低氮燃烧器介绍
低氮燃烧器的工作原理简介

低氮燃烧器的工作原理简介许多低氮燃烧器包括增加的烟气再循环(FGR),可进一步减轻氮氧化物排放并使之小化。
一、低氮燃烧器的工作原理:许多低氮燃烧器包括增加的烟气再循环(FGR),可进一步减轻氮氧化物排放并使之小化。
FGR率通常可能占锅炉烟气总流量的5%到30%。
可以将FGR引入FD风扇(通常称为IFGR),并在进入燃烧器/风箱之前与燃烧空气混合。
IFGR的加入增加了FD(和ID)风扇的质量流量要求,同时增加了熔炉和系统的压降。
检查现有的FD风扇(和ID风扇,如果适用)非常重要,以确保现有的燃烧空气和烟气系统能够适应新设备和性能要求。
在运行中的现有风扇不足以满足和超过新性能指标的应用中,需要研究使用更大的风扇和电动机,使用单独的FGR风扇或减少加热炉容量。
检查周围现有风扇容量的动态。
当前大多数低排放燃烧器都需要相对较高的空气侧压降,以在燃烧器本身内实现所需的燃料/空气分级。
基于此设计考虑,压降可能会远高于原始燃烧器的设计。
压降的动态通常称为“寄存器吃水损失”或RDL。
新的RDL要求必须审查现有的强制通风风扇,以确保风扇能够提供静压以适应新的燃烧器系统。
应该由燃烧器供应商来承担责任,以根据主题风扇曲线的查看和显示系统压降的锅炉运行数据的查看或通过对现有风扇进行静压测试的性能来查看并确认现有FD风扇的功能。
低氮燃烧器的改造能够给石油化工行业带来降低过量空气系数和组织过量燃烧可以降低燃料周围的氧浓度。
在残留空气较少的环境中,降低峰值温度以降低热反射氮氧化物;在低氧浓度环境下,可燃物在火焰前峰和反应区的停留时间增加。
二、低氮燃烧器改造的考虑因素:与许多现有燃烧器设计进行正面对比时,低氮燃烧器具有显着差异-与不同的燃料/空气混合设计,内部尺寸,压降要求,火焰几何形状和控制要求有关。
在预算,选择和安装新的燃烧器时,所有这些都需要进行彻底的审查和审查。
低氮燃烧器构造

低氮燃烧器构造低氮燃烧器是一种可以减少燃烧过程中氮氧化物排放的燃烧设备。
它通过优化燃烧过程,使燃料充分燃烧,从而减少氮氧化物的生成。
下面将介绍低氮燃烧器的构造。
一、燃烧器主体结构低氮燃烧器的主体结构一般包括燃烧器壳体、燃烧器头、燃烧器内部部件等。
燃烧器壳体通常由金属材料制成,具有良好的耐高温性能和耐腐蚀性能。
燃烧器头则是连接燃烧器和燃烧室的部件,其设计形式和尺寸会根据实际应用需求进行调整。
燃烧器内部部件包括燃烧器喷嘴、燃气管道、混合器等,这些部件的设计和排列方式对燃烧效果有重要影响。
二、燃气喷嘴燃气喷嘴是低氮燃烧器的关键部件之一。
它的主要作用是将燃气喷射进燃烧器内部,与空气充分混合并形成可燃气体。
燃气喷嘴的结构设计要考虑燃气的流动特性和喷射速度,以确保喷气效果良好。
常见的燃气喷嘴类型有孔板喷嘴、喷管喷嘴等,不同类型的喷嘴适用于不同的工况需求。
三、风管和风门低氮燃烧器还需要辅助空气来参与燃烧过程,以提高燃烧效率和降低氮氧化物的生成。
风管和风门是控制辅助空气进入燃烧器的关键部件。
风管将外部空气引入燃烧器内部,而风门则调节空气的流量和进气位置。
优化风管和风门的设计可以实现辅助空气的均匀分布,提高燃烧效果。
四、混合器混合器是将燃气和空气充分混合的设备。
它通常由多个喷嘴和导流板组成,通过引导和分散气流来实现燃气和空气的混合。
混合器的设计要考虑到燃气和空气的流动速度、角度和分布均匀性等因素,以确保混合效果良好。
五、点火装置低氮燃烧器的点火装置通常采用电气点火方式。
点火装置的主要作用是在燃气和空气混合后,提供一个可靠的点火源,使混合气体快速燃烧起来。
点火装置通常由点火电极、高压发电机和控制系统等组成,通过高压电弧点火的方式实现燃烧器的点火。
低氮燃烧器的构造包括燃烧器主体结构、燃气喷嘴、风管和风门、混合器以及点火装置等部件。
这些部件通过精心设计和组合,可以实现燃烧过程的优化,减少氮氧化物的排放。
低氮燃烧器在工业生产和环保方面发挥着重要作用,对于提高燃烧效率、降低污染物排放具有重要意义。
低氮燃烧介绍

