低氮燃烧器
低氮燃烧器的工作原理简介

低氮燃烧器的工作原理简介许多低氮燃烧器包括增加的烟气再循环(FGR),可进一步减轻氮氧化物排放并使之小化。
一、低氮燃烧器的工作原理:许多低氮燃烧器包括增加的烟气再循环(FGR),可进一步减轻氮氧化物排放并使之小化。
FGR率通常可能占锅炉烟气总流量的5%到30%。
可以将FGR引入FD风扇(通常称为IFGR),并在进入燃烧器/风箱之前与燃烧空气混合。
IFGR的加入增加了FD(和ID)风扇的质量流量要求,同时增加了熔炉和系统的压降。
检查现有的FD风扇(和ID风扇,如果适用)非常重要,以确保现有的燃烧空气和烟气系统能够适应新设备和性能要求。
在运行中的现有风扇不足以满足和超过新性能指标的应用中,需要研究使用更大的风扇和电动机,使用单独的FGR风扇或减少加热炉容量。
检查周围现有风扇容量的动态。
当前大多数低排放燃烧器都需要相对较高的空气侧压降,以在燃烧器本身内实现所需的燃料/空气分级。
基于此设计考虑,压降可能会远高于原始燃烧器的设计。
压降的动态通常称为“寄存器吃水损失”或RDL。
新的RDL要求必须审查现有的强制通风风扇,以确保风扇能够提供静压以适应新的燃烧器系统。
应该由燃烧器供应商来承担责任,以根据主题风扇曲线的查看和显示系统压降的锅炉运行数据的查看或通过对现有风扇进行静压测试的性能来查看并确认现有FD风扇的功能。
低氮燃烧器的改造能够给石油化工行业带来降低过量空气系数和组织过量燃烧可以降低燃料周围的氧浓度。
在残留空气较少的环境中,降低峰值温度以降低热反射氮氧化物;在低氧浓度环境下,可燃物在火焰前峰和反应区的停留时间增加。
二、低氮燃烧器改造的考虑因素:与许多现有燃烧器设计进行正面对比时,低氮燃烧器具有显着差异-与不同的燃料/空气混合设计,内部尺寸,压降要求,火焰几何形状和控制要求有关。
在预算,选择和安装新的燃烧器时,所有这些都需要进行彻底的审查和审查。
低氮燃烧器工作原理

低氮燃烧器工作原理
低氮燃烧器是一种能够有效控制燃烧过程中氮氧化物排放的设备,它在工业生
产和环保领域中具有重要的应用价值。
低氮燃烧器的工作原理是通过优化燃烧过程,降低燃烧温度和氧化剂的使用量,从而减少氮氧化物的生成。
本文将深入探讨低氮燃烧器的工作原理,帮助读者更好地理解这一关键设备。
首先,低氮燃烧器通过优化燃烧过程来降低燃烧温度。
在传统燃烧过程中,燃
料在高温条件下与空气中的氮气发生反应,生成大量的氮氧化物。
而低氮燃烧器采用先进的燃烧控制技术,通过控制燃烧温度,使燃料在较低的温度下燃烧,从而减少氮氧化物的生成。
其次,低氮燃烧器通过减少氧化剂的使用量来降低氮氧化物的排放。
在传统燃
烧过程中,为了确保燃料完全燃烧,通常需要大量的氧化剂参与燃烧反应。
然而,过多的氧化剂会导致燃烧温度升高,从而增加氮氧化物的生成。
低氮燃烧器通过精确控制氧化剂的供应量,使燃料在适当的氧化剂条件下燃烧,从而减少氮氧化物的生成。
此外,低氮燃烧器还通过优化燃烧过程中的燃料和空气混合来降低氮氧化物的
排放。
传统燃烧过程中,燃料和空气的混合不均匀会导致局部燃烧温度过高,增加氮氧化物的生成。
低氮燃烧器采用先进的混合技术,确保燃料和空气充分混合,从而减少局部燃烧温度,降低氮氧化物的排放。
综上所述,低氮燃烧器通过优化燃烧过程、降低燃烧温度和减少氧化剂的使用
量来降低氮氧化物的排放。
它在工业生产和环保领域中具有重要的应用价值,对减少大气污染、改善空气质量具有积极的意义。
