射频宽带放大器
程控可变增益射频宽带放大器

程控可变增益放大器参赛队员:摘要本系统由宽带放大器OPA847、压控放大器VCA810和电流型运放OPA695组成。
系统前级通过OPA847实现10倍固定增益放大,中间级由压控放大器VCA810实现0.05~5V/V增益变化,后级由OPA695和继电器实现5~25V/V增益变化,末级由电阻网络进行10倍衰减,达到0dB~60dB 增益范围可调。
系统采用屏蔽盒进行电磁屏蔽,提高稳定性和抗干扰能力。
经测试,系统达到了题目所设定的所有指标。
关键词:放大器,VCA810,OPA847 ,OPA695AbstractThe system is designed with a broadband amplifier OPA847, Voltage controlled amplifier VCA810 and current-feedback operational amplifier OPA695.In the first stage, the system can achieve 10 times fixed-gain by OPA847.Then, in the intermediate stage, it uses VCA810 to achieve 0.05 ~ 5V / V gain range. In the latter part, the system achieves 5 ~ 25V / V gain variation by OPA695 and relays. In the last stage, the system achieves 10 times attenuation by the resistor network, so that the overall gain can be adjusted in the range of 0~60dB. In order to improve the stability and anti-jamming capability, the system uses the shield case to carry electromagnetic shielding. According to the test, all the indicators of the topic have reached .Keywords:RF broadband amplifier,VCA810,OPA847,OPA695目录1、方案论证1.1、≥60dB增益设计1.2、放大增益可调设计1.3、系统框图2、理论分析与计算2.1、宽带放大器设计2.2、频带内增益起伏控制2.3、射频放大器稳定性分析2.4、增益调整2.5、放大器带宽设计3、电路与程序设计3.1、前期固定增益电路设计3.2、VCA电路设计3.3、后级电路设计4、系统测试4.1、测试仪器4.2、测试方案及测试条件4.3、测试结果及分析5、参考文献输入VCA810输出输出一、方案论证1.≥60dB增益设计方案一:采用三极管实现。
S-C频段宽带250W功率放大器的设计

S-C频段宽带250W功率放大器的设计作者:陈昱宇刘闻李栋来源:《电子技术与软件工程》2018年第07期摘要为满足通信、电子信号系统对超宽带大功率发射源的需求,研制一款工作在s-c频段,频率范围覆盖2GHz-6GHz的超宽带功率放大器。
目前该频段单芯片最大输出功率仅25W,故选用1 6只芯片通过由威尔金森功分器和3dB电桥组成的超宽带低插损合成网络进行高效功率合成。
经一系列结构、电路优化设计后,组件最终在260*190*30mm3体积下实现了2GHz-6GHz范围内≥250W的功率输出,功率增益≥54dB,小信号增益平坦度≤±2.5dB,电源效率≥20%,信号杂散抑制≥70dBe。
【关键词】高效率超宽带大功率威尔金森功分器高杂散抑制本文对一款工作在S-C频段,频率范围覆盖2GHz~6GHz的250W固态功率放大器的研制进行了总结。
放大器内部采用16只输出功率≥25W的GaN功放芯片进行合成,合成网络由威尔金森功分器和3dB电桥组成;在功放内部设计有多重低频滤波网络、用于改善信号杂散抑制度;通过功放内部的结构、电路优化,最终功放体积为260*190*30mm3。
1 驱动放大单元设计实现驱动放大器的高增益指标需采用多级放大器进行级联。
在实际应用条件下,因各级放大器输入输出驻波、传输介质不连续、加工装配、误差等因素影响,放大器级联后增益平坦度与理论值相比存在不同程度的恶化,尤其在宽频带内,级间的反射相位有时叠加有时抵消,增大了起伏。
改善放大链增益平坦度通常有两种途径:(1)选用均衡器对增益进行补偿;(2)选用增益曲线互补的放大器级联。
为改善增益平坦度,驱动放大器设计时采用以下措施:(1)在驱动放大器输入端加Ⅱ型衰减器调节放大链增益和改善输入驻波;(2)选用三级增益曲线在2GHz-6GHz范围内互补的放大器级联;(3)在驱动放大器级联加入均衡器,均衡器作用为对频率增益特性进行纠正和降低两级放大器间的互耦,减小模块发生自激的可能。
