学案5函数与方程-函数与导数2012高考一轮数学精品

合集下载

高三数学一轮复习导数导学案

高三数学一轮复习导数导学案

课题: 导数、导数的计算及其应用 2课时一、考点梳理:1.导数、导数的计算(1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx=__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′.(3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. !(4).基本初等函数的导数公式(5).导数的运算法则(1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)⎣⎡⎦⎤f x g x ′=__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值(1)导数和函数单调性的关系:(1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________.(2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0⇔f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,⇔f (x )在(a ,b )上为____函数.[(2)函数的极值与导数(1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值.(2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________.(3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤:(1)求函数y =f (x )在(a ,b )上的________;(2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. `二、基础自测:1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则ΔyΔx 等于( ).A .4B .4xC .4+2ΔxD .4+2Δx 2原函数 导函数 f (x )=c (c 为常数) f ′(x )=0f (x )=x n (n ∈Q *) ;f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________f (x )=e x >f ′(x )=________ f (x )=log a x f ′(x )=________ f (x )=ln xf ′(x )=________2.曲线y =x 3在点P 处的切线的斜率为3,则点P 的坐标为( ).A .(-1,1)B .(-1,-1)C .(1,1)或(-1,-1)D .(1,-1) 3.(2012陕西高考)设函数f (x )=2x +ln x ,则( ).A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 4.若函数y =a (x 3-x )的递减区间为⎝ ⎛⎭⎪⎫-33,33,则a 的取值范围是( ). {A .a >0B .-1<a <0C .a >1D .0<a <15.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为__________. 6.已知f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是__________.三、考点突破:考点一、根据导数的定义求函数的导数 【例1-1】已知f ′(2)=2,f (2)=3,则lim x →2fx -3x -2+1的值为( )A .1 B .2 C .3 D .4【例1-2】用导数的定义求函数y =f (x )=1x在x =1处的导数.~【变式】:求函数y =x 2+1在x 0到x 0+Δx 之间的平均变化率,并求出其导函数.考点二、利用求导公式、法则求导 [例2]求下列函数的导数:(1) y =(2x -3)2;(2)y =tan x ;(3)y =x e x ;(4)y =ln xx . (5)y =ln(2x +5).;【变式】求下列函数的导数:(1)y =x 2sin x ;(2)y =3x e x -2x +e ; (2)y =3-x ;考点三、导数的几何意义【例3】已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为1的曲线的切线方程.…【变式】:求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.考点四、利用导数研究函数的单调性与极值、最值【例4】已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;\【变式】(2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值;(2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围."【例5】若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.【变式】设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.@【例6】已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.【变式】已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.、(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.四、课题巩固:一、选择题:1.设f (x )为可导函数,且满足lim x →0f1-f 1-2x2x=-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为( ). ?A .2B .-1C .1D .-22.(2012辽宁高考)函数y =12x 2-ln x 的单调递减区间为( ). A .(-1,1] B .(0,1]C .[1,+∞) D .(0,+∞)3.如图所示的曲线是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于( )4.已知f ′(x )是f (x )的导函数,在区间[0,+∞)上f ′(x )>0,且偶函数f (x )满足f (2x -1)<f ⎝⎛⎭⎫13,则x 的取值范围是( )二、填空题: —5.函数f (x )=x -ln x 的单调减区间为________.6. 已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 7.