1.5.1 第2课时 有理数乘法的运算律

合集下载

七年级上册数学教案设计1.5.1第2课时有理数的混合运算1

七年级上册数学教案设计1.5.1第2课时有理数的混合运算1

第2课时 有理数的混合运算1.掌握有理数混合运算法则,能熟练进行有理数的混合运算,并能合理使用运算律进行简便运算;(难点)2.养成在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要养成验算的好习惯.一、情境导入前面我们学习了有理数的加、减、乘、除和乘方运算,对各种运算的法则、运算律和运算技巧已经比较熟悉,如果遇到有理数的混合运算,你有信心进行准确的计算吗?下图是小玲和小亮的对话,你同意小亮的说法吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5); (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.解:(1)(-5)-(-5)×110÷110×(-5)=(-5)-(-5)×110×10×(-5)=(-5)-25=-30; (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}=-1-{-27-[3+23×(-32)]÷(-2)}=-1-{-27-2÷(-2)}=-1-{-27-(-1)}=-1-(-26)=25.方法总结:有理数的混合运算可用下面的口诀记忆:混合运算并不难,符号第一记心间;加法需取大值号,乘法同正异负添;减变加改相反数,除改乘法用倒数;混合运算按顺序,乘方乘除后加减.探究点二:数字规律探索为了求1+2+22+23+24+…+22015的值,可令S =1+2+22+23+…+22015,则2S =2+22+23+24+…+22016,因此2S -S =22016-1,所以1+2+22+23+…+22015=22016-1,仿照以上推理,那么1+5+52+…+52015=________.解析:观察等式,可发现规律,根据规律即可进行解答.则设S =1+5+52+53+…+52015,5S =5+52+53+54+…+52016,5S -S =52016-1,∴S =52016-14,故填52016-14. 方法总结:解规律性问题的关键在于发现规律,应用规律解题.三、板书设计有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标.在加、减、乘、除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题.小组讨论有理数运算法则后,教师应提醒学生牢固掌握有理数混合运算的几项规定,特别是加入乘方以后,学生对乘方运算不熟悉,容易算成加法或底数与指数相乘.学生在运算符号多的时候容易出错,需要进行针对性讲解.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短3.轮船航行到C 处观测小岛A 的方向是北偏西48°,那么从A 同时观测轮船在C 处的方向是( ) A.南偏东48°B.东偏北48°C.东偏南48°D.南偏东42°4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A.()31001003xx +-= B.()31001003xx --= C.10031003xx -+= D.10031003xx --= 5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( ) A .200元 B .240元 C .250元 D .300元6.3x 的倒数与293x -互为相反数,那么x 的值为( ) A.32 B.32- C.3 D.-37.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是18.如果3x 2m y n+1与﹣12x 2y m+3是同类项,则m ,n 的值为( ) A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣39.下列运算正确的是( ) A .a 2+a 3=a 5B .a 2•a 3=a 5C .(-a 2)3=a 6D .-2a 3b÷ab=-2a 2b10.如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃ B .﹣10℃ C .+5℃ D .﹣5℃ 11.|-2|的倒数是( ) A.2B.-12C.-2D.1212.下列说法中,正确的是( ) A.()23-是负数 B.若x 5=,则x 5=或x 5=- C.最小的有理数是零 D.任何有理数的绝对值都大于零二、填空题13.如果A 站与B 站之间还有C 、D 两个车站,那么往返于A 站与B 站之间的客车应安排_________种车票. 14.在同一平面内,两条直线相交时最多有1个交点,三条直线相交时最多有3个交点,四条直线相交时最多有6个交点,…,那么十条直线相交时最多有____个交点. 15.如果23x +与5互为相反数,那么x 等于___________.16.设一列数1a 、2a 、3a 、…、 a 2010中任意三个相邻数之和都是35,已知a 3=2x,a 20=15,993a x =-,那么a 2011=_________________。