DVB-C系统中射频宽带低噪声放大器电路的设计研究

关键之一就于降低接收机 的噪声系数. 一个具有前 置低噪声放大器的接收系统 , 其整机噪声 系数将大 大 降低 , 因此需 在 接收 机前 端安 置低 噪声放 大 器. 另 方面 , V} D 】C接收系统工作频率 范围很 宽, 要求 L A宽带内具有好 的增益平坦度. N 一般而言 , 实现 宽带 低 噪声放 大器 的基 本方 法 有 以下 几 种L : 分 1① ] 布放 大器 : 性能 指标 较优 , 工艺 复杂 , 但 调试较 困难 , 所使用的器件较多 , 成本也高 ; 有损匹配法 : 以 ② 可 得 到较宽 的频 带 , 有损 匹配 电 路 对 放大 器 噪声 性 但 能有较 大 影响 ; 平衡 放大 器 : 善 了增益 平 坦度 , ③ 改 可获得 较低 VS WR、 宽 的 频 带 , 做 1个 倍 频 程 较 但
( 东南大学 国家专用集成 电路系统工程技术研究 中心 , 南京 20 9 ) 10 6 捅 要 : 文根据 D 本 VB系统 对 L NA的特殊 要求 , 阐述 了负反馈展宽放大器频带的原理 , 讨论 了通过 设计并联 负反馈的手段 来实现 L NA宽频带稳定性 , 并在此基础 上 , 设计出一种宽带 L NA的拓补结 构 , 并采 用将负 反馈解析 计算 与仿真优 化相结 合 的L NA设计方法 , 出了 L 给 NA最终设计的仿真及实测结果. 验结果 和设计结 果吻合 较好。 L 实 该 NA带 宽为 5 0MHz 0  ̄9 0 MHz功率增益 1 . B, 内增 益波 动 0 6d , 内噪声 系数 2 7d ~3 5d . , 0 4d 带 . B 带 . B . B
关键 词 : N 负反馈; L Af 噪声系数; S V WR
中 图分类 号 :Nห้องสมุดไป่ตู้2. T 72 1
宽带射频功率放大器设计

•导读: 介绍了一种分析同轴线变换器的新方法,建立了理想与通用模型,降低了分析难度和简化了分析过程。
通过研究分析,提出了一种同轴变换器与集总元件相结合的匹配电路设计方法,通过优化同轴线和集总元件的参数,实现放大器的最佳性能。
o关键字o功率放大器阻抗变换器•阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。
为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。
要实现宽带内的最大功率传输,匹配电路设计非常困难。
本文设计的同轴变换器电路就能实现高效率的电路匹配。
同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。
常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。
但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。
1 同轴变换器模型同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。
这里用电长度是为了分析方便。
当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。
1.1理想模型理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。
其源阻抗Zg与ZL负载阻抗变换比为:图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。
同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。
1.2通用模型由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。
阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。
特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。
由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。
由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。
那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为:其中:当反射系数为零时,功率可以无反射的传输,这时阻抗实现完全匹配。
一种射频宽带低噪声放大器的设计