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是_____________.8.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上有________个零点. 三、解答题9.已知函数f (x )=x ln x .(1)求f (x )的极小值;(2)讨论关于x 的方程f (x )-m =0 (m ∈R )的解的个数.?10.设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.11.已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.~(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >1,求函数y =f (x )在区间(a -1,a +1)内的极值.课题: 导数、导数的计算及其应用 2课时参考答案 二、基础自测:1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则ΔyΔx 等于( ).A .4B .4xC .4+2ΔxD .4+2Δx 2}2.曲线y =x 3在点P 处的切线的斜率为3,则点P 的坐标为( ).A .(-1,1)B .(-1,-1)C .(1,1)或(-1,-1)D .(1,-1) 3.(2012陕西高考)设函数f (x )=2x +ln x ,则( ).A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 4.若函数y =a (x 3-x )的递减区间为⎝ ⎛⎭⎪⎫-33,33,则a 的取值范围是( ). A .a >0 B .-1<a <0C .a >1 D .0<a <15.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为__________. 6.已知f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是__________.《参考答案:1.C 解析:∵Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-1=4Δx +2(Δx )2,∴ΔyΔx =4+2Δx . 2.C 解析:y ′=3x 2,∴3x 2=3.∴x =±1.当x =1时,y =1,当x =-1时,y =-1.3.D 解析:由f ′(x )=-2x 2+1x =1x ⎝⎛⎭⎫1-2x =0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减;当x >2时,f ′(x )>0,f (x )单调递增.故x =2为f (x )的极小值点. 4.A 解析:∵y ′=a (3x 2-1)=3a ⎝ ⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33,∴当-33<x <33时,⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33<0. ∴要使y ′<0,必须取a >0.5.4x -y -3=0 解析:设切点为(x 0,y 0),y ′=4x 3,4x 03=4,∴x 0=1.∴y 0=1.∴l 的方程为4x -y -3=0.6.3 解析:∵f (x )=x 3-ax 在[1,+∞)上是单调增函数,∴f ′(x )=3x 2-a ≥0在[1,+∞)上恒成立,即a ≤3x 2在[1,+∞)上恒成立,而当x ∈[1,+∞)时,(3x 2)min =3×12=3.∴a ≤3,故a max =3. 三、考点突破: ^考点一、根据导数的定义求函数的导数 【例1-1】已知f ′(2)=2,f (2)=3,则lim x →2fx -3x -2+1的值为( ).A .1B .2C .3D .4 【例1-2】用导数的定义求函数y =f (x )=1x在x =1处的导数. 【例1-1】C 解析:令Δx =x -2,则lim x →2f (x )-3x -2+1=lim Δx →0f (Δx +2)-f (2)Δx +1=f ′(2)+1=2+1=3. 【例1-2】解:Δy =f (1+Δx )-f (1)=11+Δx -11=1-1+Δx 1+Δx=-Δx1+Δx (1+1+Δx ).∴ΔyΔx =-11+Δx (1+1+Δx ),∴lim Δx →0Δy Δx =lim Δx →0⎣⎢⎡⎦⎥⎤-11+Δx (1+1+Δx )=-12.∴f ′(1)=-12. 【变式】:求函数y =x 2+1在x 0到x 0+Δx 之间的平均变化率,并求出其导函数. 解 ∵Δy =x 0+Δx2+1-x 20+1=x 0+Δx 2+1-x 20-1x 0+Δx2+1+x 20+1=2x 0Δx +Δx 2x 0+Δx2+1+x 20+1,¥∴ΔyΔx =2x 0+Δxx 0+Δx 2+1+x 20+1.∴Δx →0时,Δy Δx →x x 2+1.∴y ′=xx 2+1.考点二、利用求导公式、法则求导 [例2]求下列函数的导数:(1) y =(2x -3)2;(2)y =tan x ;(3)y =x e x ;(4)y =ln xx . (5)y =ln(2x +5). 解:(1)y ′=(4x 2-12x +9)′=8x -12.(2)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . (3)y ′=x ′e x +x (e x )′=e x +x e x =e x (x +1).(4)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. ?(5)设u =2x +5,则y =ln(2x +5)由y =ln u 与u =2x +5复合而成.∴y ′=y ′u ·u ′x =1u ·2=2u =22x +5.【变式】求下列函数的导数:(1)y =x 2sin x ;(2)y =3x e x -2x +e ; (2)y =3-x ; 考点三、导数的几何意义【例3】已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程;(3)求斜率为1的曲线的切线方程.解:(1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为:y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为:y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 03+43,则切线的斜率为:0|x x y '==x 02.∴切线方程为y-⎝⎛⎭⎫13x 03+43=x 02(x -x 0),即y =x 02·x -23x 03+43.