数学建模模型的建立
数学建模的基本步骤与方法

数学建模的基本步骤与方法数学建模是利用数学方法和技巧对实际问题进行数学化描述和分析的一门学科。
它在现代科学和工程领域有着广泛的应用。
本文将介绍数学建模的基本步骤与方法。
一、问题的分析与理解在进行数学建模之前,首先要对问题进行充分的分析与理解。
这包括对问题的背景、目标和约束条件的明确,以及对问题所涉及的各个因素和变量的了解。
只有充分理解问题,才能设计合理的数学模型。
二、建立数学模型建立数学模型是数学建模的核心步骤。
模型是对实际问题的一种抽象和简化,通过数学表达来描述问题的关系和规律。
建立数学模型的关键是要确定问题的输入、输出和中间变量,以及它们之间的函数关系或约束条件。
在建立数学模型时,可以使用各种数学方法和技巧。
例如,可以利用微分方程描述物理过程的变化,利用优化方法求解最优化问题,利用概率统计模型描述随机现象的规律等。
根据具体问题的特点和要求,选择合适的数学方法是十分重要的。
三、模型的求解与分析建立数学模型后,需要对模型进行求解和分析。
这包括利用数值方法或解析方法求解模型,得到问题的解析解或近似解。
在模型求解的过程中,可能需要编写计算程序、进行数值计算和统计分析等。
模型求解过程中,还需要对模型的解进行评估和分析。
例如,可以对模型的稳定性、收敛性、误差估计等进行分析,以确定模型的可行性和有效性。
四、模型的验证与应用在对模型进行求解和分析之后,需要对模型进行验证和应用。
验证是指将模型的结果与实际数据进行比较,以检验模型的准确性和可靠性。
如果模型的结果与实际数据吻合较好,说明模型是可信的。
模型的应用是指将模型的结果用于解决实际问题或做出决策。
根据模型的目标和应用场景,可以对模型的结果进行解释和解读,提出合理的建议和决策。
五、模型的改进与扩展建立数学模型是一个动态的过程,模型的改进与扩展是不可缺少的环节。
通过对模型的不断改进和扩展,可以提高模型的准确性和适用性,更好地描述和解决实际问题。
模型的改进与扩展可以从多个方面入手。
简述数学建模的一般步骤

简述数学建模的一般步骤数学建模是将现实世界的问题表述为数学模型的过程。
通过数学建模,我们可以对问题进行分析和解决。
数学建模的一般步骤包括:1. 问题的描述:在建模之前,需要将问题清楚地表述出来,包括问题的背景、目标、约束条件等。
2. 确定模型的类型:数学建模涉及到许多不同的模型类型,如线性规划、非线性规划、动态规划等。
在确定模型类型之前,需要考虑问题的性质,包括是否存在约束条件、是否有限制条件、是否有时间因素等。
3. 建立数学模型:在确定了模型类型之后,就可以开始建立数学模型了。
这一步包括确定模型的变量、目标函数、约束条件等。
4. 求解模型:在建立完数学模型之后,就可以开始求解模型了。
这一步包括使用数学方法或计算机软件求解模型。
5. 结果的分析与验证:在求解出模型的最优解之后,还需要对结果进行分析,包括对结果的可解释性和可靠性进行评估。
这一步包括对结果的敏感性分析,以及对模型的假设进行验证。
6. 应用结果:最后,在确保结果可靠后,就可以将结果应用到实际问题中。
这一步可能包括根据结果制定决策、规划资源分配等。
数学建模是一个系统的过程,需要综合运用数学、统计、计算机科学等多种方面的知识。
它的目的在于通过数学模型的分析和求解,为解决实际问题提供有效的决策依据。
在进行数学建模时,需要注意的是,模型只是对现实世界的简化和抽象,并不能完全反映现实情况。
因此,在建模过程中,需要谨慎选择模型的假设条件,并对模型的结果进行适当的验证和分析。
总的来说,数学建模是一种有效的工具,能够帮助我们对现实世界的问题进行系统的分析和解决。
它的应用遍及各个领域,包括经济学、工程学、管理学等,为解决复杂问题提供了强有力的理论支持。
在实际进行数学建模时,还可以使用许多工具和方法,以提高建模的效率和准确性。
这些工具和方法包括:* 数学软件:通过使用数学软件,可以快速求解复杂的数学模型,并可视化结果。
常用的数学软件包括MATLAB、Maple、Mathematica等。
数学建模流程

数学建模流程数学建模是指通过材料、理论、方法等综合分析来获取问题的内在规律及其运行机制,并通过运用数学工具和算法来解决实际问题的过程。
数学建模流程主要包括问题分析、模型建立、模型求解和模型评价四个步骤。
问题分析是数学建模的第一步。
在这一步中,需要准确理解问题陈述,并确定问题的具体要求。