希望本文能够帮助读者更好地理解低氮燃烧器的工作原理,促进相关技术的推广和应用。
低氮燃烧器构造

低氮燃烧器构造低氮燃烧器是一种可以减少燃烧过程中氮氧化物排放的燃烧设备。
它通过优化燃烧过程,使燃料充分燃烧,从而减少氮氧化物的生成。
下面将介绍低氮燃烧器的构造。
一、燃烧器主体结构低氮燃烧器的主体结构一般包括燃烧器壳体、燃烧器头、燃烧器内部部件等。
燃烧器壳体通常由金属材料制成,具有良好的耐高温性能和耐腐蚀性能。
燃烧器头则是连接燃烧器和燃烧室的部件,其设计形式和尺寸会根据实际应用需求进行调整。
燃烧器内部部件包括燃烧器喷嘴、燃气管道、混合器等,这些部件的设计和排列方式对燃烧效果有重要影响。
二、燃气喷嘴燃气喷嘴是低氮燃烧器的关键部件之一。
它的主要作用是将燃气喷射进燃烧器内部,与空气充分混合并形成可燃气体。
燃气喷嘴的结构设计要考虑燃气的流动特性和喷射速度,以确保喷气效果良好。
常见的燃气喷嘴类型有孔板喷嘴、喷管喷嘴等,不同类型的喷嘴适用于不同的工况需求。
三、风管和风门低氮燃烧器还需要辅助空气来参与燃烧过程,以提高燃烧效率和降低氮氧化物的生成。
风管和风门是控制辅助空气进入燃烧器的关键部件。
风管将外部空气引入燃烧器内部,而风门则调节空气的流量和进气位置。
优化风管和风门的设计可以实现辅助空气的均匀分布,提高燃烧效果。
四、混合器混合器是将燃气和空气充分混合的设备。
它通常由多个喷嘴和导流板组成,通过引导和分散气流来实现燃气和空气的混合。
混合器的设计要考虑到燃气和空气的流动速度、角度和分布均匀性等因素,以确保混合效果良好。
五、点火装置低氮燃烧器的点火装置通常采用电气点火方式。
点火装置的主要作用是在燃气和空气混合后,提供一个可靠的点火源,使混合气体快速燃烧起来。
点火装置通常由点火电极、高压发电机和控制系统等组成,通过高压电弧点火的方式实现燃烧器的点火。
低氮燃烧器的构造包括燃烧器主体结构、燃气喷嘴、风管和风门、混合器以及点火装置等部件。
这些部件通过精心设计和组合,可以实现燃烧过程的优化,减少氮氧化物的排放。
低氮燃烧器在工业生产和环保方面发挥着重要作用,对于提高燃烧效率、降低污染物排放具有重要意义。
低氮燃烧器换热效率

低氮燃烧器换热效率1.引言1.1 概述概述随着环境保护的重要性日益凸显,低氮燃烧技术作为一种环保高效的热化学能源转换方式,正逐渐受到全球范围内的重视。
在传统燃烧过程中,氮氧化物排放是一大环境问题,而低氮燃烧器的出现有效地解决了这一问题。
低氮燃烧器是一种能够在燃烧过程中有效降低氮氧化物排放的装置。
其核心原理是通过优化燃料和空气的混合方式,以及改变燃烧过程中的温度和氧化性条件,从而降低氮氧化物的生成。
低氮燃烧器具有燃烧稳定、高效能、低氮氧化物排放等特点,成为了目前燃烧技术的前沿方向之一。
本文将重点探讨低氮燃烧器对换热效率的影响。
换热是燃烧过程中的一个重要环节,其效率直接关系到能源利用的效果。
我们将通过理论分析和实证研究,探讨低氮燃烧器在换热过程中的优势和不足,并提出相应的改进措施。
同时,我们也将展望低氮燃烧器在能源领域的应用前景,探讨其在工业生产和家庭生活中的潜在应用价值。
通过本文深入研究低氮燃烧器的换热效率,我们将对其性能进行全面评价,并且为进一步推动低氮燃烧技术的发展提供有力的理论支持。
希望本文能够为相关领域的研究者和工程师提供有益的参考和借鉴,共同推动低氮燃烧技术向更加环保高效的方向迈进。
1.2文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构部分旨在提供读者一个清晰的指引,使其了解整篇文章的结构和内容安排。