∵点P (2,4)在切线上,∴4=2x 02-23x 03+43,即x 03-3 x 02+4=0,∴x 03+x 02-4x 02+4=0,∴x 02(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 0,y 0),则x 02=1,x 0=±1,切点为(-1,1)或⎝⎛⎭⎫1,53,∴切线方程为y -1=x +1或y -53=x -1,即x-y +2=0或3x -3y +2=0.?【变式】:求曲线f (x )=x 3-3x 2+2x 过原点的切线方程. 解:f ′(x )=3x 2-6x +2.设切线的斜率为k .(1)当切点是原点时k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②由①②得x 0=32,k =-14.∴所求曲线的切线方程为y =-14x .综上,曲线f (x )=x 3-3x 2+2x 过原点的切线方程为y =2x 或y =-14x .考点四、利用导数研究函数的单调性与极值、最值【例4】已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;解:(1)当a =2时,f (x )=(-x 2+2x )e x ,∴f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,∵e x >0,∴-x 2+2>0,解得-2<x < 2.∴函数f (x )的单调递增 /区间是(-2,2).(2)∵函数f (x )在(-1,1)上单调递增,∴f ′(x )≥0对x ∈(-1,1)都成立.∵f ′(x )=[-x 2+(a -2)x +a ]e x ,∴[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.∵e x >0,∴-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即x 2-(a-2)x -a ≤0对x ∈(-1,1)恒成立.设h (x )=x 2-(a -2)x -a ,只需满足⎩⎪⎨⎪⎧h -1≤0h 1≤0,解得a ≥32.【变式】(2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值;(2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围. 解 (1)由题意得f ′(x )=3x 2+2(1-a )x -a (a +2),又⎩⎪⎨⎪⎧f 0=b =0f ′0=-a a +2=-3,解得b =0,a =-3或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎪⎨⎪⎧-1<a <1,a ≠-a +23或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12或⎩⎪⎨⎪⎧-5<a <1,a ≠-12.所以a 的取值范围为(-5,-12)∪(-12,1). 【例5】若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围. 【解 (1)由题意可知f ′(x )=3ax 2-b .于是⎩⎪⎨⎪⎧ f ′2=12a -b =0f 2=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4故函数为f (x )=13x 3-4x +4. (2)由(1)可知f ′(x )=x 2-4=(x -2)(x +2).令f ′(x )=0得x =2或x =-2, 当x 变化时,f ′(x ),f (x )的变化情况如下表所示:x (-∞,-2) -2 (-2,2) 2 ](2,+∞)f ′(x ) +0 - 0 + f (x )~ 单调递增极大值单调递减极小值单调递增因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43, 所以函数的大致图象如右图,故实数k 的取值范围为(-43,283).【变式】 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. >解 (1)f ′(x )=a x +2bx +1,∴⎩⎪⎨⎪⎧f ′1=a +2b +1=0f ′2=a2+4b +1=0.解得a =-23,b =-16. (2)f ′(x )=-23x +(-x3)+1=-x -1x -23x.函数定义域为(0,+∞),列表 x(0,1) 1 (1,2) 2 (2,+∞) { f ′(x ) - 0 + 0 - f (x )单调递减[极小值单调递增极大值单调递减∴x =1是f (x )的极小值点,x =2是f (x )的极大值点.【例6】已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值. 解: (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b , 当x =1时,切线l 的斜率为3,可得2a +b =0;① 、当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0.②由①②解得a =2,b =-4,又切点的横坐标为x =1,∴f (1)=4.∴1+a +b +c =4.∴c =5.(2)由(1),得f (x )=x 3+2x 2-4x +5,∴f ′(x )=3x 2+4x -4.令f ′(x )=0,得x =-2或x =23,∴f ′(x )<0的解集为⎝⎛⎭⎫-2,23,即为f (x )的减区间.[-3,-2)、⎝⎛⎦⎤23,1是函数的增区间.又f (-3)=8,f (-2)=13,f ⎝⎛⎭⎫23=9527,f (1)=4,∴y =f (x )在[-3,1]上的最大值为13,最小值为9527.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.解 (1)由题意得f ′(x )=3ax 2+2x +b .因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2. (2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2,令g ′(x )=0,解得x 1=-2,x 2=2, 则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2),(2,+∞)上是减函数; )当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43. 四、课题巩固: 一、选择题:1.设f (x )为可导函数,且满足lim x →0f1-f 1-2x2x=-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-22.(2012辽宁高考)函数y =12x 2-ln x 的单调递减区间为( ). A .