在分析问题时,要对问题的背景、目标、约束条件、变量等因素作适当的调研和分析。
问题分析的关键是抽象问题,即将实际问题转化为数学问题。
模型建立是数学建模的核心步骤之一。
在这一步中,需要根据问题的特点选择合适的数学模型。
数学模型由问题变量、约束条件以及目标函数等要素构成。
建立模型的过程需要运用数学知识和技巧,例如微积分、概率统计、线性代数等。
模型的建立要建立在严格的数学推理基础上,确保模型的合理性和准确性。
模型求解是数学建模的重要步骤之一。
在这一步中,需要确定求解模型的方法和算法。
数学建模常用的求解方法有解析法、数值法和优化算法等。
根据具体问题的特点和难度,在数学分析和计算机编程等方面运用相应的方法和技术进行求解。
求解模型的过程中,需要进行一系列的计算和推理,同时要对求解结果进行判断和验证,确保结果的可靠性。
模型评价是数学建模的最后一步。
在这一步中,需要对模型的结果进行评价和分析。
模型评价的目的是检验和验证模型的有效性和适用性。
评价模型的标准通常有模型拟合度、模拟误差、模拟精度等。
通过评价模型,可以得出结论和建议,为实际问题的决策和解决提供参考。
总体而言,数学建模是一个循序渐进的过程,需要将抽象的实际问题转化为数学问题,并运用数学知识和方法进行建模和求解,最后通过对模型结果进行评价和分析,得出相关结论和建议。
数学建模的流程不仅需要运用严谨的数学思维和逻辑推理,还需要具备良好的问题分析和综合分析能力,以及熟练的数学计算和计算机模拟技术。
只有在完整的数学建模流程中,才能得到准确、有效的问题解决方案。
建立数学模型的一般过程或步骤

1.问题识别和定义建立数学模型的第一步是明确识别和定义需要解决的实际问题。
这个阶段包括:a) 确定研究对象: 明确我们要研究的系统、现象或过程是什么。
b) 明确目标: 确定我们希望通过模型解决什么问题,或得到什么样的结果。
c) 界定范围: 确定模型的适用范围和限制条件。
d) 收集背景信息: 了解问题的背景,包括已有的相关研究和理论。
e) 提出假设: 根据对问题的初步理解,提出一些合理的假设。
这个阶段的关键是要尽可能清晰、准确地描述问题,为后续的模型构建奠定基础。
2.变量选择和定义在明确问题后,下一步是确定模型中的关键变量:a) 识别相关变量: 列出所有可能影响问题的变量。
b) 分类变量: 将变量分为自变量、因变量、参数等。
c) 定义变量: 明确每个变量的含义、单位和取值范围。
d) 简化变量: 去除次要变量,保留最关键的变量以简化模型。
e) 考虑变量间关系: 初步分析变量之间可能存在的关系。
变量的选择直接影响模型的复杂度和准确性,需要在简化和精确之间找到平衡。
3.数据收集和分析为了构建和验证模型,我们需要收集相关数据:a) 确定数据需求: 根据选定的变量,明确需要收集哪些数据。
b) 选择数据来源: 可以是实验、观察、文献资料或已有数据库。
c) 设计数据收集方案: 包括采样方法、实验设计等。
d) 数据预处理: 对原始数据进行清洗、标准化等处理。
e) 探索性数据分析: 使用统计方法和可视化技术初步分析数据特征和规律。
f) 识别异常值和缺失值: 处理数据中的异常情况。
高质量的数据对于构建准确的模型至关重要。
4.模型结构选择基于问题定义、变量选择和数据分析,我们可以开始选择适当的模型结构:a) 考虑问题类型: 如静态或动态、确定性或随机性、线性或非线性等。
b) 研究已有模型: 调研该领域是否已有成熟的模型可以借鉴。
c) 选择数学工具: 如微分方程、概率论、优化理论等。
d) 确定模型类型: 如回归模型、微分方程模型、状态空间模型等。
建立数学模型的方法步骤

建立数学模型的方法步骤1.确定问题:明确问题的目标和约束条件。
了解问题的背景、需求,明确所要解决的问题是什么,以及有哪些限制条件。
2.收集数据:收集与问题相关的数据,可能包括实测数据、统计数据、文献资料等。
对数据进行整理和清洗,确保数据的准确性和完整性。
3.建立假设:在数学建模中,常常需要对问题进行简化和假设。
根据实际情况,设定适当的假设,并明确假设的范围和限制。
4.选择模型类型:根据问题的性质和特点,选择适合的数学模型类型。
常用的模型类型有优化模型、统计模型、微分方程模型、随机模型等。
不同的模型类型适用于不同的问题。
5.建立数学关系:确定问题中的关键变量和参数,并建立它们之间的数学关系。
这通常通过利用已知的理论知识和数学工具,如方程、不等式、差分方程、微分方程、概率分布等来表达。