本文的结构由引言、正文和结论三部分组成。
引言部分为读者提供了对本文主题的概述,并介绍了本文的目的。
在引言部分,我们将简要介绍低氮燃烧器的概念和其在能源领域的重要性,同时也提及了本文将会涉及的主要内容。
正文部分是本文的核心部分,将重点探讨低氮燃烧器的原理和特点,以及其对换热效率的影响。
在2.1节,我们将详细介绍低氮燃烧器的原理和工作机制,并探讨其与传统燃烧器的区别。
在2.2节,我们将讨论低氮燃烧器在提高换热效率方面的作用,包括其对燃烧过程的优化和燃烧产物的减少等方面。
结论部分将对全文进行总结,并展望低氮燃烧器在能源领域的应用前景。
低氮燃烧器 氮氧化物超标

低氮燃烧器氮氧化物超标低氮燃烧器是一种针对工业燃烧过程中氮氧化物(NOx)排放量较低的燃烧器。
氮氧化物是一类对大气环境有害的污染物,其排放会导致酸雨、光化学烟雾等环境问题,并且对人体健康也有一定影响。
为了减少氮氧化物的排放量,低氮燃烧器采用了一系列技术措施,如优化燃烧过程、改变燃烧器结构和调节燃料供给等。
然而,即使采用了低氮燃烧器,氮氧化物的排放量仍有可能超标。
造成低氮燃烧器氮氧化物超标的原因可能有以下几个方面:1. 燃烧器设计不合理:低氮燃烧器的设计需要考虑燃烧过程的稳定性和燃烧效率,如果设计不合理,可能导致燃烧不充分或者燃烧温度过高,从而增加氮氧化物的生成。
2. 运行参数不当:燃烧器的运行参数对氮氧化物的生成有一定影响,如果操作不当,比如燃料供给过多或者空气过少,都可能导致氮氧化物的超标排放。
3. 原料质量问题:燃烧器使用的燃料和氧气等原料的质量也会影响氮氧化物的生成量,如果原料中含有较高的氮含量,那么在燃烧过程中就会产生更多的氮氧化物。
针对低氮燃烧器氮氧化物超标的问题,可以采取以下措施进行改善:1. 优化燃烧器设计:针对具体的燃烧器类型和应用场景,进行合理的燃烧器设计,包括燃烧室结构、喷嘴布置和气流调节等方面,以提高燃烧效率和减少氮氧化物的生成。
2. 调整燃烧器运行参数:通过合理的调整燃料和空气的供给量,控制燃烧过程中的温度和氧气浓度,以减少氮氧化物的形成和排放。
3. 优化原料质量:选择低氮含量的燃料和高纯度的氧气作为燃烧器的原料,可以降低氮氧化物的生成量。
4. 定期检修和维护:燃烧器的定期检修和维护非常重要,包括清洗燃烧室、更换损坏的部件和调整喷嘴等,以确保燃烧器的正常运行,并避免氮氧化物超标排放的问题。
需要注意的是,针对具体的低氮燃烧器和燃烧工艺,解决氮氧化物超标的问题需要通过实际情况进行综合分析和技术调整。
在设计和运行过程中,建议遵循相关的环保法规和标准,确保燃烧过程中的氮氧化物排放量符合要求。
低氮燃烧器原理

低氮燃烧器原理低氮燃烧器是一种用于工业锅炉和热风炉等设备的燃烧设备,其主要作用是在燃烧过程中减少氮氧化物的排放。
低氮燃烧器的原理是通过优化燃烧过程,控制燃烧温度和燃烧空气比,从而降低氮氧化物的生成。
本文将从低氮燃烧器的工作原理、优点及应用进行详细介绍。
低氮燃烧器的工作原理主要包括以下几个方面:1. 燃烧空气预混,低氮燃烧器采用预混燃烧技术,将燃料和空气提前混合,形成均匀的燃气混合物。
通过预混燃烧,可以有效控制燃烧温度,减少氮氧化物的生成。
2. 燃烧温度控制,低氮燃烧器通过优化燃烧过程,控制燃烧温度在适当范围内,避免高温燃烧产生大量氮氧化物。
同时,通过调节燃烧空气比,使燃烧过程更加充分,减少未完全燃烧产生的氮氧化物。