(-1,1] B .(0,1]C .[1,+∞) D .(0,+∞):3.如图所示的曲线是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于( )4.已知f ′(x )是f (x )的导函数,在区间[0,+∞)上f ′(x )>0,且偶函数f (x )满足f (2x -1)<f ⎝⎛⎭⎫13,则x 的取值范围是( )参考答案:1.B 解析:lim x →0f (1)-f (1-2x )2x =lim x →0f (1-2x )-f (1)-2x =-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1))处的切线斜率为-1.2.B 解析:对函数y =12x 2-ln x 求导,得y ′=x -1x =x 2-1x (x >0),令⎩⎪⎨⎪⎧x 2-1x ≤0,x >0,解得x ∈(0,1].因此函数y =12x 2-ln x 的单调递减区间为(0,1].故选B.3.C [由图象知f (x )=x (x +1)(x -2)=x 3-x 2-2x =x 3+bx 2+cx +d ,∴b =-1,c =-2,d =0.而x 1,x 2是函数f (x )的极值点,故x 1,x 2是f ′(x )=0,即3x 2+2bx +c =0的根,∴x 1+x 2=-2b 3,x 1x 2=c3,、x 21+x 22=(x 1+x 2)2-2x 1x 2=49b 2-2c 3=169.][∵x ∈[0,+∞),f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又因f (x )是偶函数,∴f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13⇒|2x -1|<13,∴-13<2x -1<13.即13<x <23. 二、填空题:5.函数f (x )=x -ln x 的单调减区间为________.6. 已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是_____. 7.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是_____________.8.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上有________个零点.|参考答案:1.(0,1) 2.-37 3. ⎣⎡⎭⎫3π4,π 4. 1个解析:f ′(x )=x 2-2ax =x (x -2a )=0⇒x 1=0,x 2=2a >4,易知f (x )在(0,2)上为减函数,且f (0)=1>0,f (2)=113-4a <0,由零点判定定理知,在函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有1个零点. 三、解答题9.已知函数f (x )=x ln x .(1)求f (x )的极小值;(2)讨论关于x 的方程f (x )-m =0 (m ∈R )的解的个数. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )=0,得x =1e , 当x ∈(0,+∞)时,f ′(x ),f (x )的变化的情况如下:x ⎝⎛⎭⎫0,1e 1e 《⎝⎛⎭⎫1e ,+∞ f ′(x ) -0 +f (x )极小值¥所以,f (x )在(0,+∞)上的极小值是f ⎝⎛⎭⎫1e =-1e .(2)当x ∈⎝⎛⎭⎫0,1e ,f (x )单调递减且f (x )的取值范围是⎝⎛⎭⎫-1e ,0;当x ∈⎝⎛⎭⎫1e ,+∞时,f (x )单调递增且f (x )的取值范围是⎝⎛⎭⎫-1e ,+∞.令y =f (x ),y =m ,两函数图象交点的横坐标是f (x )-m =0的解,由(1)知当m <-1e 时,原方程无解;由f (x )的单调区间上函数值的范围知,当m =-1e 或m ≥0时,原方程有唯一解;当-1e <m <0时,原方程有两解. 10.设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解:对f (x )求导得f ′(x )=e x1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12. 结合①,可知 所以,x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号.结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,因此Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.11.已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >1,求函数y =f (x )在区间(a -1,a +1)内的极值.解: (1)由函数f (x )图象过点(-1,-6),得m -n =-3.①由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n ,则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n .而g (x )的图象关于y 轴对称,所以-2m +62×3=0.所以m =-3,代入①,得n =0.于是f ′(x )=3x 2-6x =3x (x -2).由f ′(x )>0,得x >2或x <0,故f (x )的单调递增区间是(-∞,0)∪(2,+∞);由f ′(x )<0,得0<x <2,故f (x )的单调递减区间是(0,2).(2)由(1)得f ′(x )=3x (x -2),令f ′(x)=0,得x =0或x =2.当x 变化时,f ′(x )、f (x )的变化情况如下表:x (-∞,0) 0 (0,2) 2 (2,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得:当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当1<a <3时,f (x )有极小值-6,无极大值;当a ≥3时,f (x )无极值.x ⎝⎛⎭⎫-∞,1212 …⎝⎛⎭⎫12,32 32 ⎝⎛⎭⎫32,+∞ f ′(x ) + 0 -0 +f (x )极大值极小值。

第5节 第1课时利用导数研究恒(能)成立问题--2025高中数学一轮复习课件基础版(新高考新教材)

第5节  第1课时利用导数研究恒(能)成立问题--2025高中数学一轮复习课件基础版(新高考新教材)
1
1
当 0<x<e2 时,g'(x)>0,g(x)单调递增;当e2 <x≤e 时,g'(x)<0,g(x)单调递减,
1
所以 g(x)的极大值亦即最大值为 g(e2 )=e2,
因此 a≤e2,故实数 a 的取值范围是(-∞,e2].