低氮燃烧介绍氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。
低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。
浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。
根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。
简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。
在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。
关键字:燃烧条件NOx NOx燃烧技术低NOx燃烧器用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。
在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。
目前主要有以下几种:1.低过量空气燃烧使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。
这是一种最简单的降低NOx 排放的方法。
一般可降低NOx排放15-20%。
但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。
因此在锅炉设计和运行时,应选取最合理的过量空气系数。
2.空气分级燃烧基本原理是将燃料的燃烧过程分阶段完成。
在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。
此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。
10t锅炉低氮燃烧器规格型号

10t锅炉低氮燃烧器规格型号
摘要:
一、10t 锅炉低氮燃烧器的概述
二、10t 锅炉低氮燃烧器的规格型号
三、10t 锅炉低氮燃烧器的优点
四、10t 锅炉低氮燃烧器的应用范围
五、10t 锅炉低氮燃烧器的市场前景
正文:
一、10t 锅炉低氮燃烧器的概述
10t 锅炉低氮燃烧器是一种新型的燃烧器,主要作用是在燃烧过程中降低氮氧化物的排放。
它适用于各种10 吨锅炉的燃烧系统,能够有效地减少燃烧过程中产生的氮氧化物,达到环保排放的要求。
二、10t 锅炉低氮燃烧器的规格型号
10t 锅炉低氮燃烧器的规格型号根据锅炉的容量和燃料的类型来选择。
常见的规格型号有:10t/h 燃气锅炉低氮燃烧器、10t/h 燃油锅炉低氮燃烧器、10t/h 燃煤锅炉低氮燃烧器等。
三、10t 锅炉低氮燃烧器的优点
10t 锅炉低氮燃烧器具有以下优点:
1.低氮排放:采用先进的燃烧技术,使燃烧过程中的氮氧化物排放降低,达到环保要求。
2.高效节能:优化的燃烧过程,使燃料充分燃烧,提高燃烧效率,降低能
耗。
3.稳定性强:采用先进的控制系统,保证燃烧过程的稳定性,减少故障率。
4.操作简便:燃烧器操作简单,易于上手,运行维护方便。
四、10t 锅炉低氮燃烧器的应用范围
10t 锅炉低氮燃烧器广泛应用于各种10 吨锅炉的燃烧系统,如燃气锅炉、燃油锅炉、燃煤锅炉等。
适用于化工、冶金、纺织、食品、医药等行业。
五、10t 锅炉低氮燃烧器的市场前景
随着国家对环保的重视,以及锅炉排放标准的日益严格,10t 锅炉低氮燃烧器的市场需求将不断增加。
低氮燃烧器 氮氧化物超标

低氮燃烧器氮氧化物超标低氮燃烧器是一种针对工业燃烧过程中氮氧化物(NOx)排放量较低的燃烧器。
氮氧化物是一类对大气环境有害的污染物,其排放会导致酸雨、光化学烟雾等环境问题,并且对人体健康也有一定影响。
为了减少氮氧化物的排放量,低氮燃烧器采用了一系列技术措施,如优化燃烧过程、改变燃烧器结构和调节燃料供给等。
然而,即使采用了低氮燃烧器,氮氧化物的排放量仍有可能超标。