一种射频宽带低噪声放大器的设计王一冰;彭安金【摘要】提出了一种射频宽带低噪声放大器的实现方式,使用宽带电流反馈型运放和宽带低噪声电压反馈型运放完成了0dB~60dB增益连续可调.由于输入信号幅度小、带宽宽,系统通过屏蔽盒进行处理提高了自身的稳定性和抗干扰能力.输入电压最小峰峰值2mV,3dB带宽达0.3MHz~150MHz,最大输出正弦波有效值1.8V,在1MHz~100MHz频带内增益起伏小于1dB,性能优良,可广泛用于电子对抗、战术武器制导以及无线通信中.【期刊名称】《西南民族大学学报(自然科学版)》【年(卷),期】2015(041)003【总页数】8页(P383-390)【关键词】射频放大器;宽带;小信号放大;增益可调【作者】王一冰;彭安金【作者单位】西南民族大学电气信息工程学院,四川成都610041;西南民族大学电气信息工程学院,四川成都610041【正文语种】中文【中图分类】TN722(西南民族大学电气信息工程学院,四川成都 610041)宽带射频放大器广泛应用于雷达搜索探测、无人机侦察、卫星通信、电子对抗、战术武器制导以及民用无线通信中,其性能好坏直接影响到整个系统的水平,因此成为诸多射频系统设计的关键.宽带放大器常用的形式有平衡结构式放大器、负反馈式放大器、有源匹配电路、电抗网络匹配、宽带电阻匹配、分布式放大器等[1].其中负反馈式放大器具有如下明显的优点:降低放大器对有源器件性能变化的敏感度;获得较好的输入阻抗匹配和较低的噪声系数;增加放大器的稳定性和线性度等[2].因此,负反馈技术被广泛地运用于宽带放大器的设计当中.现有的移动电视中数字增益可配置的射频放大器增益调节范围比较小[3].一种新的方法是采用射频自动增益控制放大器提高动态范围[4],当射频输入受到强干扰时,自动降低增益以免信号链路饱和,下变频后通过中频滤波器滤除干扰,以达到抑制干扰的同时不减少有用信号信噪比的目的.因此宽带射频放大器的带宽、高增益、增益平坦度、动态范围就成为设计的关键性指标.本宽带射频放大器要求达到指标如下:(1)电压增益≥60dB,输入电压有效值≤1 mV.电压增益在0~60dB范围内可调.(2)放大器BW-3dB的频率下限≤0.3MHz,上限≥100MHz,在0.3MHz~80MHz内增益起伏≤1dB;在50欧负载上最大输出正弦波电压有效值≥1V.1.1 增益可调设计方案一:电阻网络衰减.通过前级放大电路进行增益放大,后级由电阻网络衰减,实现0~60dB范围内宽带增益可调.方案二:采用压控放大器.采用压控放大器(VGA),其增益可由外部电压控制,实现一定范围内增益步进可调.方案三:采用程控衰减器.其衰减倍数可程控,实现步进的衰减.方案一采用电阻网络衰减,步进大难以做到连续衰减,而且存在负载效应影响精度.方案二采用VGA实现增益可调,但VGA方式带宽受到限制,难以实现150MHz.方案三采用程控衰减器.综合考虑,本次设计采用方案三,结合前级增益变化,后级由数字步进衰减器实现增益可调.1.2 放大器的宽带高增益设计按照指标的要求,信号通频带0.3~100Mhz最大电压增益Av≥60dB,增益带宽积达到100GHz,单级放大甚至两级放大都是难以做到的.因此通过将单级增益保持在 20dB以下,采用多级级联的方式实现60dB的目标.本系统中,采用两级固定增益实现30dB放大(后级50欧负载实得增益),中间级实现 0~50dB放大(后级50欧负载实得增益),末级-30dB~-60dB的衰减和0~20dB的增益(后级50欧负载实得增益).1.3 频带内增益起伏控制按照指标的要求,整个系统至少要满足在1~80MHz内最大增益波动不大于1dB.由于本系统是五级级联结构,且每一级都单独工作,而系统总的增益曲线为各模块的叠加.考虑最极端的情况,即各部分的最大增益波动点在同一位置,此时要保证各级最大增益波动小于0.2dB才可满足指标要求.因此,在进行单级设计时应该尽可能降低在1~80MHz通带内的波动,这就对芯片性能提出了挑战,必要时可通过外接LC网络进行一定的增益补偿.1.4 射频放大器的稳定性分析稳定性问题一直是放大器设计的重点之一.对于宽带放大器,稳定性问题尤为重要,在设计初期就要认真考虑.造成放大器不稳定的因素主要来自内部正反馈和外部耦合干扰.对于前者,可能由于布线不合理、放大器反馈设计不合理、单级增益过高,各级信号通过公共网络(如馈电网络)进行串扰等原因造成.因此首先应限制单级增益,对于高速电流型运放可以参考相应器件手册给出的建议反馈电阻.为了防止因馈电网络造成的串扰,可对每一级网络进行单独供电.在电路实际制作中,应合理布局布线,考虑电磁兼容性并采用各种抗干扰手段.根据设计要求,对所选芯片有如下要求:1)低噪声和低失真2)-3dB带宽应远超300KHz~100MHz范围3)在1~80MHz频带内,增益起伏小于0.2dB4)后一级驱动电流有效值需大于20mA考虑到输入级信噪比要高,选择电压反馈型运放.宽带低噪声单位增益稳定的电压反馈型运放OPA847,带宽为 3.9GHz,增益为 20倍时带宽为325MHz,可满足带宽要求且增益稳定,但是由于OPA847放大大信号时平坦度下降所以只选作输入级使用.