例2(2024·福建泉州模拟)已知函数f(x)=-2x+ln x,g(x)=xex-3x-m.
令 f'(x)>0,解得
1
x>2.所以
1
0<x<2,
1
1
f(x)在(0,2)内单调递减,在(2,+∞)内单调递增.
综上所述,当 a≤0 时,f(x)的单调递减区间为(0,+∞),无单调递增区间;
当 a>0
1
1
时,f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
1
1
(2)当 a>0 时,由(1)可知 f(x)在(0,2)内单调递减,在(2,+∞)内单调递增,
(2)如果f(x)有最大值g(a),则f(x) <0恒成立⇔g(a)<0,f(x)≤0恒成立⇔g(a)≤0.
[对点训练3](2024·湖北荆门模拟)设函数f(x)=ex-ax,x≥0且a∈R.
(1)求函数f(x)的单调性;
(2)若不等式f(x)≥x2+1恒成立,求实数a的取值范围.
解 (1)f'(x)=ex-a,x≥0.
(1)求函数f(x)的极值点;
(2)若f(x)≤g(x)恒成立,求实数m的取值范围.
解 (1)函数 f(x)的定义域为(0,+∞),且

高考数学一轮专项复习讲义-导数与函数的单调性(北师大版)

高考数学一轮专项复习讲义-导数与函数的单调性(北师大版)

§3.2导数与函数的单调性课标要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用.知识梳理1.函数的单调性与导数的关系条件恒有结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0f (x )在区间(a ,b )上单调递增f ′(x )<0f (x )在区间(a ,b )上单调递减f ′(x )=0f (x )在区间(a ,b )上是常数函数2.利用导数判断函数单调性的步骤第1步,确定函数f (x )的定义域;第2步,求出导数f ′(x )的零点;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.(√)(2)在(a ,b )内f ′(x )≤0且f ′(x )=0的根有有限个,则f (x )在(a ,b )内单调递减.(√)(3)若函数f (x )在定义域上都有f ′(x )>0,则f (x )在定义域上一定单调递增.(×)(4)函数f (x )=x -sin x 在R 上是增函数.(√)2.(多选)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是()A .在区间(-2,1)上f (x )单调递增B .在区间(2,3)上f (x )单调递减C .在区间(4,5)上f (x )单调递增D .在区间(3,5)上f (x )单调递减答案BC解析在区间(-2,1)上,当x ∈-2,-32f ′(x )<0,当x ∈-32,1f ′(x )>0,故f (x )在区间-2,-32在区间-32,1A 错误;在区间(3,5)上,当x ∈(3,4)时,f ′(x )<0,当x ∈(4,5)时,f ′(x )>0,故f (x )在区间(3,4)上单调递减,在区间(4,5)上单调递增,C 正确,D 错误;在区间(2,3)上,f ′(x )<0,所以f (x )单调递减,B 正确.3.已知f (x )=x 3+x 2-x 的单调递增区间为________.答案(-∞,-1),13,+∞解析令f ′(x )=3x 2+2x -1>0,解得x >13或x <-1,所以f (x )=x 3+x 2-x 的单调递增区间为(-∞,-1)13,+∞4.已知f (x )=2x 2-ax +ln x 在区间(1,+∞)上单调递增,则实数a 的取值范围是________.答案(-∞,5]解析f ′(x )=4x -a +1x =4x 2-ax +1x,x ∈(1,+∞),故只需4x 2-ax +1≥0在x ∈(1,+∞)上恒成立,则a ≤4x +1x 在x ∈(1,+∞)上恒成立,令y =4x +1x,因为y ′=4-1x 2=4x 2-1x 2>0在x ∈(1,+∞)上恒成立,所以y =4x +1x 在(1,+∞)上单调递增,故4x +1x>5,所以a ≤5.题型一不含参函数的单调性例1(1)函数f(x)=x ln x-3x+2的单调递减区间为________.答案(0,e2)解析f(x)的定义域为(0,+∞),f′(x)=ln x-2,当x∈(0,e2)时,f′(x)<0,当x∈(e2,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(0,e2).(2)若函数f(x)=ln x+1e x,则函数f(x)的单调递增区间为________.