有理数乘法的运算律及运用精品 【公开课教案】

有理数乘法的运算律及运用精品 【公开课教案】

1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.教学重难点:熟练运用运算律进行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)2×3×4×(-5);(2)2×3×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5);(5)-1×302×(-2004)×0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提高【例1】计算(-3)××(-)×(-)×(-8)×(-1).【例2】计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0.导入运算律(1)通过计算:①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=ba;(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论、归纳出乘法结合律;(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式;(6)分组计算、比较:5×[3+(-7)]与5×3+5×(-7)的结果,讨论归纳出乘法分配律;(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.【例3】用简便方法计算:(1)(-5)×89.2×(-2);(2)(-8)×(-7.2)×(-2.5)×.【例4】用两种方法计算(+-)×12.(四)总结反思,拓展升华本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.(五)课堂跟踪反馈夯实基础1.计算题:(1)(-)××(-)×(-2);(2)6.878×(-15)+6.878×(-12)-6.878×(-37);(3)×(-16)×(-)×(-1)×8×(-0.25);(4)(-99)×36.提升能力2.若a、b、c为有理数,且│a+1│+│b+2│+│c+3│=0.求(a-1)(b+2)(c-3)的值.第八章 8.2.2消元——解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为②×5-①,得26y=104,解得y=4.把y=4代入②,得x+20=28,解得x=8.所以原方程组的解为点拨∶对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得∴解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:①+②,得27x+27y=81,化简得x+y=3.③①-②,得-x+y=-1.④③+④,得2y=2,解得y=1.③-④,得2x=4,解得x=2.∴原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:①-②,得3y=-6m,即y=-2m.把y=-2m代入①,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:①×3-②,得2x+7y=0.根据题意可得:解这个方程组,得把代入①,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。

人教版七年级上册数学:第一章《有理数》1.4.1 第2课时《有理数乘法的运算律及运用》

人教版七年级上册数学:第一章《有理数》1.4.1 第2课时《有理数乘法的运算律及运用》
足交换律、结合律和分配律,例如
3×5=5×3 (3×5)×2=3×(5×2) 3×(5+2)=3×5+3×2
引入负数后,三种运算律是否还成立呢?
一、有理数乘法的运算律
合作探究
第一组:
(1) 2×3= 6
3×2= 6
2×3 =3×2
(2) (3×4)×0.25= 3
3×(4×0.25)= 3
(3×4)×0.25 =3×(4×0.25)
(3) 2×(3+4)= 14
2×3+2×4= 14
2×(3+4)= 2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
第二组:
(1)5×(-6) =-30 (-6 )×5= -30 5× (-6) = (-6) ×5
(2)[3×(-4)]×(- 5)=(-12)×(-5) = 60 3×[(-4)×(-5)]= 3×20= 60
2.25 4.-6
课堂小结
1.乘法交换律: 两个数相乘,交换两个因数的位置,积不变. ab=ba 2.乘法结合律: 三个数相乘,先把前两个数相乘,或先把后
(ab)c = a(bc) 两个数相乘,积不变. 3.乘法分配律: 一个数同两个数的和相乘,等于把这个数 a(b+c) = ab+ac 分别同这两个数相乘,再把积相加.
_各__运__算__律__在__有__理__数__范__围__内__仍__然__适__用____.
归纳总结
1.乘法交换律:
数的范围已扩充 到有理数.
两个数相乘,交换两个因数的位置,积相等.
ab=ba
2.乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两个
数相乘,积相等. (ab)c = a(bc)