中间级必须满足在1~80MHz频带内高增益,增益起伏小于1dB.由于电压反馈型运放增益带宽积一定,带宽本身会限制增益的提高,所以选择电流反馈型运放以减小增益的调节对带宽的影响.封装为SOT -23的低失真运放LMH6703,3分贝带宽为1.2 G,在频率100M内增益平坦,且增益最高可达10倍,可满足带宽、增益要求.OPA847的增益平坦度如下(图1选自德州仪器研发芯片OPA847的数据手册): LMH6703的增益平坦度如下(图2选自德州仪器研发芯片LMH6703的数据手册): 由图一、二可知我们选择OPA847、LMH6703能满足平坦度要求.LMH6703其输出电流可达90mA,作为输出级可满足最后一级驱动电流有效值需大于20mA的要求.综合以上,选择OPA847、LMH6703可满足设计要求.通过核心方案论证,本系统由OPA847作为输入级单级放大20dB,中间级通过电流型运放LMH6703实现10dB~60dB增益控制,再通过衰减网络进行-30dB~-60dB衰减,最后接入驱动级形成0dB~20dB的增益.系统框图如图3所示.本系统的放大倍数大于60dB,当电源去耦不好时各级信号电流在内阻上的电压降将产生互耦作用,而本系统的带宽很宽,信号很容易通过电源线相互耦合,若耦合信号起振,电路将产生寄生振荡.所以为了提高射频放大器的稳定性应尽量要做好电源去耦,除了在每个芯片的电源脚接去耦电容,还在电源线中接入了EMI滤波器.同时电流反馈型运放构建的放大器也容易因反馈阻抗值的变化造成自激振荡,因此每个运放的反馈电阻尽量靠近运放输入引脚,以免反馈回路中的分布电容引入新极点,必要时还进行了滞后相位补偿.4.1 前置放大器设计OPA847是电压反馈型运放,它组建的反相放大器抑制噪声能力强,且容易实现特征阻抗匹配,所以第一级由OPA847构成反相放大器以提高信噪比.通过方案论证和理论分析,系统前级电路采用宽带放大器OPA847实现20dB增益放大.OPA847为宽带放大器,带宽为3.9GHz,压摆率为950V/μs,完全达到指标要求.具体电路如图4所示.4.2 中间级放大电路中间级选用电流反馈型运放LMH6703构成同相交流放大器以实现源阻抗匹配.电流反馈型运放LMH6703的闭环增益和频率响应主要取决于反馈电阻的值.反馈电阻的取值决定着电流反馈型运放的工作稳定性.最佳值既可以保证最大带宽,也可以保证稳定地放大而不振荡,对于封装为SOT-23-6的LMH6703最佳的反馈电阻值为560Ω,封装为SOIC则最佳反馈电阻值为390Ω.同时,电流反馈型运放的反馈环路中不允许有电容,因为电容会降低反馈阻抗导致振荡.出于同样的原因,杂散电容也必须控制在运放的反相输入端周围.电流反馈型运放LMH6703的仿真测试图如下:输入10mV时LMH6703的输出波形如图6:电流反馈型运放LMH6703的3分贝带宽为1.2 G,在频率100M内增益平坦,可构成2级宽带放大器,完整电路图如图7所示.由电流反馈型运放LMH6703构成交流同相放大器,电流反馈型运放改变增益对带宽影响较小,所以在高增益的同时能满足带宽要求.且交流同相放大器输入阻抗高,有利于源阻抗匹配.根据每级的增益确定其反馈电阻和增益电阻,调节阻值由图8所示.4.3 衰减电路设计该系统设计的是增益从0dB到60dB可调,但因放大器的增益调到最佳可提高信噪比,为实现增益0dB在系统最后级设计-30dB到-60dB的衰减网络以抵消前级的增益.系统不同模块由同轴电缆传输,同轴电缆的阻抗为50Ω,因此Z0=50Ω.由于T型电阻网络电阻值较难买到,所以选择π型衰减网络,其衰减结构对应图9所示.当衰减30dB时R2基本保持在50Ω附近,所以采用定值电阻1K和5K的滑动变阻器串联组成R1完成30dB衰减.为避免π型无源衰减器的负载效应,后面接一级缓冲放大器.原理图如图10所示.再接入数字步进衰减器(步进值0.5 dB)新增0~-30dB衰减,即可得到-30 dB~-60 dB的总衰减.最后接入驱动级形成0dB~20dB的增益以驱动50欧负载,LMH6703输出电流可达90mA,作为输出级可满足最后一级驱动电流有效值需大于20mA的要求,电路图与中间级放大器相同.5.1 测试仪器① RIGOL DG4072 100MHz信号源② 泰克TDS2022C 500MHz示波器③ APS3003S-3D高精度线性直流稳压源5.2 测试方案与记录选取频率20MHz,输入电压固定为2.7mVpp,调整电路的增益,测试是否增益在0~62dB内可调.输入电压固定为2.7mVpp,增益选取最大增益62dB以在最坏情况进行测试,改变信号频率,测试-3dB带宽和带内增益平坦度如下.据测试记录可知,输入电压有效值小于等于1mV的时候,增益0~62dB可调,满足指标要求.据测试记录可知,电压增益为62dB的时候,-3dB带宽达到150MHz,在0.3MHz~90MHz频带内增益起伏小于0.8dB,完全满足指标要求.