3. 燃烧稳定性,低氮燃烧器设计合理,燃烧稳定性好,能够保持长时间稳定的燃烧状态,减少燃烧过程中的氮氧化物排放。
低氮燃烧器相比传统燃烧器有以下优点:1. 降低氮氧化物排放,低氮燃烧器通过优化燃烧过程,有效降低氮氧化物的排放,符合环保要求。
2. 提高燃烧效率,低氮燃烧器采用预混燃烧技术,燃烧效率高,燃料利用率提高,节能环保。
3. 稳定可靠,低氮燃烧器设计合理,燃烧稳定性好,运行可靠,减少了燃烧设备的故障率。
低氮燃烧器在工业锅炉、热风炉等设备中得到了广泛应用,特别是在一些对燃烧排放有严格要求的行业,如电力、化工、钢铁等领域,低氮燃烧器的应用更加普遍。
通过使用低氮燃烧器,不仅可以满足环保要求,还可以提高燃烧效率,降低能源消耗,为企业节约成本,提高经济效益。
综上所述,低氮燃烧器通过优化燃烧过程,控制燃烧温度和燃烧空气比,有效降低氮氧化物的排放。
其在工业锅炉、热风炉等设备中的应用,不仅可以满足环保要求,还可以提高燃烧效率,降低能源消耗,具有重要的经济和社会意义。
希望通过本文的介绍,读者对低氮燃烧器的原理有了更深入的了解,为相关行业的工程技术人员提供一定的参考价值。
低NOx燃烧器

低NOx燃烧器1、工业用低氮燃烧器(1)促进混合型低氮燃烧器其结构如下图所示:它是美国为阿波罗登月号着陆用发动机而设计的,由于燃料呈细流与空气垂直混合,故混合快而均匀,燃烧温度也均匀。
若干小火焰组成很薄的钟形火焰,很快被冷却,燃烧温度低。
火焰薄,烟气在高温区停留时间也短。
该燃烧器的特点是负荷变化50%~100%以内,火焰长度基本不变。
氮氧化物随过剩空气系数减少,降低不多。
在低过剩空气量下燃烧稳定,CO排量小。
适合中小型工业锅炉。
(2)分割火焰型低氮燃烧器最简单的形式是在喷嘴处开数道沟槽将火焰分割成若干个小火焰,如下图所示:由于火焰小,散热面积大,燃烧温度降低和烟气在火焰高温区的停留时间缩短,故抑制了氮氧化物的生成,一般可降低40%。
(3)烟气自身再循环型低氮燃烧器其结构如下图所示:利用燃气和空气的喷射作用将烟气吸入,使烟气在燃烧器内循环。
由于烟气混入,降低燃烧过程氧的浓度,降低燃烧温度,防止局部高温产生和缩短了烟气在高温区的停留时间。
(4)阶段燃烧型低氮燃烧器最简单阶段型低氮燃烧如下图所示:是空气进行分段供给。
也有燃料进行分段供给的,其效果比空气分段供给更好些。
(5)组合型低氮燃烧器组合型就是将上述方式进行组合,一般结构比较复杂。
下图是SNT型低氮燃烧器:其特征是:燃气从中心供入,空气以强旋转气流在燃气流周围供入。
在强空气旋转气流作用下,加速了燃气与空气的混合,增加了混合均匀性,促进了燃烧反应,防止局部高温的产生,使火焰具有均匀的较低的温度水平。
强烈的混合还可降低过剩空气,可在低过剩空气系数下实现完全燃烧。
空气的旋流,在火道出口产生回流区,形成烟气的自身循环,不仅起到稳定火焰和加速燃烧反应作用,同时降低燃烧区温度和氧气浓度的作用。
比较狭窄的圆柱形火道,可以防止燃气在高温火道内燃烧。
大量燃气流出火道后在火道出口处及炉膛内燃烧,火焰处于炉膛内,散热条件好,燃烧温度有所降低。
氮氧化物的生成实现了多种方法的抑制。
低氮燃烧器fir的技术参数

低氮燃烧器(FIR)的技术参数1. 引言低氮燃烧器(FIR)是一种用于控制燃烧过程中产生的氮氧化物(NOx)排放的设备。
它通过优化燃烧过程,减少燃烧产物中的氮氧化物含量,从而降低对环境的污染。
本文将介绍低氮燃烧器FIR的技术参数,包括其工作原理、设计要点、性能指标等。