《有理数的乘法》第2课时精品教案

《有理数的乘法》第2课时精品教案

《有理数的乘法》第2课时精品教案教学目标:1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容.3.能运用运算律较熟练地进行乘法运算.重点:了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.难点:运用运算律简化乘法运算.教学流程:一、知识回顾问题1:有理数乘法法则:答案:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.问题2:填空:2×(-3)=______(-6)×(-4)=______24×(-5)=______答案:-6;24;-120问题引入:想一想:2×(-3)×(-4)×(-5)该如何计算呢?二、探究1问题1:观察下面各式,它们的积是正的还是负的?2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)答案:依次为正数;负数;负数;正数追问:几个不等于0的数相乘,积的符号与负因数的个数之间有什么关系?归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.例:计算591(1)(3)()()654-⨯⨯-⨯-;41(2)(5)6()54-⨯⨯-⨯解:591(1)(3)()()654591365498-⨯⨯-⨯-⨯⨯⨯=--=41(2)(5)6()544156546-⨯⨯-⨯=⨯⨯⨯=追问:多个不是0的数相乘,先做哪一步,再做哪一步?强调:先确定积的符号,再把各个乘数的绝对值相乘,作为积的绝对值. 练习1:1.若五个有理数的积为负数,那么这五个数中负因数的个数是( )A .1B .3C .5D .1或3或5答案:D 2.计算:(1)(5)8(7)(0.25)-⨯⨯-⨯-;5812(2)()()121523-⨯⨯⨯- 解:(1)(5)8(7)(0.25)1587470-⨯⨯-⨯-=-⨯⨯⨯=-5812(2)()()1215235812121523227-⨯⨯⨯-=⨯⨯⨯= 三、探究2问题2:你能看出下式的结果吗?如果能,请说明理由.7.8(8.1)0(19.6)⨯-⨯⨯-归纳:几个数相乘,如果其中有因数为0,积等于0. 练习2:判断下列各式乘积的符号: ①(-3)×(-4)×(+5.5); ②4×(-2)×(-3.1)×(-7); ③(-201)×0×7×(-2);④(-3.7)×(-6)×10×(-5.3)×(-1),其中积为正数的有________,积为负数的有____________,积为0的是_______________.(只填写序号)答案:①④;②;③四、探究3问题3:计算:5×(-6)(-6)×5(-4)×(-3)(-3)×(-4)(-2)×7 7×(-2)追问:两次所得的积相同吗?答案:相等归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:ab=ba强调:a×b也可以写成a·b或ab,当用字母表示乘数时,“×”可以写为“·”或省略.问题4:计算:[3×(-4)]×(-5)3×[(-4)×(-5)]解:[3×(-4)]×(-5)3×[(-4)×(-5)]=(-12)×(-5) =3×20=60 =60追问:你能得出什么结论呢?归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab)c=a(bc)问题5:计算:5×[3+(-7)] 5×3+5×(-7)解:5×[3+(-7)] 5×3+5×(-7)=5×(-4)=15+(-35)=-20 =-20追问:你能得出什么结论呢?归纳:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.分配律:a(b+c)=ab+ac练习3:1.运用运算律填空:(1)[(-4)×5]×(-15)=(-4)×[ ____ ×( ________ )];(2)(-0.25)×21×(-8)×(-17)=[(-0.25)×( ____ )]×[ ____ ×(-17)].答案:5,-15;-8,212.观察下面的计算过程:(13-315+25)×3×5=(13-315+25)×15=5-3+6=8 在上面的计算过程中运用的运算律是( )A .乘法交换律及结合律B .乘法交换律及分配律C .加法结合律及分配律D .乘法结合律及分配律答案:D 五、应用提高例:用两种方法计算:111()12462+-⨯ 解法1:解法2:111()12462326()12121212112121+-⨯=+-⨯=-⨯=-111()124621111212124623261+-⨯=⨯+⨯-⨯=+-=- 练习3: 计算:(1)(85)(25)(4);-⨯-⨯-91(2)()30;1015-⨯71(3)()15(1);87-⨯⨯-62617(4)()()()()5353-⨯-+-⨯+解:(1)(85)(25)(4)85(254)851008500-⨯-⨯-=-⨯⨯=-⨯=-91(2)()301015913030101527225-⨯=⨯-⨯=-=71(3)()15(1)8771()(1)158711515-⨯⨯-=-⨯-⨯=⨯=62617(4)()()()()53536217()[()()]5336()556-⨯-+-⨯+=-⨯-++=-⨯=-六、体验收获今天我们学习了哪些知识? 1.我们学习了哪些乘法运算律?2.进行有理数的乘法运算时,哪些情况下考虑使用乘法运算律呢? 七、达标测评1.下列计算正确的是( )A .(-9)×5×(-4)×0=9×5×4=180B .-5×(-4)×(-2)×(-2)=5×4×2×2=80C .(-12)×(23-14-1)=-8-3-1=-12 D .-2×5-2×(-1)-(-2)×2=-2×(5+1-2)=-8 答案:B2.用简便方法计算:(-23)×25-6×25+18×25+25,逆用分配律正确的是( )A .25×(-23-6+18)B .25×(-23-6+18+1)C .-25×(23+6+18)D .-25×(23+6-18+1)答案:B3. 计算1357×316,最简便的方法是( )A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×316答案:D4. 在等式4×□-2×□=30的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格内的数是________.答案:5 5.计算:(1) (-4)×(-72)×(-0.25)×(-136);(2)(-712-56+1)×(-36);(3) 9992425×(-5).解:(1) (-4)×(-72)×(-0.25)×(-136)=[(-4)×(-0.25)]×[(-72)×(-136)]=1×2 =2(2)(-712-56+1)×(-36)=(-712)×(-36)-56×(-36)+1×(-36)=21+30-36 =1524(3)999(5)251(1000)(5)2511000(5)(5)25150005449995⨯-=-⨯-=⨯--⨯-=-+=-八、布置作业教材38页习题1.4第7(1)(2)(3)题.。