造成低氮燃烧器氮氧化物超标的原因可能有以下几个方面:1. 燃烧器设计不合理:低氮燃烧器的设计需要考虑燃烧过程的稳定性和燃烧效率,如果设计不合理,可能导致燃烧不充分或者燃烧温度过高,从而增加氮氧化物的生成。
2. 运行参数不当:燃烧器的运行参数对氮氧化物的生成有一定影响,如果操作不当,比如燃料供给过多或者空气过少,都可能导致氮氧化物的超标排放。
3. 原料质量问题:燃烧器使用的燃料和氧气等原料的质量也会影响氮氧化物的生成量,如果原料中含有较高的氮含量,那么在燃烧过程中就会产生更多的氮氧化物。
针对低氮燃烧器氮氧化物超标的问题,可以采取以下措施进行改善:1. 优化燃烧器设计:针对具体的燃烧器类型和应用场景,进行合理的燃烧器设计,包括燃烧室结构、喷嘴布置和气流调节等方面,以提高燃烧效率和减少氮氧化物的生成。
2. 调整燃烧器运行参数:通过合理的调整燃料和空气的供给量,控制燃烧过程中的温度和氧气浓度,以减少氮氧化物的形成和排放。
3. 优化原料质量:选择低氮含量的燃料和高纯度的氧气作为燃烧器的原料,可以降低氮氧化物的生成量。
4. 定期检修和维护:燃烧器的定期检修和维护非常重要,包括清洗燃烧室、更换损坏的部件和调整喷嘴等,以确保燃烧器的正常运行,并避免氮氧化物超标排放的问题。
需要注意的是,针对具体的低氮燃烧器和燃烧工艺,解决氮氧化物超标的问题需要通过实际情况进行综合分析和技术调整。
在设计和运行过程中,建议遵循相关的环保法规和标准,确保燃烧过程中的氮氧化物排放量符合要求。
LNB低氮燃烧器

LNB低氮燃烧器摘要:低NOx燃烧器是指燃料燃烧过程中NOx排放量低的燃烧器,采用低NOx 燃烧器能够降低燃烧过程中氮氧化物的排放。
脱硝技术可分为燃烧改造和烟气脱硝2种形式。
燃烧改造是指改变炉膛内的燃烧工况,通常包括安装低氮燃烧器(lowNOxburner,LNB)、应用燃尽风(overfireair,OFA)以及应用再燃技术。
燃烧改造的优点是改造和运行成本低,所以,被美国国家环境保护局(U.S.EnvironmentalProtectionAgency,EPA)定为最佳改造技术(bestavailableretrofittechnology,BART)之一,中国也将低氮燃烧定为首要改造手段。
低NOx燃烧器是指燃料燃烧过程中NOx排放量低的燃烧器,采用低NOx燃烧器能够降低燃烧过程中氮氧化物的排放。
传统的燃烧器为富氧燃烧,化学当量比在燃烧器出口约为1.2,即有20%的剩余空气量。
炉膛出口氧量为3%~4%,在富氧燃烧的状态下,容易达到稳定和完全燃烧,因而对飞灰未燃碳和CO等可燃物的排放有所控制,但是,富氧燃烧也使煤的氮成分与氧在高温下反应生成NOx。
为了降低NOx的生成,LNB延迟煤粉与氧气的充分混合,使得在LNB出口为富燃料燃烧,由于在火焰最高温处缺氧,NOx的生成大大减少。
墙式炉LNB把高旋转的二次风分成低旋转二次风和高旋转三次风。
低旋转风可减少煤粉与风的混合量,使得化学当量比在火焰中心低于1。
GE能源公司的LNB装有火焰稳定器、空气调节阀和可调空气旋转叶片等,燃烧器设计了燃气和燃油的功能。
四角切向炉的LNB在欧美通常是通过对二次风加偏角并把部分二次风从燃烧器中移到燃烧器上部(即燃烧区下游)以延迟空气和煤粉的混合。
中国的低氮燃烧技术多为浓淡分离,即在燃烧器内部将煤粉分为外淡内浓,使炉膛中心为富燃料燃烧,炉膛壁附近为富氧燃烧。
LNB的设计关键为稳定火焰。
因为在燃烧器出口空气供应不足,火焰有可能脱离燃烧器或火焰过长,导致燃烧不完全。
低氮燃烧器原理

低氮燃烧器原理低氮燃烧器是一种用于工业锅炉和热风炉等设备的燃烧设备,其主要作用是在燃烧过程中减少氮氧化物的排放。
低氮燃烧器的原理是通过优化燃烧过程,控制燃烧温度和燃烧空气比,从而降低氮氧化物的生成。
本文将从低氮燃烧器的工作原理、优点及应用进行详细介绍。
低氮燃烧器的工作原理主要包括以下几个方面:1. 燃烧空气预混,低氮燃烧器采用预混燃烧技术,将燃料和空气提前混合,形成均匀的燃气混合物。