本文首先设计并分析了射频宽带放大器的总体方案,然后将指标分配给前级、中间级与末级,据此选择有源器件,采用多级放大与负反馈技术设计了射频宽带放大器,获得了良好的效果,本射频宽带放大器可广泛用于电子对抗、战术武器制导以及民用无线通信中.【相关文献】[1]刘畅,梁晓新,阎跃鹏.射频宽带低噪声放大器设计[J].电子测量与仪器学报,2009(增刊):196-202.[2]刘抒民,田立卿.使用负反馈技术设计宽带低噪声放大器[J].遥测遥控,2007,28(6):59-63.[3]XIAO J,MEHR I,SILVA-MARTINEZ J.A high dynamic range CMOS variable gain amplifier for mobile DTV tuner[J].Solid-State Circuits,IEEE Journal of,2007,42(2):292-301.[4]WANG C C,LEE C L,LIN L P,et al.Wideband 70dB CMOS digital variable gain amp lifier design for DVB-T receiver's AGC[C]//Circuits and Systems,2005.ISCAS 2005.IEEE International Symposiumon.IEEE,2005:356-359.[5]冈村迪夫.OP放大电路设计[M].王玲,等译.北京:科学出版社,2010.[6]塞尔吉欧.弗朗哥.基于运算放大器和模拟集成电路的电路设计[M].刘树棠,等译.西安:西安交通大学出版社,2009.[7]PARIN V.Aanlysis of CDMA Signal Spetral Regrowth andWaveform Quality[J].IEEE Transactions on Microwave Theoryand Techniques,2001(49):2306-2314.[8]SHAH C A,VARSHNEY P K.A Higher Order Statistical Approachto Spectral Unmixing of Remote Sensing Imagery[J].IEEE,2004(2): 1065-1068.[9]张剑平.程控放大器及其精度研究[J].仪器仪表学报,2006,27 (6).[10]赵碧杉,曾攀,谢桂辉.一种可编程宽带放大器的设计[J].电子设计工程,2009.17(7):26-28[11]宋加磊,潘克修,陈斌,等.高性能宽带直流放大器的设计与实现[J].军事通信技术,2010.31(2):81-84.[12]尤志刚,邓立科,杨小军,等.基于反馈技术的宽带低噪声放大器的设计[J].通信技术,2011.44(2):149-153.[13]鹿璇,任翔,罗国君,等.一种可控宽带直流放大器的设计[J].宇航计测技术,2010.30(4):63-65.[14]王康,胡航宇,耿东晛.一种微弱信号的宽带程控高增益放大器设计[J].单片机与嵌入式系统应用,2011(1):9-12.[15]王俊杰,黄心汉.程控增益放大器和自动调整增益放大器的设计[J].电子技术应用,1998(4):50-51.。
射频和微波放大器设计

为B类工作旳放大器称为AB类放大器。
➢ C 类(丙类)放大器 • 放大器在整个信号周期内,晶体管在工作区工作旳时间
明显少于半个信号周期旳放大器为C类放大器。
小信号放大器设计
小信号放大器设计旳基 本环节
选择合适旳器件或芯片 o 工作频率 o 增益 o 噪声 o 功率电平
小信号放大器设计
窄带放大器设计 o 工作带宽不大于10%旳放大器可以为是窄带放大器
窄带放大器分类 最大增益放大器 高增益放大器 最低噪声放大器
高增益放大器设计举例
例 15.1 设计一工作频率为3GHz,增益为15dB旳放大器,选择如
下S参数旳双极晶体管(VCE=4V ,IC=5mA):
宽带放大器(BBA)设计 ——负反馈技术(分析)
➢ 取得最小输入和输出驻波比旳条件
➢ 设计举例
宽带放大器(BBA)设计 ——负反馈技术(高频情况)
伴随工作频率旳增长,S21旳相位将趋向于900, 也就是说可能出现正反馈旳成份,由此引起放 大器旳不稳定,为了确保放大器旳稳定性,能 够在并联反馈元件上附加一种串联电感,以变 化反馈分量旳相位。
功率放大器旳最小信号电平和动态范围
最小信号电平 放大率Po,mds,必须不小于放大器旳输出噪声功率。 • Po,mds定义为高于输出噪声功率电平 x 分贝。
或
功率放大器旳最小信号电平和动态范围
功率放大器旳动态范围 功率放大器旳动态范围定义为放大器旳线性最
交调对接受系统旳影响分析
对于窄带功率放大器,除了三阶交调项(即 2f1-f2和2f2-f1)外,全部附加旳频率分量都能 够经过滤波器被滤除掉。
射频放大器的9个主要性能指标

射频放大器的9个主要性能指标RF PA(radio frequency power amplifier)是各种无线发射机的重要组成部分。