2.2.1 第2课时 有理数乘法的运算律

2.2.1   第2课时 有理数乘法的运算律

③计算:5×[3+(-6)]=___-__1_5_; 5×3+5×(-6)=___-__1_5_; 5×[3+(-6)]___=____5×3+5×(-6). 由上可以发现:一个数与两个数的____和___相乘,等于把这 个数分别与这两个数___相__乘__,再把__积____相加,即a(b+c) =___a_b_+__a_c____.这就是分配律.
【题型二】有理数的乘法运算律
例3:对于算式2 024×(-8)+(-2 024)×(-18),利用分配律写 成积的形式是( C ) A.2 024×(-8-18) B.-2 024×(-8-18) C.2 024×(-8+18) D.-2 024×(-8+18)
例4:用简便方法计算: (1)(-5)×(-9.7)×(-2);
(3)原式=63×(-19)+63×221+63×(-47)=-7+6-36=-37. (4)原式=-151×[(-5)+13-3]=-151×5=-11.
课堂小结
本节课我们学习了哪些知识?
有理数的乘法运算律;多个非零有理数相乘时积的符号与 负乘数个数的关系
通过本节课的学习,我们发现,运算的应用十分灵活,各 种运算律常常是混合应用的,这就要求我们要有较好的掌 握运算律进行计算的能力,能发现最佳解题途径,不断总 结经验,使自己的能力得到提高!
小组讨论
小组合作完成课本43页练习1,2题.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识讲解
知识点1:有理数的乘法运算律(重难点)
运算律
语言叙述
两个数相乘,交换乘数的位置,积 乘法交换律
不变
三个数相乘,先把前两个数相乘, 乘法结合律
或者先把后两个数相乘,积不变
一个数与两个数的和相乘,等于把

人教版七年级数学上册1.有理数乘法的运算律及其应用(第2课时)课件

人教版七年级数学上册1.有理数乘法的运算律及其应用(第2课时)课件

A.加法交换律
B.乘法交换律
C.乘法结合律
D.乘法分配律
4.下列计算中,错误的是( C ) A.-6×(-5)×(-3)×(-2)=180 B.(-36)×16-19-13=-6+4+12=10 C.(-15)×(-4)×+15×-12=6 D.-3×(+5)-3×(-1)-(-3)×2=-3×(5-1-2)=-6
33
解:1+12×1+14×1+16×…×1+210×1-13×1-15×1-17×…×1-211 =32×54×76×…×2210×23×45×67×…×2201=32×23×54×45×76×67×…×2210×2201 =1×1×1×…×1=1.
课堂小结
1.乘法交换律:
数的范围已扩充 到有理数.
D.b>0,c>0
10.计算:(-4)×-115×(-0.25)×23=__-__45___.
11.计算:(1-2)×(2-3)×(3-4)×…×(2019-2020)=_-__1___.
12.若 a+b+c>0,且 abc<0,则 a、b、c 中负数有__1__个.
30
13.用简便方法计算: (1)(-9)×31289+(-8)×-31289; 解:原式=31289×(-9+8)=-31289. (2)(-12.5)×-67×(-4); 解:原式=-(12.5×4)×67=-50×67=-4267.
27
= 71 (9) 2 (9)
27
=
639
(
2) 3
= -639 2
3
21
典例精练
4.下面是小强和小刚两位同学在求 711156×(-8)的值时,各自的解题过程,请 你阅读后回答下面的问题.

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案教学目标1.知识与技能使学生经历探究有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之运算简便.2.过程与方法通过对问题的探究,培养观看、分析和概括的能力.3.情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:熟练运用运算律进行运算.难点:灵活运用运算律.教与学互动设计(一)创设情境,导入新课想一想上一节课大伙儿一起学习了有理数的乘法运算法则,把握得较好.那在学习过程中,大伙儿有没有摸索多个有理数相乘该如何来运算?做一做(出示胶片)你能运算吗?(1)234(-5)(2)23(-4)(-5)(3)2(-3)(-4)(-5)(4)(-2)(-3)(-4)(-5)那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(5)-1302(-2021)0要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

由此我们可总结得到什么?死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

第1章 1.5.1 第2课时 有理数的混合运算

第1章 1.5.1 第2课时 有理数的混合运算
数学 七年级 上册•R
第一章 有理数
1.5 有理数的乘方 1.5.1 乘方
第2课时 有理数的混合运算
有理数的混合运算顺序 有理数加、减、乘、除、乘方的混合运算:(1)先算 乘方 ,后算 乘除 , 最后算加减;(2)同级运算,从 左 到 右 依次进行;(3)如有括号,先算 括号 里面的,按 小 括号, 中 括号, 大 括号依次进行. 自我诊断 1. 计算:2×(-3)3-4÷(-2)+15 时,先算 乘方,再算 乘 法和
(3)2018 不是这列数中的数,因为这列数中,所有的偶数都是负数.
15.(1)计算①11+12-1=
1 2

②31+14-12=
1 12

③51+16-13=
1 30

④71+18-14=
1 56

(2)第 8 个式子为 115+116-18=2410

(3)根据规律填空20117+
1 2018
A.0
B.-54
C.-72
D.-18
4.计算-32+5-8×(-2)时,应该先算 乘方 ,再算 乘法 ,最后算
加减 ,正确的结果为 12 .
5.观察下列按规律排列的等式:0+1=12,2×1+2=22,3×2+3=32,4×3+4 =42,…请你猜想,第 10 个等式应为 10×9+10=102 .
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 9:29:47 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档