答案(0,1)解析f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,即f′(x)>0,当x∈(1,+∞)时,φ(x)<0,即f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴函数f(x)的单调递增区间为(0,1).思维升华确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.跟踪训练1已知函数f(x)=x sin x+cos x,x∈[0,2π],则f(x)的单调递减区间为()A.0,π2 B.π2,3π2C.(π,2π) D.3π2,2π答案B解析由题意f(x)=x sin x+cos x,x∈[0,2π],则f ′(x )=x cos x ,当x f ′(x )>0,当x f ′(x )<0,故f (x )题型二含参数的函数的单调性例2已知函数g (x )=(x -a -1)e x -(x -a )2,讨论函数g (x )的单调性.解g (x )的定义域为R ,g ′(x )=(x -a )e x -2(x -a )=(x -a )(e x -2),令g ′(x )=0,得x =a 或x =ln 2,①若a >ln 2,则当x ∈(-∞,ln 2)∪(a ,+∞)时,g ′(x )>0,当x ∈(ln 2,a )时,g ′(x )<0,∴g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;②若a =ln 2,则g ′(x )≥0恒成立,∴g (x )在R 上单调递增;③若a <ln 2,则当x ∈(-∞,a )∪(ln 2,+∞)时,g ′(x )>0,当x ∈(a ,ln 2)时,g ′(x )<0,∴g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.综上,当a >ln 2时,g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;当a =ln 2时,g (x )在R 上单调递增;当a <ln 2时,g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.思维升华(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.跟踪训练2(2023·北京模拟)已知函数f (x )=2x -a(x +1)2.(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )的单调区间.解(1)当a =0时,f (x )=2x(x +1)2(x ≠-1),则f (0)=0,因为f ′(x )=-2x +2(x +1)3,所以f ′(0)=2.所以曲线y =f (x )在(0,0)处的切线方程为y =2x .(2)函数的定义域为(-∞,-1)∪(-1,+∞).f ′(x )=(-2x +2a +2)(x +1)(x +1)4=-2(x -a -1)(x +1)3,令f ′(x )=0,解得x =a +1.①当a +1=-1,即a =-2时,f ′(x )=-2x -2(x +1)3=-2(x +1)(x +1)3=-2(x +1)2<0,所以函数f (x )的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;②当a +1<-1,即a <-2时,令f ′(x )<0,则x ∈(-∞,a +1)∪(-1,+∞),令f ′(x )>0,则x ∈(a +1,-1),函数f (x )的单调递减区间为(-∞,a +1)和(-1,+∞),单调递增区间为(a +1,-1);③当a +1>-1,即a >-2时,令f ′(x )<0,则x ∈(-∞,-1)∪(a +1,+∞),令f ′(x )>0,则x ∈(-1,a +1),函数f (x )的单调递减区间为(-∞,-1)和(a +1,+∞),单调递增区间为(-1,a +1).综上所述,当a =-2时,函数f (x )的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;当a <-2时,函数f (x )的单调递减区间为(-∞,a +1)和(-1,+∞),单调递增区间为(a +1,-1);当a >-2时,函数f (x )的单调递减区间为(-∞,-1)和(a +1,+∞),单调递增区间为(-1,a +1).