通过预混燃烧,可以有效控制燃烧温度,减少氮氧化物的生成。
2. 燃烧温度控制,低氮燃烧器通过优化燃烧过程,控制燃烧温度在适当范围内,避免高温燃烧产生大量氮氧化物。
同时,通过调节燃烧空气比,使燃烧过程更加充分,减少未完全燃烧产生的氮氧化物。
3. 燃烧稳定性,低氮燃烧器设计合理,燃烧稳定性好,能够保持长时间稳定的燃烧状态,减少燃烧过程中的氮氧化物排放。
低氮燃烧器相比传统燃烧器有以下优点:1. 降低氮氧化物排放,低氮燃烧器通过优化燃烧过程,有效降低氮氧化物的排放,符合环保要求。
2. 提高燃烧效率,低氮燃烧器采用预混燃烧技术,燃烧效率高,燃料利用率提高,节能环保。
3. 稳定可靠,低氮燃烧器设计合理,燃烧稳定性好,运行可靠,减少了燃烧设备的故障率。
低氮燃烧器在工业锅炉、热风炉等设备中得到了广泛应用,特别是在一些对燃烧排放有严格要求的行业,如电力、化工、钢铁等领域,低氮燃烧器的应用更加普遍。
通过使用低氮燃烧器,不仅可以满足环保要求,还可以提高燃烧效率,降低能源消耗,为企业节约成本,提高经济效益。
综上所述,低氮燃烧器通过优化燃烧过程,控制燃烧温度和燃烧空气比,有效降低氮氧化物的排放。
其在工业锅炉、热风炉等设备中的应用,不仅可以满足环保要求,还可以提高燃烧效率,降低能源消耗,具有重要的经济和社会意义。
希望通过本文的介绍,读者对低氮燃烧器的原理有了更深入的了解,为相关行业的工程技术人员提供一定的参考价值。
低NOx燃烧器

低NOx燃烧器1、工业用低氮燃烧器(1)促进混合型低氮燃烧器其结构如下图所示:它是美国为阿波罗登月号着陆用发动机而设计的,由于燃料呈细流与空气垂直混合,故混合快而均匀,燃烧温度也均匀。
若干小火焰组成很薄的钟形火焰,很快被冷却,燃烧温度低。
火焰薄,烟气在高温区停留时间也短。
该燃烧器的特点是负荷变化50%~100%以内,火焰长度基本不变。
氮氧化物随过剩空气系数减少,降低不多。
在低过剩空气量下燃烧稳定,CO排量小。
适合中小型工业锅炉。
(2)分割火焰型低氮燃烧器最简单的形式是在喷嘴处开数道沟槽将火焰分割成若干个小火焰,如下图所示:由于火焰小,散热面积大,燃烧温度降低和烟气在火焰高温区的停留时间缩短,故抑制了氮氧化物的生成,一般可降低40%。
(3)烟气自身再循环型低氮燃烧器其结构如下图所示:利用燃气和空气的喷射作用将烟气吸入,使烟气在燃烧器内循环。
由于烟气混入,降低燃烧过程氧的浓度,降低燃烧温度,防止局部高温产生和缩短了烟气在高温区的停留时间。
(4)阶段燃烧型低氮燃烧器最简单阶段型低氮燃烧如下图所示:是空气进行分段供给。
也有燃料进行分段供给的,其效果比空气分段供给更好些。
(5)组合型低氮燃烧器组合型就是将上述方式进行组合,一般结构比较复杂。
下图是SNT型低氮燃烧器:其特征是:燃气从中心供入,空气以强旋转气流在燃气流周围供入。
在强空气旋转气流作用下,加速了燃气与空气的混合,增加了混合均匀性,促进了燃烧反应,防止局部高温的产生,使火焰具有均匀的较低的温度水平。
强烈的混合还可降低过剩空气,可在低过剩空气系数下实现完全燃烧。
空气的旋流,在火道出口产生回流区,形成烟气的自身循环,不仅起到稳定火焰和加速燃烧反应作用,同时降低燃烧区温度和氧气浓度的作用。
比较狭窄的圆柱形火道,可以防止燃气在高温火道内燃烧。
大量燃气流出火道后在火道出口处及炉膛内燃烧,火焰处于炉膛内,散热条件好,燃烧温度有所降低。
氮氧化物的生成实现了多种方法的抑制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、一次风布置:集中布置改为间隔布置,间距 600mm变为1400mm。
4、一次风由原来的侧边风改为周界风。 5、各喷口风率和风速进行调整。 6、增加分离燃尽风及打焦孔。 7、水冷壁采用水冷套结构,原燃烧区不在敷设浇 注料(主燃烧器每屏管屏为35根,Ø60*6.5 20G管子组成。#1、#3
角分离燃尽风管屏为16根,Ø60*6.5 20G管子组成,#2、#4角分离燃 尽风管屏为14根,Ø60*6.5 20G管子组成。)。