在发送机的前级电路中,调制振荡电路产生的射频信号的功率非常小,需要经过一系列放大一缓冲级、中间放大级、最终级的功率放大级,得到足够的射频功率后,提供给天线进行辐射。
为了得到足够大的射频输出功率,射频功率放大器常常扮演着不可或缺的作用。
那么,射频放大器的主要指标有哪些呢?射频放大器结构射频放大器的9个主要性能指标1、输出功率和1dB压缩点(P1dB)输入功率超过一定值时,晶体管的增益开始下降,最终输出功率饱和。
如果放大器的增益偏离常数或低于其他小信号增益1dB,这个点就是1dB压缩点(P1dB)。
放大器的功率容量通常用1dB的压缩点表示。
2、增益工作增益是测量放大器放大能力的主要指标。
增益的定义是放大器输出端口传输到负载的功率与信号源实际传输到放大器输入端口的功率之比。
增益平坦度是在一定温度下放大器增益在整个工作频带内变化的范围,也是放大器的主要指标。
3、工作频率范围一般是指放大器的线性工作频率范围。
当频率从DC开始时,放大器被认为是直流放大器。
4、效率放大器是功率元件,所以需要消耗供电电流。
因此,放大器的效率对整个系统的效率非常重要。
功率效率是放大器的高频输出功率与提供给晶体管的直流功率之比。
NP=RF输出功率/直流输入功率。
5、交条失真(IMD)交条失真是具有不同频率的两个或更多个输入信号通过功率放大器而产生的混合分量。
这是因为放大器的非线性特点。
其中,三阶交条产物特别接近基波信号,影响最大,因此交条失真中最重要的是三阶交,当然,三阶交条产物越低越好。
6、三阶交条截止点(IP3)图2中基波信号的输出功率延长线与三阶交条延长线的交点称为三阶交条截止点,用符号IP3表示。
IP3也是放大器非线性的重要指标。
输出功率一定时,三阶交条截止点的输出功率越大,放大器的线性度越好。
射频功率放大器宽带匹配如何解决?这篇文章讲得够详细了

射频功率放大器宽带匹配如何解决?这篇文章讲得够详细了在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。
例如,工作于多个倍频程甚至于几十个倍频程。
这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。
宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。
因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。
同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。
同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。
1 方案设计同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。
同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。
1.1 同轴变换器原理同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。
“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。
同轴变换器处于集中参数与分布参数之问。
因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻抗为Zo的传输线。
同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。
当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。
同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。
在大多数情况下,电缆长度不能超过最小波长的八分之一。
为了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子系统设计方案设计:增益可调的宽带放大器团队成员:指导教师:提交时间:2015年12月11日增益可调的宽带放大器摘要:本设计以增益调整、带宽预置、单片机反馈调节为核心,制作一个射频宽带放大器,要求具有0.3~100MHz 通频带,增益0~60dB 范围内可调,并且实现输入输出阻抗、最大输出正弦波有效值、指定频带内平坦度等功能指标要求。
由于系统输入信号小,频率高,带宽要求大,可控增益范围宽,并且需要满足平坦度、输出噪声电压等指标。
为此,采用高增益带宽运放组成频带预置、AD8367的压控增益放大系统完成增益调整、单片机实现反馈调节。
除此之外,通过增加缓冲级、外加硬件保护措施有效地抑制了高频信号的噪声和自激振荡。
