4的倍数特征

合集下载

4、6、7、8、9、11、13、27的倍数的特征的倍数的特征

4、6、7、8、9、11、13、27的倍数的特征的倍数的特征

4的倍数的特征在数学王国里,蕴藏着许多鲜为人知,有待于我们去探索,发现的秘密,今天,我就带大家一起去探索4的倍数的特征。

要研究4的倍数的特征,根据我们学习2、3、5倍数特征的经验,我们首先可以列举一些被研究数的倍数。

4的倍数有:8、12、84、128、988、9868、496……观察这些数,如果只看末尾,我们发现0、2、4、6、8都出现过,那么4的倍数是不是就是末尾是0、2、4、6、8的数呢?显然是不正确的,我们随便举一个数,如14,就不是4的倍数,看来只看末尾是不够的。

但4的倍数与2的倍数之间有一定的关系,4=2×2,4的倍数的特征,一定满足2的倍数所具备的特征。

为了更好的研究,我们把4的倍数的最后两位划出来。

4的倍数有:8、12、84、128、988、9868、496……这些最后两位所组成的数与4有什么关系呢?12÷4=3、84÷4=21、28÷4=7、88÷4=22、68÷4=17、96÷4=24……我们发现,4的倍数最后两位组成的数都是4的倍数。

利用这个规律,我们在判断一个数是不是4的倍数,可以直接看这个数的末两位组成的数,如果是 4的倍数,这个数就是4的倍数。

那么大家想想下面哪些数是4的倍数?898、1024、1132、1526、21284的倍数的特征:(1)十位数是奇数且个位数为不是四的倍数的偶数或十位数是偶数且个位数是四的倍数。

(2)若一个整数的末尾两位数能被4整除,则这个数能被4整除,即是4的倍数。

6的倍数的特征:各个数位上的数字之和可以被3整除的偶数。

7的倍数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

2345789125的倍数特征

2345789125的倍数特征

2345789125的倍数特征
2的倍数特征:2的倍数是指能被2整除的数,这些数的最后一位数
字只能是0、2、4、6、8、例如:2、4、6、8、10、12等等。

3的倍数特征:3的倍数是指能被3整除的数,这些数的数字之和能
被3整除。

例如:3、6、9、12、15等等。

4的倍数特征:4的倍数是指能被4整除的数,这些数的最后两位数
字可以被4整除。

例如:4、8、12、16、20等等。

5的倍数特征:5的倍数是指能被5整除的数,这些数的个位数字只
能是0或者5、例如:5、10、15、20等等。

7的倍数特征:7的倍数是指能被7整除的数,这些数的个位数字乘
以2,并减去十位数字,最后的差值能被7整除。

例如:7、14、21、28
等等。

8的倍数特征:8的倍数是指能被8整除的数,这些数的最后三位数
字可以被8整除。

例如:8、16、24、32等等。

9的倍数特征:9的倍数是指能被9整除的数,这些数的数字之和能
被9整除。

例如:9、18、27、36等等。

125的倍数特征:125的倍数是指能被125整除的数,这些数的末尾
三个数字都为0。

例如:125、250、375等等。

以上是2、3、4、5、7、8、9、125的倍数特征,它们都有不同的特
点和规律。

对于这些倍数特征,我们可以利用它们的特点进行判断和计算,方便做数学题目和解决实际问题。

2、3、4、5、7、8、9、11、13、25、125的倍数的特征

2、3、4、5、7、8、9、11、13、25、125的倍数的特征

2、3、4、5、7、8、9、11、13、25、125的倍数的特征2的倍数特征:
整数末尾是0、2、4、6、8、……的数。

3的倍数特征:
整数各个位数字和是3的倍数。

例如:3、6、9、12、15、18……、156……
4的倍数特征:
整数末两位被4整除。

例如:124、764、1148……
5的倍数特征:
整数的末尾是0或5的数。

7的倍数特征:
整数末三位与前⼏位的差是7的倍数。

8的倍数特征:
整数末三位是8的倍数。

9的倍数特征:
整数各个位数字和是9的倍数。

11的倍数特征:
①整数末三位与前⼏位的差是11的倍数。

②整数奇数位数字之和与偶数位数字之和的差是11的倍数。

13的倍数特征:
整数末三位与前⼏位的差是13的倍数。

25的倍数特征:
整数末两位是25的倍数。

125的倍数特征:
整数末三位是125的倍数。

数学日记--倍数特征作文600字

数学日记--倍数特征作文600字

数学日记--倍数特征作文600字这学期,我们学习了倍数特征,分别是2、3、5的倍数特征。

我们先来复习一下吧。

2的倍数特征:个位上是2、4、6、8、0。

都是偶数。

3的倍数特征:各位相加的和是3的倍数。

5的倍数特征:个位上是5或0。

通过我的查找,我还发现了4、6、7、8、9、11的倍数特征。

4的倍数的特征:(1)十位数是奇数且个位数为不是四的倍数的偶数或十位数是偶数且个位数是四的倍数。

(2)若一个整数的末尾两位数能被4整除,则这个数能被4整除,即是4的倍数。

6的倍数的特征:各个数位上的数字之和可以被3整除的偶数。

7的倍数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

8的倍数的特征:数字的末三位能被8整除的数。

9的倍数的特征:任何正整数的9倍,其各位数字之和是9的倍数,如果继续将各位数字连加最后必然会等于9。

11的倍数的特征:一种是:11的倍数奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是0或是11的倍数。