6.模型求解:对建立的数学模型进行求解,即找到使得模型满足约束条件并达到最优目标的解。
常用的求解方法包括数值计算、优化算法、统计推断等。
选择合适的求解方法,进行计算和分析。
7.模型验证:对建立的数学模型进行验证,检验模型在实际情况下的适用性和准确性。
可以利用实验数据和实际观测来验证模型的预测结果和假设的有效性。
8.模型应用:根据模型的求解结果和验证结果,进行模型的应用和分析。
可以对问题进行预测、优化、决策等,为实际问题的解决提供有效的参考和指导。
需要注意的是,建立数学模型是一个循环迭代的过程。
在实际建模中,可能需要多次进行步骤的调整和重复,以不断优化模型的表达和求解效果。
在建立数学模型的过程中,还需要具备一定的数学知识和问题分析能力。
掌握数学方法和工具,了解问题背后的本质和规律,以及具备逻辑分析和抽象思维能力,能够将实际问题转化为数学形式并进行求解分析。
此外,还需要广泛阅读和学习数学建模的相关经验和方法,以丰富自己的建模思路和工具箱,提高建立数学模型的能力。
数学模型建立步骤

数学模型建立步骤数学模型是用数学语言描述现实问题的工具,建立数学模型的过程通常包括以下步骤:1. 问题定义:清晰地定义问题,明确需要解决的具体问题是什么。
将实际问题转化为数学问题的第一步是准确地理解和描述问题。
2. 建立变量:确定与问题相关的各种变量,并对它们进行定义。
这些变量可以是时间、空间、数量等与问题相关的量。
3. 制定假设:为了简化问题或使问题更容易处理,可能需要引入一些假设。
这些假设可能涉及到变量之间的关系、影响因素等。
4. 建立数学关系:将问题中的变量之间的关系用数学公式或方程表示。
这可能包括线性关系、非线性关系、微分方程、差分方程等,取决于问题的性质。
5. 解析求解或数值求解:对于一些简单的模型,可以尝试找到解析解,即用代数方法求解方程。
对于较为复杂的模型,可能需要使用数值方法,如数值模拟、计算机模拟等。
6. 模型验证:验证模型的准确性和可靠性。
通过实验数据或实际观测数据来检验模型的有效性,对模型的输出结果进行比较和分析。
7. 模型分析:分析模型的性质,如稳定性、收敛性、敏感性等。
理解模型的特点有助于更好地解释模型的行为和结果。
8. 模型优化:在验证和分析的基础上,对模型进行优化。
优化可能涉及调整参数、修正假设、改进数学形式等。
9. 模型应用:使用建立好的模型解决实际问题。
模型应用可能包括对未来情景的预测、对政策决策的支持、对系统行为的理解等。
10. 结果解释:将模型的输出结果转化为对实际问题的解释和建议。
这需要将数学语言翻译为实际问题的语言,并确保结果对决策者或问题的相关方具有实际意义。
建立数学模型是一个迭代的过程,可能需要多次调整和修改,以适应实际问题的复杂性和变化。
这一过程需要数学建模者有深厚的领域知识、数学技能以及对实际问题的深刻理解。
数学建模的方法和步骤

数学建模的方法和步骤数学建模(Mathematical modeling)是指运用数学方法及理论来描述某一实际问题,并在此基础上构建数学模型,进而对问题进行分析和求解的过程。
数学建模是一个综合应用学科,它将数学、物理、化学、工程、统计学、计算机科学等学科有机结合起来,用数学语言对现实世界进行描述,可用于各种领域的问题求解,如经济、金融、环境、医学等多个领域。
下面我将从数学建模的方法和步骤两方面来探讨这一学科。
一、数学建模的方法数学建模方法是指解决某一具体问题时所采用的数学建模策略和概念。
数学建模方法可分为以下几类:1.现象模型法:这种方法总是从某一实际问题的具体现象入手,把事物之间的关系量化为一种数学模型。
2.实验模型法:这种方法通过一些特定的实验,首先收集实验数据,然后通过分析数据建立一种数学模型,模型中考虑实验误差的影响。
3.参数优化法:这种方法通常是指通过找到最优参数的一种方法建立一个数学模型。
4.时间序列模型法:这种方法主要是通过观察时间内某一变量的变化,构建该变量的时间序列特征,从而建立一个时间序列模型。
二、数学建模的步骤数学建模步骤是指解决一个实际问题时所采用的数学建模过程,根据一些经验和规律推导出一个可行的模型。
数学建模步骤通常分为以下几步:1.钟情问题的主要方面并进行分析:首先要分析问题的背景和主要的影响因素,以便制定一个可行的局部策略。
2.建立初步模型:通过向原问题中引入某些常数或替换一些符号为某一特定变量,以使模型更方便或更加精确地描述问题。