经测试,系统对mV 1≤的输入信号实现了增益0~60dB 范围内可调,带宽0.3~100MHz ,并在1~80MHz 频带内增益起伏dB 1≤,且全程波形无明显失真。
完成了题目所要求的所有基本要求以及绝大部分发挥部分的性能指标。
1.系统方案设计与论证1.1总体方案设计与论证分析该射频宽带放大器设计的指标,为达到题目所设定带宽与增益可调,并且能够满足在输入和输出阻抗=50Ω的情况下,最大输出正弦波电压有效值达到要求的目的,我们将整个系统分为前置缓冲级、带宽预置、增益调整、输出缓冲级、峰值检波等部分组成,主控器采用STC12系列单片机。
系统整体框图如图1所示:图1 系统框图1.2前置缓冲级的方案论证与选择前置缓冲电路使用电压跟随器实现,如图2所示。
考虑到本系统的通频带为0.3~100MHz,且输入阻抗限定为50Ω,由正相输入电压跟随器的输入阻抗为Rj趋于无穷大,所以图2电路的输入阻抗为kkkkRRRRRRRR≈+*==jjjn i//。
则可令实际电路取Rk=50Ω以达到输入阻抗要求。
除此之外,此前置放大电路还具有缓冲、避免引入噪声等作用,起到了良好的隔离功能。
其电压增益接近于1,运算放大器选用AD8005,此放大器的增益带宽积达到270MHz。
图2 前置缓冲级1.3带宽预置的方案论证与选择方案一:通过对继电器L1和L2触点的控制实现系统通频带0.3~20MHz和0.3~100MHz 两个范围的预置。
可令系统默认选择0.3~20MHz通频带,通过键盘选择通频带,使单片机对继电器进行操作,使系统实现了预置0.3~100MHz的通频带。
方案二:通过外部触发使单片机控制模拟开关CD4502选通指定通道,从而实现对由高增益带宽运放构成的带通网络进行预置,方案流程如图3所示。
图3 带宽预置流程图分析两种方案可知方案一继电器连线多且复杂,体积大,触点数量有限,且工作过程中会产生噪声,影响测试总体效果。
方案二使用单片机和模拟开关控制带宽预置简单稳定,易于调整,所以选择方案二。
1.4增益调整的方案论证与选择方案一:场效应管控制增益。
利用单片机控制场效应管工作在可变电阻区,利用其电压与电阻的线性关系来实现增益的控制。
方案二:为了易于实现增益范围0~60dB的调节,可以采用高速乘法器型D/A实现,比如AD7420。
利用D/A 转换器的VRef 作信号的输入端,D/A 的输出端做输出。
用D/A 转换器的数字量输入端控制传输衰减实现增益控制。
方案三:可变增益放大器AD8367级联。
题目要求0~60dB可调增益,而 AD8367的可调范围-2.5dB ~ +42.5dB,具有500M的增益带宽积。
可采用两片AD8367级联作为增益放大级并且通过单片机反馈的峰值检测结果对已进行小倍数放大的信号进行再次放大或衰减以实现Av在0~60dB范围内可调。
方案一中由于大量分立元件的引入,使得电路复杂且稳定性差。
方案二虽然简单易行,精确度高,但查阅相关资料可知:转化非线性误差大,带宽只有几kHz,而且当信号频率较高时,系统容易发生自激,因此未选此方案。
方案三采用了可变增益放大器AD8367,具有以dB为单位的线性增益的特点,并且以单片机作为控制可以满足题目要求0~60dB可调,方案方便、稳定,可操作性强,所以采用方案三。
1.5峰值检波的方案论证与选择方案一:采用集成真有效值变换芯片,直接输出被测信号的真有效值,例如AD637,将输出的有效值送至单片机进行对增益的反馈调整。
方案二:考虑到本题要求测量的是标准正弦波,可采用峰值检波电路,检出峰值经A/D 转换后由单片机转换为有效值后对增益进行调整。
经过分析,由于一般的有效值检波的芯片难以达到100MHz的宽带,无法满足设计要求。
而方案二经过高频采样保持电路后可以达到检波要求,并且精度较高,速度较快,所以采用方案二。
2.系统理论分析与计算2.1宽带放大器设计的理论分析与计算基本部分要求放大器的下限频率fL≤0.3MHz,上限频率fH≥20MHz,为此我们选择用两片低噪声、高速放大器AD8021分别构成的高低通环节级联构成通频带为0.3MHz~20MHz的带通滤波器。
其中AD8021具有高速、低噪声、从G=-1至G=-10之间具有恒定带宽490M定制补偿功能,且考虑到之后增益调整环节为主要放大镜,所以该电路完全符合基础部分0.3MHz~20MHz的带宽要求。
同理,为满足发挥部分下限频率fL≤0.3MHz,上限频率fH≥100MHz的带宽要求,采用AD8021和OPA846分别作为高低通环节级联成带通滤波器。
其中OPA846是一款低噪声、电压反馈运算放大器,其具有的400MHz高增益带宽积可满足发挥部分0.3MHz~100MHz带宽要求。
2.2频带内增益起伏控制的理论分析与计算题目中要求通频带内增益起伏≤1dB,因此本设计的频带预置部分采用巴特沃斯滤波器,巴特沃斯滤波器的特点是通频带内的频率响应曲线实现最大限度平坦,没有起伏。
虽然在阻频带内会缓慢下降为零,通过增加滤波器阶数加快阻带内的衰减,并且将输出波形峰值检波的结果模拟量送至STC12系列单片机自带的A/D,再利用外部D/A转换实现单片机对频带内增益起伏的递增、递减控制以实现增益起伏≤1dB。