另外一种答案是:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1。

日记:昨天,我和奶奶去超市购物,奶奶一共选了3包洗衣粉(因为走得匆忙,所以只看清了洗衣粉单价是自然数。

)收银员阿姨说一共76元。

我用3的倍数特征验证,发现结果有问题:按3的倍数特征7+6=13并不是3的倍数。

而洗衣粉的单价又是自然数,所以更不可能是76元。

4、6、7、8、9、 11、13、17、19、23、29的倍数特征ppt课件

4、6、7、8、9、 11、13、17、19、23、29的倍数特征ppt课件

▪ (三)11的倍数检验法也可用上述检查7
的(割尾法)处理!过程唯一不同的是:
倍数不是2而是1。
7
▪ 例如:
▪ 判断165是否11的倍数的过程如下: ▪ 16-5=11,所以165是11的倍数;
▪ 又例如判断2112是否11的倍数的过程如下: 211-2=209 , 20-9=11,所以2112 是11的倍数,依次类推。
15
23的倍数的特征:
▪ 若一个整数的末四位与前面5倍的隔出数 的差能被23整除,则这个数能被23整除。 (注:这里的隔出数,是一个数扣除末四 位后剩下的数字。)
▪ 例如:判断2271595是否23的倍数的过程 如下:
▪ 1595-227×5=460,460是23的倍数, 所以2271595是23的倍数。
4、6、7、8、9、 11、13、17、 19、23、29的 倍数特征
1
4的倍数的特征:
▪ 若一个整数的末尾两位数能被4整除,则 这个数能被4整除,即是4的倍数 。
2
6的倍数的特征:
▪ 各个数位上的数字之和可以被3整除的偶 数。
3
7的倍数的特征:
▪ 若一个整数的个位数字截去,再从余下的数中, 减去个位数的2倍,如果差是7的倍数,则原数 能被7整除。如果差太大或心算不易看出是否7 的倍数,就需要继续上述(截尾、倍大、相减、 验差)的过程,直到能清楚判断为止。
14
▪ ②若一个整数的末三位与7倍的前面的隔 出数的差能被19整除,则这个数能被19整 除。(注:隔出数,就是一个数扣除末三 位后剩下的数字。例如5012的隔出数就是 5;12590的隔出数就是12。)
▪ 例如:判断21128是否19的倍数的过程如 下:
▪ 21×7-128=19,所以21128是19的倍数。

4的倍数特征实验报告单

4的倍数特征实验报告单

4的倍数特征实验报告单实验目的:本实验旨在探究4的倍数的特征,并通过实验数据分析和归纳总结得出相关结论。

实验材料:1. 20张白纸2. 铅笔3. 计算器实验步骤:1. 将20张白纸按照一定的格式排列,比如每张纸上画三个小矩形。

2. 在第一个小矩形内随机写入一个个位数数字,数字可以重复出现。

3. 统计在四个小矩形内出现4的倍数的个数,并记录在每张纸上。

4. 将每张纸上记录的数据进行汇总并计算得出4的倍数出现的频率。

5. 对实验数据进行分析和归纳总结得出结论。

实验结果:经过统计和计算,在20张纸上统计到的4的倍数出现的个数为:12、8、9、13、11、7、10、15、12、9、8、14、10、12、11、9、13、8、11和12个,共计198个。

经过计算,20张纸上4的倍数出现的频率为:0.06、0.04、0.045、0.065、0.055、0.035、0.05、0.075、0.06、0.045、0.04、0.07、0.05、0.06、0.055、0.045、0.065、0.04、0.055和0.06。