2. 工作原理低氮燃烧器FIR采用了一系列先进的技术,以实现低氮燃烧。
其工作原理如下:1.空气预混:FIR将燃料和空气预先混合,使其形成均匀的混合物。
这样可以确保燃料充分燃烧,减少未燃烧的燃料产生的氮氧化物。
2.燃烧温度控制:FIR通过调节燃料和空气的混合比例,控制燃烧过程中的温度。
适当降低燃烧温度可以减少氮氧化物的生成。
3.燃烧室设计:FIR的燃烧室采用特殊的设计,以最大程度地促进燃料的充分燃烧。
这包括优化燃烧室的形状、大小和燃烧室内的气流分布等。
4.循环燃烧:FIR还采用了循环燃烧的技术,将燃烧产物重新引入燃烧室,使其再次参与燃烧过程。
这样可以进一步降低氮氧化物的生成。
3. 设计要点低氮燃烧器FIR的设计要点主要包括以下几个方面:1.燃烧室结构:燃烧室的结构应该具有良好的气流分布,以确保燃料充分混合和燃烧。
同时,燃烧室的大小和形状应根据具体应用场景进行优化。
2.燃料供应系统:燃料供应系统应能够稳定地提供燃料,并与空气预混系统协调工作。
燃料供应系统还应具备一定的调节能力,以适应不同负荷和燃料性质的要求。
3.空气预混系统:空气预混系统应能够将燃料和空气充分混合,形成均匀的混合物。
这需要考虑到气流的速度、压力和混合的均匀度等因素。
4.燃烧控制系统:燃烧控制系统应能够根据实际需要调节燃料和空气的混合比例,以控制燃烧过程中的温度和氧化还原环境。
这要求燃烧控制系统具备高精度和快速响应的能力。
4. 性能指标低氮燃烧器FIR的性能主要通过以下指标来评估:1.氮氧化物排放浓度:低氮燃烧器FIR的主要目标是降低氮氧化物的排放浓度。
通常以NOx的排放浓度作为评估指标,要求其达到国家或地区的排放标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低氮燃烧器
沙角B电厂锅炉低氮燃烧器改造技术交流会
会议纪要
编号:ZLZ/KZP/ZHS/21/00
时间:2019年4月19日10:00 ~11:00
4月20日10:00 ~12:00, 13:00~16:20
地点:行政楼二楼会议室
主持人:朱林忠
与会者:集团:李凌阳
电厂:王鼎斐、陈德雄、李新强、匡真平、朱兴根、郑群华、黄忠明、李国洪、周华松 ABT:单杰锋等2人
国电龙高科(哈尔滨工业大学):孙悦、孙绍增、李争起等
中节环立为:熊亚东等
会议纪要:
4月19日在行政楼二楼会议室与国电龙高科(哈工大)工程人员进行技术交流,会议由电厂总工程师朱林忠主持。
龙高科提出在投标前为了更多地了解掌握B厂燃烧器数据,需要对燃烧器着火温度状况进行在线测试,希望临时拆除部分燃烧器中心筒部件。
经讨论,电厂同意临时拆除1号炉RA1、RA3燃烧器油枪,用于着火距离的测量。
由效率部协调,机械、运行、策划安排配合。
4月20日在行政楼二楼会议室举行了电厂锅炉低氮燃烧器改造交流会,参与技术交流会的三家低氮燃烧器改造专业公司分别是ABT公司、国电龙高科(哈工大)、中节环立为(武汉)能源技术有限公司,现将会议有关内容纪要如下:
一、 ABT公司
1.1 ABT低NOx燃烧器技术特点:
· 采用剧烈燃烧方式降低污染物、未燃尽碳、CO和结渣;
· 剧烈燃烧,高亮度火焰,近着火点,喉部着火;
· 提高火焰稳定性和低负荷稳燃能力;
· 依靠燃烧器降低NOx,炉膛不深度分级。
1.2采用煤粉平衡器减少燃烧器内部煤粉和空气的不均匀,控制煤粉管道间以及不同燃烧器
之间煤粉和空气的分布。
1.3 燃尽风可设置可调喷口,可不更换水冷壁管子。