3.策略选择和评估:要选择一个最优的策略,需要在模型的基础上进行评估,包括确定哪个方案更优等。
4.内容不断完善:在初步模型的基础上,不断加深对问题的理解,以逐步提高模型描述问题的准确度和逼真度。
5.模型的验证和验证:要验证模型,需要将模型应用到一些简单问题中,如比较不同方案的结果,并比较模型结果与实际情况。
总之,数学建模是一种复杂的、长期的、有启发性的过程,它要求从一个模糊的、自由的问题开始,通过有计划、有方法的工作,构建出一个能够解决实际问题的数学模型。
建立数学模型的一般方法

建立数学模型的一般方法数学建模的一般方法如下:1.确定问题:首先,我们需要清楚地描述问题,并确保对问题有全面的理解。
我们需要收集相关数据、了解约束条件,并明确预期结果。
2.邀约模型:在确定问题之后,我们需要确定所要建立的模型类型。
数学模型可以分为确定性模型和随机模型。
确定性模型基于确定的数据和规则进行分析,而随机模型考虑到不确定性因素。
另外,模型可以是静态的(只考虑时刻的瞬时状态)或动态的(时间的连续变化)。
3.收集数据:进行建模所需的数据是非常重要的。
根据问题的类型,我们可以使用实验数据、统计数据或其他相关数据集。
数据的有效性和可靠性对模型的精确性和可靠性至关重要。
4.假设条件:在建立数学模型时,我们需要定义适当的假设条件。
这些假设可以简化问题,提高模型的可解性。
假设条件应该基于先前的经验和合理的逻辑。
5.建立数学表达式:根据问题的特点,我们可以选择适当的数学工具和技术来建立数学表达式。
这可能包括代数方程、微分方程、概率分布、优化函数等。
我们需要理解问题的关键因素,构建变量、参数和约束条件,并将其转化为数学方程或方程组。
6.解决数学模型:一旦数学模型建立完毕,我们可以使用数学方法来解决模型。
这可能包括分析性解、数值解或仿真方法。
根据问题的复杂性,我们可以使用数学软件或计算机编程来进行计算和分析。
7.验证和修正模型:建立模型后,需要验证模型的准确性和可靠性。
我们可以使用实验数据或其他观测数据来验证模型的预测结果。
如果发现模型在一些方面存在问题,我们需要进行修正或调整以提高模型的准确性。
8.预测和解释结果:通过使用已建立并验证的数学模型,我们可以预测未来情况并解释模型的结果。
这有助于理解问题的根本原因、寻找解决方案并做出决策。
9.敏感性分析和优化:在建立数学模型的过程中,我们还可以进行敏感性分析和优化。
敏感性分析用于评估模型输出对输入参数的敏感性,有助于了解问题的关键驱动因素。
优化技术可以帮助我们在给定的约束条件下找到最佳解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模期中作业姓名:赵*学号:************ 班级:信计08-1工厂升级方案的优化模型摘要:随着科学技术的飞速发展,各种产品日新月异,工厂面临着提高产品科技含量和优化改革方案的双重挑战。
本文讨论工厂升级的优化问题,即分配各工厂的升级以使公司获得最大的利润,需要对其建立模型并借助LINGO软件对非线性规划问题进行了求解,通过比较利润最大值和收益率得出了两个方案的优劣性并在此基础上给出一个更好的提案。
关键词:工厂升级、优化、非线性规划、目标函数、约束条件问题重述:某公司所属的高新技术研究所开发了一种新的产品W200X,该公司现有三个工厂,都生产普通的产品W100X。
公司计划将现有工厂升级,升级后的工厂将能产生W100X和W200X其中A1离该公司的研究所最近,A2是最新最大的工厂。
升级过程需要一周,在此期间,工厂将停产。
该公司在过去的几个月进行了市场调研,W100X现有的批发价为400元。
预测每种产品一个月的需求量随价格变换的数据:工人的工资是45元/小时。
工厂一星期做工40小时。
工人数为固定数值。
W100X的零件成本40元,需1.5小时工作量;W200X的零件成本为64元,需1.75小时工作量;每个W100X产品需要两个老芯片,每个W200X产品需要两个新芯片,该公司提供芯片的生产方程为:公司老板要求:两位副总裁分别提出了方案1,方案2,如下:方案1:只让A1工厂升级,只生产新产品W200X;方案2:所有工厂都升级,可生产两种产品。
要求:(1)研究每一种方案,包括你自己的一个提案,总裁希望基于你的研究推出一个最好的方案,他非常非货币损失和利益。
(2)问题陈述,方案的模型和分析,寻求最佳方案的方法,结果的分析。
(3)下个月第几个工厂升级,每种产品的产量和定价。