2.3射频放大器稳定性的理论分析与计算由于放大器的输入频率过高,将在小信号放大过程产生高频杂波,由于多级放大器级联,容易产生高频自激振荡,且随着频率的升高,增益将被衰减。
为此,可以通过以下方式来改善该射频放大器的稳定性:(1)放大器板上所有运放电源线及数字信号线均加磁珠和电容滤波。
磁珠可滤除电流上的高频毛刺,电容滤除较低频率的干扰,它们配合在一起可较好地滤除电路上的串扰。
安装时尽量靠近IC电源和地。
(2)在两个焊接板之间传递模拟信号时用同轴电缆,信号输入输出使用SMA-BNC接头,使传输阻抗匹配,并可减少空间电磁波对本电路的干扰,同时避免放大器自激。
(3)由于采用多级放大器级联的方式,为了减少高频自激和消振困难,在相邻的放大器之间加入电压跟随器作隔离;同时,为了消除内阻引起的寄生震荡,可在运放电源端就近接去耦电容。
(4)设计电路电压增益在通频带内波动较明显,通过对各级放大电路进行频率补偿,在电源端增加去耦0.1uF和100uF电容,电容电阻的引线部分要尽可能的短,并且采用屏蔽盒对系统进行多点屏蔽,可有效增加放大器的稳定性。
2.4增益调整的理论分析与计算AD8367具有45dB增益可调,3dB带宽达到500MHz,片上集成有律方根检波器,可实现单片闭环AGC。
片上带有可控制线性增益的高性能45dB可变增益放大器.并可在任意低频到500 MHz的频率范围内稳定工作。
通过控制MODE引脚外接地端,选择GAIN DOWN工作模式,即增益随电压递减,满足公式Gain(dB)=45-50 Vgain。
通过数字电位器控制5引脚GAIN端工作电压Vgain处于0~1V,则可控制单片增益调整范围-5~45dB。
为实现0~60dB 范围可调,需采用两级AD8367级联,且由于放大器的三阶交调失真点是固定的,信号幅度越大,则失真的可能性就越大,所以采用其中一级作为固定增益放大级放在后面,前一级AD8367作为电压控制增益放大级。
3.电路与程序设计3.1电路的设计3.1.1前置缓冲级、带宽预置AD8005具有270M的增益带宽积,以此设计电压跟随器作为输入缓冲级具有避免引入噪声等作用,起到了良好的隔离功能;由具有高速、低噪声、高增益带宽特点的运放AD8021和OPA846构成的带通滤波器可分别满足0.3~20MHz和0.3~100MHz的带宽要求。
并且通过单片机控制模拟开关CD4052在这两种带宽模式进行切换选择。
图4为该部分原理图部分。
图4前置缓冲级、带宽预置原理图3.1.2增益调整采用两片AD8367级联作为增益放大级,当MODE接地时,增益随电压递减,其计算公式为:Gain(dB)=45—50 Vgain,该工作模式在AGC应用中是需要的,其中通过数字电位器X9C103控制Vgain。
并且通过单片机反馈的峰值检测结果对已进行小倍数放大的信号进行再次放大或衰减以实现Av在0~60dB范围内可调。
图5为增益调整电路原理图。
图5 增益调整电路原理图3.1.3峰值检波本放大器系统的输入频率高,频带要求宽,而一般峰值检波电路的线性差,通频带窄,保持时间短,不便于精确测量。
为此,我们采用由高精度采样保持器PKD01 构成峰值保持器,具有通频带宽、线性好、峰值保持精度高等优点,电路原理图如图6所示。
图6 PKD0l的峰值保持及时序控制电路3.2程序设计3.2.1系统程序框图系统程序流程图如图5所示。
程序设计主要实现步进调整、带宽预置和增益放大的切换以及对通频带内平坦度进行反馈调整。
AD转换电路对峰值检波后的输出信号进行采样,将结果送入单片机进行操作,实现对相应部分的反馈调整。
4.测试方案与测试结果4.1测试条件与仪器为测量50 的输入和输出阻抗,采用多功能数字万用表VC9205;为得到有效值≤1mV 的输入高频小信号,采用高频信号发生器AS1053;该系统最大通频带达到0.3~100MHz,为此我们选择双踪示波器SS-7810 100M。
4.2测试方案与测试结果完整性(1)放大器电压增益测试设置输入信号频率为500kHz,输入信号以信号峰峰值为单位。
输出信号以示波器的输出电压峰峰值为标准,计算出交流增益,增益预置以倍数表示,括号中换算为dB,表1为主要测试数据。
(2)通频带内平坦度测试放大器预置带宽20MHz,输入有效值为20mV,频率0.3~20MHz的电压信号,测试通频带内是否平坦。
表2带宽20M时的通频带平坦度测试结果。
同理,通过预置带宽100MHz,输入有效值为1mV,频率0.3~100MHz的电压信号来测试该通频带内的平坦度,表3为其测试结果。
由表2可得,放大器在1~15MHz 通频带内很平坦,最大起伏出现在10M 频率时,此时增益为20dB 88.19202.197lg=,起伏大小0.12dB dB 1≤;由表3可知放大器在1~80MHz 频带平坦,同理计算最大起伏为0.1dB ,增益起伏dB 1≤,所以均满足题目要求。