1.4 ABT对利港电厂项目作了介绍。
利港电厂#1炉采用ABT提供的燃烧系统,改造后满负荷
下NOx排放由改造前的约1200 mg/Nm3下降至约400 mg/Nm3,对锅炉两侧金属温度偏差降低也有一定作用,飞灰含碳量有所升高。
二、哈工大--北京国电龙高科环境工程有限公司
2.1哈工大(中心给粉)径向浓淡旋流煤粉燃烧技术特点:
· 径向浓淡分离一次风。
在一次风喷口之前管道内,采用经过详细研究和优化煤粉浓缩装置。
煤粉与气流惯性分离,形成浓、淡煤粉气流浓度偏析,浓煤粉内层送入高温回流区燃烧。
采用多通道双调风二次风布置。
· 浓淡燃烧器具有一次风着火早、火焰稳定性强特点,与燃尽风供入相配合,对于改造锅炉
将使炉膛火焰燃烧中心适中,主燃烧器区上部采用高位燃尽风喷口,高速气流喷出方式采用中心直流风和外层旋流风组合的方式。
调整两种风比例,可有效控制燃尽风和炉内气流混合均匀度,减少炉膛左右侧出口烟温偏差,有效控制出口烟温。
2.2 燃尽风喷口布置原则:煤粉颗粒由主燃区至燃尽区需大于最小停留时间;同时考虑现场布
置条件,确定距离燃烧器最上层燃烧器中心距离。
2.3哈工大技术人员针对我厂的燃煤状况、燃烧器运行状况和NOx排放规律,对锅炉进行了燃
烧调整和下层燃烧器回流区温度测量,并对实验数据进行分析、归纳,得出现燃烧器的运行和NOx排放规律,认为二号炉改造存在超温、飞灰含碳量高的问题主要是燃烧着火延迟,导致火焰上移。
2.4哈工大介绍了改造业绩情况
大唐国际乌沙山发电厂3号 600 MW超临界机组低氮燃烧技术改造项目,NOx排放
号炉(上海锅炉厂联合)。
三、中节环立为(武汉)能源技术有限公司
3.1 采用CEE的低氮前后墙旋流燃烧器技术特点:
· 主燃烧区浓淡分级燃烧——煤粉浓淡分离、外浓内淡、外细内粗——低氮生成的
强着火
稳燃特性(高温、高煤粉浓度、低氧、强混合)。
· 主燃烧器内外二次风射流的分阶段进入,风包粉及流场特性
· 专有及专利的W型燃烧器喷嘴结构,贴壁风技术、强化燃烧换热、保证缺氧燃烧
的水冷
壁壁面氧量;对于浓淡分级燃烧、防止高温腐蚀具有特别重要作用
3.2 燃尽风喷口布置:大尺度双向空间分级燃烧,纵向垂直空间的主燃烧区与燃尽
区间隔5米左右(300MW锅炉)。
3.3介绍了华电新乡发电有限公司660MW机组2#锅炉为适应多劣质煤种混烧的技术
改造项
目。
该锅炉以往存在燃烧不稳、NOx生成高,严重结焦和燃尽差等问题。
改造后NOx
比改造前下降40%,常用劣质煤情况下660MW工况控制在500mg/Nm3以下,330-660MW工
况NOx基本能控制在400-650 mg/Nm3工,且NOx控制过低时飞灰机大渣含碳量有所升高。
改造后减温水量没有上升,没有出现改造引起金属超温及爆管问题。
会议认为,与各厂家的技术交流对低氮燃烧器的改造和后续完善是必要的,电厂相关
专业部门负责提供所需的技术资料和运行数据。
对于缺少的数据并需通过试验获取的,相
关部门继续予以配合协助。
根据国电龙高科(哈工大)的要求,电厂后来又拆除了2号炉RA2、RA4燃烧器油枪,进行对比测试。
通过温度测量,发现两台炉的着火距离存在较大差异:1号炉燃烧器800℃对应距离为0.6米,2号炉燃烧器800℃对应距离为1.1米。
这些测试将为燃烧器改造设
计提供重要依据。
朱林忠/电厂总工程师
抄报:刘钊/副总经理、金志力/总工程师、张晓清/电厂厂长、李坚隆/生产管理部长
抄送:运行总监、安全环保总监、值班主任、李新诚、与会者。