问题分析:题目给出了某公司三个工厂的人数,升级费用,以及对所生产产品的市场调查。
对与工厂如何升级,题目分别给出了两套方案,并要求用作对比。
考虑到产品的市场批发价与市场需求量有着必然的关系,我们考虑首先将两种产品的市场批发价与需求量数据进行三次曲线拟合得到市场价与需求量的函数关系。
建立模型,将纯利润作为目标函数,对于拟合曲线,当价格很高时市场需求量便降到很低的水平,显然这是不合理的,于是我们将价格水平限制在一个比较合理的水平作为一个约束条件。
又生产产品数量不大于市场需求量,生产产品数量不大与工厂的生产水平等,我们就可以建立一个完整的非线性规划了。
符号说明:Y2:W100X 产品的批发价格。
Y1:W200X产品的批发价格。
X4:A1工厂生产W100X 产品的数量。
X1:A1工厂生产W200X产品的数量。
X2:A2工厂生产W100X 产品的数量。
X5:A2工厂生产W200X 产品的数量。
X3:A3工厂生产W100X 产品的数量。
X6:A3工厂生产W200X 产品的数量。
Mi: Ai工厂升级与否。
模型假设:1.假设价格与需求量之间的关系稳定。
2.假设每月按四星期计算。
3.假设工厂升级为1,不升级为0。
模型建立与求解:方案1的模型建立与求解:假设A1工厂升级当月生产X1件W200X 产品,价格为y1 ; A2工厂和A3工厂每月生产(X2+X3) 件W100X 产品,价格为y2 。
则升级当月的总收入为:X1*y1+(X2+X3)*y2升级当月总支出为:100000+45*X1*1.75+(X2+X3)*1.5*45+(X2+X3)*40+64*X1目标函数:总收入-总支出约束条件如下:(1)该公司提供芯片的总数不超过最大值10万个,即16*(x2+x3)+6*x1≤100000。
(2)A1工厂生产W200X 产品的工作时不超过3600小时,即1.75*X1≤3600。
(3)A2 工厂生产W100X 产品的工作时不超过6400小时,即1.5*X2≤6400。
(4)A3工厂生产W100X 产品的工作时不超过9600小时,即1.5*X3≤9600。
(5)W100X 产品的价格与需求量满足的变化规律,y2≥240; y2≤800;x2+x3≤15630-2688*y2^(1/2)+6724*y2^(1/3);(6)W200X 产品的价格与需求量满足的变化规律,y1 ≥400; y1 ≤1200;x1 ≤178500+7383*y1^(1/2)-40620*y1^(1/3);(7)所有决策变量为非负。
综合以上分析,建立的数学模型如下:max x1*y1+(x2+x3)*y2-100000-45*x1*1.75-(x2+x3)*1.5*45-(x2+x3)*40-64*x1 S.T 16*(x2+x3)+6*x1 1000001.75*x1 36001.5*x2 64001.5*x3 ≤≤≤≤9600y2 240y2 800y1 400y1 1200x1 178500+7383*y1^(1/2)-40620*y1^(1/3)x2+x3 15630-2688*y2^(1/2)+6724≥≤≥≤≤≤*y2^(1/3) xi 0 yj 0 i=1,2,3 j=1,2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪≥≥⎩ 由LINGO 软件解得:Local optimal solution found at iteration: 226252Objective value: 5014751.Variable Value Reduced Cost X1 2057.000 -1057.250Y1 1200.000 0.000000X2 3594.000 -297.5196X3 1884.000 -297.5196Y2 644.1900 0.000000Row Slack or Surplus Dual Price 1 5014751. 1.0000002 10.00000 0.0000003 0.2500000 0.0000004 1009.000 0.0000005 6774.000 0.0000006 404.1900 0.0000007 155.8100 0.0000008 800.0000 0.0000009 0.000000 2057.00010 545.7114 0.00000011 -0.3879980E-04 239.1704方案2的模型建立与求解:假设A1工厂、A2 工厂和 A3工厂升级当月生产X1 、X5、X6 件W200X 产品,价格为y1 。
