A .B .C .D .4.下列根式中,与24是同类根式的是( D )A .2B .3C .5D .65.如果关于x 的一元二次方程042=+-k x x 有两个不相等的实数根,那么k 的取值范围是( A )A .4<kB .4>kC .0<kD .0>k6.分式方程13121-=--x x x 的解为( D ) A .3=x B .3-=x C .4=x D .4-=x7.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( B )A .21073⨯B .3103.7⨯C .41073.0⨯D .2103.7⨯8.已知一次函数y =kx ﹣1,若y 随x 的增大而增大,则它的图像经过( B )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限9.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD交于点F ,254::=∆∆ABF DEF S S ,则DE :EC= ( B )A .2:5B .2:3C .3:5D .3:210.一组数据:-1,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( C )A .1B .2C .3D .411.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( C )A .AD =BCB .AC =BD C .∠A =∠C D .∠A =∠B12.如图,直线l 与反比例函数xk y =在第一象限内的图象交于A 、B 两点,且与x 轴的正半轴交于C 点,若AB=2BC ,OAB ∆的面积为8,则k 的值为( A ) A .6 B .9 C .12 D .1813.若二次根式42-x 有意义,则x 的取值范围是( D )A .2=xB .2≠xC .2≤xD .2≥x14.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( C )A .32 B .21 C .31 D .41 15.打开某洗衣机开关。