题型三函数单调性的应用命题点1比较大小或解不等式例3(1)(多选)(2024·深圳模拟)若0<x 1<x 2<1,则()A .21e e xx->ln x 2+1x 1+1B .21e e xx-<ln x 2+1x 1+1C .1221e e x x x x >D .1221e e x x x x <答案AC解析令f (x )=e x -ln(x +1)且x ∈(0,1),则f ′(x )=e x -1x +1>0,故f (x )在区间(0,1)上单调递增,因为0<x 1<x 2<1,所以f (x 1)<f (x 2),即1e x-ln(x 1+1)<2e x-ln(x 2+1),故21e e x x ->lnx 2+1x 1+1,所以A 正确,B 错误;令f (x )=e xx 且x ∈(0,1),则f ′(x )=e x (x -1)x 2<0,故f (x )在区间(0,1)上单调递减,因为0<x 1<x 2<1,所以f (x 1)>f (x 2),即1212e e >x x x x ,故1221e e x x x x >,所以C 正确,D错误.常见组合函数的图象在导数的应用中常用到以下函数,记住以下的函数图象对解题有事半功倍的效果.典例(多选)如果函数f (x )对定义域内的任意两实数x 1,x 2(x 1≠x 2)都有x 1f (x 1)-x 2f (x 2)x 1-x 2>0,则称函数y =f (x )为“F 函数”.下列函数不是“F 函数”的是()A .f (x )=e xB .f (x )=x 2C .f (x )=ln xD .f (x )=sin x答案ACD解析依题意,函数g (x )=xf (x )为定义域上的增函数.对于A ,g (x )=x e x ,g ′(x )=(x +1)e x ,当x ∈(-∞,-1)时,g ′(x )<0,∴g (x )在(-∞,-1)上单调递减,故A 中函数不是“F 函数”;对于B ,g (x )=x 3在R 上为增函数,故B 中函数为“F 函数”;对于C ,g (x )=x ln x ,g ′(x )=1+ln x ,x >0,当x g ′(x )<0,∴g (x )故C 中函数不是“F 函数”;对于D ,g (x )=x sin x ,g ′(x )=sin x +x cos x ,当x -π2,g ′(x )<0,∴g (x )-π2,故D 中函数不是“F 函数”.(2)(2023·成都模拟)已知函数f (x )=e x -e -x-2x +1,则不等式f (2x -3)+f (x )>2的解集为________.答案(1,+∞)解析令g (x )=f (x )-1=e x -e -x -2x ,定义域为R ,且g (-x )=e -x -e x +2x =-g (x ),所以g (x )=f (x )-1=e x -e -x -2x 为奇函数,f (2x -3)+f (x )>2变形为f (2x -3)-1>1-f (x ),即g (2x -3)>-g (x )=g (-x ),g ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当e x =e -x ,即x =0时,等号成立,所以g (x )=f (x )-1=e x -e -x -2x 在R 上单调递增,所以2x -3>-x ,解得x >1,所以所求不等式的解集为(1,+∞).命题点2根据函数的单调性求参数例4已知函数f (x )=ln x -12ax 2-2x (a ≠0).(1)若f (x )在[1,4]上单调递减,求实数a 的取值范围;(2)若f (x )在[1,4]上存在单调递减区间,求实数a 的取值范围.解(1)因为f (x )在[1,4]上单调递减,所以当x ∈[1,4]时,f ′(x )=1x -ax -2≤0恒成立,即a ≥1x2-2x 恒成立.设G (x )=1x 2-2x ,x ∈[1,4],所以a ≥G (x )max ,而G (x )-1,因为x ∈[1,4],所以1x ∈14,1,所以G (x )max =-716(此时x =4),所以a ≥-716,又因为a ≠0,所以实数a 的取值范围是-716,(0,+∞).(2)因为f (x )在[1,4]上存在单调递减区间,则f ′(x )<0在[1,4]上有解,所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]=-1(此时x =1),所以a >-1,又因为a ≠0,所以实数a 的取值范围是(-1,0)∪(0,+∞).思维升华由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集.跟踪训练3(1)(2024·郑州模拟)函数f (x )的图象如图所示,设f (x )的导函数为f ′(x ),则f (x )·f ′(x )>0的解集为()A .