通过对实验数据的分析和归纳总结,可以得出以下结论:1. 出现4的倍数的频率在不同的样本中有一定的差异,但总体上来说,4的倍数出现的频率较稳定并且相对均衡。

2. 在20张纸样本中,4的倍数出现的个数大多在10个左右,少数在5个以下或15个以上。

3. 在20张纸样本中,4的倍数出现的频率在0.04~0.075之间,呈现出比较均衡的分布。

4. 在20张纸样本中,4的倍数与出现的位置没有明显的规律性可言,出现在不同的位置上。

结论:本次实验的结果表明,4的倍数具有较为稳定的出现频率,并且在样本中呈现较为均衡的分布,与出现的位置没有明显的规律性可言。

2、3、4、5、6、7、8、9、11、12、13、15、17、25、125的倍数特征

2、3、4、5、6、7、8、9、11、12、13、15、17、25、125的倍数特征

2、3、4、5、6、7、8、9、11、12、13、15、17、25、125的倍数特征2的倍数特征:个位是0、2、4、6、8的数。

3的倍数特征:各数位上数的和是3的倍数。

4的倍数特征:一个数的末两位数是4的倍数,那么这个数就是4的倍数.5的倍数特征:个位是0或5的数6的倍数特征:个位是偶数,且各数位之和是3的倍数。

7的倍数特征:1、一个数的末三位数与末三位数之前的数字组成的数之差(用大数减小数)是7的倍数,这个数就是7的倍数。

2、若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大不易看出是否7的倍数,就需要继续上述过程,直到能清楚判断为止。

举例:判断133是否7的倍数的过下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程下:613-9×2=595,59-5×2=49,所以6139是7的倍数,其余类推。

8的倍数的特征:一个数的末三位数是8的倍数,那么这个数就是8的倍数。

9的倍数特征:各个数位上数的和是9的倍数。

11的倍数特征:把一个数从右往左数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原数就一定能被11整除。

12的倍数特征:各数位上数的和是3的倍数,且这个数的末两位数是4的倍数。

13的倍数特征:1、一个数末三位数与末三位以前的数字所组成的数之差,如果是13的倍数,那么这个多位数就一定是13的倍数。

2、若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果和太大不易看出是否13的倍数,就需要继续上述过程,直到能清楚判断为止。

15的倍数特征:个位是0或5的数,且各数位上数的和是3的倍数。

17的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

1~13的倍数特征

1~13的倍数特征

1~13的倍数特征(含有示例)1的倍数特征:任何不为0的整数都是1的倍数。

2的倍数特征:个位是0、2、4、6、8中的一个。

3的倍数特征:各数位之和是3的倍数。

例子:判断53601是不是3的倍数。

因为5+3+6+0+1=15,15是3的倍数,所以53601也是3的倍数。

4的倍数特征:十位与个位组成的两位数是4的倍数。

例子:判断839456是不是4的倍数。

因为十位与个位组成的两位数是56,而56是4的倍数,所以839456是4的倍数。

5的倍数特征:个位是0或5。

6的倍数特征:既是2的倍数,又是3的倍数。

7的倍数特征:把个位数截去得到一个新数,再减去个位数的2倍,如果差是7的倍数,则原来的数是7的倍数。

例子1:判断826是不是7的倍数。

把个位数6截去,得到82,然后82-6×2=70,而70是7的倍数,所以826也是7的倍数。

把个位数3截去,得到17492,然后17492-3×2=17486,所以17486与174923在这个问题上有一致性。

把17486的个位数6截去,得到1748,然后1748-6×2=1736,所以1736与17486在这个问题上有一致性。

把1736的个位数6截去,得到173,然后173-6×2=161,所以161与1736在这个问题上有一致性。

把161的个位数1截去,得到16,然后16-1×2=14,因为14是7的倍数,所以174923也是7的倍数。

8的倍数特征:百位、十位、个位数组成的三位数是8的倍数。

例子:判断9428520是不是8的倍数。

因为百位、十位、个位数组成的三位数是520,而520是8的倍数,所以9428520也是8的倍数。

9的倍数特征:各数位之和是9的倍数。

例子:判断85014是不是9的倍数。

因为8+5+0+1+4=18,而18是9的倍数,所以85014也是9的倍数。

10的倍数特征:个位是0。

11的倍数特征:奇数数位上的数之和与偶数数位上的数之和的差等于11或0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
'.4的倍数的特征
一、末尾只能是0、2、4、6、8
4的倍数有:8、64、128、256、512、2000……观察这些数,如果只看末尾,发现0、2、4、6、8都出现过,
二、最后两位组成的数都是4的n(n=0、1、2、3、4.........)倍
那么4的倍数是不是就是末尾是0、2、4、6、8的数呢?显然是不正确的,如34,就不是4的倍数,所以只看末尾是不够的。

但4的倍数与2的倍数之间有一定的关系,4=2×2,4的倍数的特征,一定满足2的倍数所具备的特征。

把4的倍数的最后两位划出来。

的数与4有什么关系呢?
64÷4=16 28÷4=7、56÷4=14、12÷4=3 00÷4=0……
发现,4的倍数最后两位组成的数都是4的倍数。

利用这个规律,我们在判断一个数是不是4的倍数,可以直接看这个数的末两位组成的数,如果是 4的倍数,这个数就是4的倍数。

相关文档
最新文档