8、一次风和三次风标高更改燃烧器与水冷壁之间为高强度法兰连接。 11、等离子点火系统升级。 12、三次风取消冷却风,增加周界风(周界风起冷却 作用,正常运行时周界风门全开)。 13、一次风改为可拆卸式结构,在炉外可进行一 次风检修工作,方便检查检修工作。 14、钢结构、平台扶梯、导向装置。 15、每角增设4只电动调节风门方便远程操作。
(由下往上为:下二次风<微油点火>—一次风—中下二次风<正切10 度布置,有效防止结焦及降低氮氧化物生成>—一次风—中二次风<微 油点火>—一次风<等离子点火>—中上二次风<正切10度布置,有效防 止结焦及降低氮氧化物生成>—一次风—上二次风<反切15度布置,形 成反向动量矩,减少炉膛出口烟温偏差>—三次风—三次风)。
在这样较低过量空气系数下燃烧,燃料型NOx生成会得到 有效抑制,较低的温度可在根本上抑制温度型NOx的产生, 从而达到降低NOx的目标。
八、操作:
1、正常运行时需要调节NOx时,首先用分离燃尽 风风量调节。缓慢开大四角燃烧器二次风门电动调 门,直至全开。 2、如分离燃尽风二次风门全开仍降不到要求 值(450mg/Nm3)以下。那么就要进行喷口调节。 3、调节分离燃尽风喷口时,先将分离燃尽风 二次风门关小,然后将将喷口向下调节一格。观察 燃烧稳定,开始开大分离燃尽风二次风门。 4、喷口上下可用于调节炉膛出口烟温偏差。
目录
一、改造的目的。 二、NOx主要包括哪些。 三、燃烧过程中NOx生成的机理。 四、煤粉炉NOx生成的机理。 五、降低NOx的办法。 六、本次燃烧改造的范围(技术)。 七、改造后降低NOx排放的原理。 八、操作。
一、改造的目的:
本锅炉采用四角切向布置直流式煤粉燃烧器,因运行过程中燃烧器及炉膛结焦严重, 给锅炉安全运行带来隐患,同时为满足国家环保要求,降低 NOX原始排放浓度,对燃烧 器进行了改造。
二、氮氧化物主要包括哪些: 1、一氧化二氮(N2O) 2、一氧化氮 (NO) 3、二氧化氮(NO2) 4、三氧化二氮 (N2O3) 5、四氧化二氮(N2O4) 6、五氧化二氮(N2O5)等
三、燃烧过程中NOx生成的机理: 1、物料型: 有物料中的氮氧化物热分解后氧化产生。 2、快速型: 由空气中的N2与燃料中的碳氢离子团等反 应生成。 3、热力型: 空气中的N2在高温下氧化而成。
四、煤粉炉NOx的生成机理:
NOx:煤粉炉氮氧化物主要是NO和NO2 锅炉氮氧化物主要为NO约占95%,NO2仅占5%左 右。 燃料燃烧生成的NO来源: 一、燃烧所用空气(助燃空气)中氮的氧化 (“热反应NO”); 二、燃料中所含氮化物在燃烧过程中热分解再 氧化(“燃料型NO”)。 三、“瞬发型NO”(前面第二项)。
七、改造后降低NOx排放的原理:
将一次风由集中布置改为间隔布置,并使整个炉膛分 区燃烧分别是燃烧区、NOx还原区、然尽区三个区域。每 个区域合理的控制过量空气系数。并采用了上下、左右可 调喷口,不但降低了NOx的排放,而且还可以通过调风, 调喷口控制烟温偏差。有效降低NOx排放的同时,还能最 大限度的提高燃烧效率。同时对中下二次风(第三层)、 中上二次风(第七层)、上二次风(第九层)喷口进行合 理偏置,不但控制主燃烧区风粉分级混合,同时使逆向冲 向上游来的煤粉气流,在此区域着火燃烧,有利于燃烧的 稳定和燃尽。在二次偏置的作用下使燃烧区形成风包粉, 防止高温煤粉冲刷水冷壁及结焦。
五、降低NOx的办法: 1、选用N含量较低的燃料; 2、降低空气过剩系数,组织过浓燃烧,来降低 燃料周围氧的浓度; 3、在过剩空气少的情况下,降低温度峰值以减 少“热反应NO”; 4、在氧浓度较低情况下,增加可燃物在火焰前 峰和反应区中停留的时间。
六、本次燃烧器改造的范围(技术): 1、燃烧器切圆由原来的φ 579mm/731mm改为 φ 482mm(#1、#3角与侧墙50。夹角)/622mm(#2、#4角与侧墙 45。夹角),逆时针旋转方向。 2、主燃烧器总高度由原来的5660mm改为6970mm