A1工厂、A2 工厂和 A3工厂升级当月生产X2 、X3、x4 件 W100X 产品,价格为y2 。
则升级当月的总收入为:(x1+x5+x6)*y1+(X2+X3+x4)*y2升级当月总支出为:475000+45*(x1+x5+x6)*1.75+(X2+X3+x4)*1.5*45+(X2+X3+x4)*40+64*(x1+x5+x6) 目标函数:总收入-总支出约束条件如下:(1)该公司提供芯片的总数不超过最大值 ,即16*(X2+X3+x4)+6*(x1+x5+x6)≤100000 。
(2)A1工厂生产W200X 产品和W100X 产品的工作时不超过4800小,即1.75*X1+1.5*x4 ≤3600 。
(3)A2 工厂生产W200X 产品和W100X 产品的工作时不超过6400小时,即1.5*X2 +1.75*x5≤4800。
(4)A3工厂生产W200X 产品和W100X 产品的工作时不超过9600小时,即1.5*X3+1.75*x6 ≤7200 。
(5)W100X 产品的价格与需求量满足的变化规律,y2 ≥240; y2 ≤800;x2+x3+x4 ≤15630-2688*y2^(1/2)+6724*y2^(1/3);(6)W200X 产品的价格与需求量满足的变化规律,y1 ≥400; y1 ≤1200;(x1+x5+x6) ≤178500+7383*y1^(1/2)-40620*y1^(1/3);(7)所有决策变量为非负。
综合以上分析,建立的数学模型如下:MAX (x1+x5+x6)*y1+(x2+x3+x4)*y2-47.5e+004-(x1+x5+x6)*1.75*45-(x2+x3+x4)*1.5*45-(x2+x3+x4)*40-(x1+x5+x6)*64S.T 16*(x2+x3+x4)+6*(x1+x5+x6)100000 1.75*x1+1.5*x43600 1.5*x ≤≤2+1.75*x548001.5*x3+1.75*x67200 y2240 y2800y1400 y11200x1+x5+x6178500+7383*y1^(1/2)-40620*y1^(1/3) x2+x3+x415630-2≤≤≥≤≥≤≤≤688*y2^(1/2)+6724*y2^(1/3) xi 0 yj 0 i=1,2,3,4,5 ,6 j=1,2;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪≥≥⎩由LINGO软件解得:Local optimal solution found at iteration: 3954Objective value: 6736364.Variable Value Reduced CostX1 372.0000 0.000000X5 2478.000 0.000000X6 3030.000 0.000000Y1 994.1869 0.000000X2 309.0000 -0.1968419X3 1265.000 -0.1968432X4 1966.000 -0.1968494Y2 730.3574 0.000000Row Slack or Surplus Dual Price1 6736364. 1.0000002 8080.000 0.0000003 0.000000 308.29564 0.000000 308.29565 0.000000 308.29566 490.3574 0.0000007 69.64260 0.0000008 594.1869 0.0000009 205.8131 0.00000010 0.000000 311.919611 0.000000 160.2172综合以上分析可知:方案2比方案1的总收入大,故方案2优于方案1;但方案2的收益率却没有方案1的高。
在这两个方案的基础上给出一个更好的提案如下:假设A1工厂升级当月生产(m1*s1+(1-m1)*r1) 件W100X 产品,价格为y2 ; A2工厂升级当月生产(m2*s2+(1-m2)*r2) 件W100X 产品,价格为y2 ; A3工厂升级当月生产(m3*s3+(1-m3)*r3) 件W100X 产品,价格为y2 ; A1工厂、A2工厂和A3 工厂升级当月生产t1 、t2、t3 件W200X产品,价格为y1 。