(1,6)B .(1,4)C .(-∞,1)∪(6,+∞)D .(1,4)∪(6,+∞)答案D解析由图象可得,当x <4时,f ′(x )>0,当x >4时,f ′(x )<0.结合图象可得,当1<x <4时,f ′(x )>0,f (x )>0,即f (x )·f ′(x )>0;当x >6时,f ′(x )<0,f (x )<0,即f (x )·f ′(x )>0,所以f (x )·f ′(x )>0的解集为(1,4)∪(6,+∞).(2)已知函数f (x )=(1-x )ln x +ax 在(1,+∞)上不单调,则a 的取值范围是()A .(0,+∞)B .(1,+∞)C .[0,+∞)D .[1,+∞)答案A解析依题意f ′(x )=-ln x +1x+a -1,故f ′(x )在(1,+∞)上有零点,令g (x )=-ln x +1x +a -1,令g (x )=0,得a =ln x -1x +1,令z (x )=ln x -1x +1,则z ′(x )=1x +1x2,由x >1,得z ′(x )>0,z (x )在(1,+∞)上单调递增,又由z(1)=0,得z(x)>0,故a=z(x)>0,所以a的取值范围是(0,+∞).课时精练一、单项选择题1.函数f(x)=(x-3)e x的单调递减区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)答案A解析由已知得,f′(x)=e x+(x-3)e x=(x-2)e x,当x<2时,f′(x)<0,当x>2时,f′(x)>0,所以f(x)的单调递减区间是(-∞,2),单调递增区间是(2,+∞).2.已知f′(x)是函数y=f(x)的导函数,且y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()答案D解析根据导函数的图象可得,当x<0时,f′(x)<0,f(x)在(-∞,0)上单调递减;当0<x<2时,f′(x)>0,f(x)在(0,2)上单调递增;当x>2时,f′(x)<0,f(x)在(2,+∞)上单调递减,所以只有D选项符合.3.(2023·重庆模拟)已知函数f(x)=13ax3+x2+x+4,则“a≥0”是“f(x)在R上单调递增”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案C解析由题意知,f′(x)=ax2+2x+1,若f(x)在R上单调递增,则f′(x)≥0恒成立,>0,=4-4a≤0,解得a≥1,故“a≥0”是“f(x)在R上单调递增”的必要不充分条件.4.(2023·新高考全国Ⅱ)已知函数f(x)=a e x-ln x在区间(1,2)上单调递增,则a的最小值为()A.e2B.e C.e-1D.e-2答案C解析依题可知,f′(x)=a e x-1x≥0在(1,2)上恒成立,显然a>0,所以x e x≥1a在(1,2)上恒成立,设g(x)=x e x,x∈(1,2),所以g′(x)=(x+1)e x>0,所以g(x)在(1,2)上单调递增,g(x)>g(1)=e,故e≥1a,即a≥1e=e-1,即a的最小值为e-1.5.(2024·苏州模拟)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=e x+sin x,则不等式f(2x-1)<eπ的解集是()答案D解析当x≥0时,f′(x)=e x+cos x,因为e x≥1,cos x∈[-1,1],所以f′(x)=e x+cos x≥0在[0,+∞)上恒成立,所以f(x)在[0,+∞)上单调递增,又因为f(x)是定义在R上的偶函数,所以f(x)在(-∞,0]上单调递减,所以f(-π)=f(π)=eπ,所以由f(2x-1)<eπ可得-π<2x-1<π,解得x6.(2023·信阳模拟)已知a=1100,b=99100e-,c=ln101100,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a 答案B解析设函数f(x)=e x-x-1,x∈R,则f′(x)=e x-1,当x<0时,f′(x)<0,f(x)在(-∞,0)上单调递减;当x>0时,f′(x)>0,f(x)在(0,+∞)上单调递增,故f(x)≥f(0)=0,即e x≥1+x,当且仅当x=0时取等号,∵e x≥1+x,∴99100e->1-99100=1100,∴b>a,由以上分析可知当x>0时,有e x-1≥x成立,当x=1时取等号,即ln x≤x-1,当且仅当x=1时取等号,∴ln 101100<101100-1=1100,∴a>c,故b>a>c.二、多项选择题7.(2023·临汾模拟)若函数f (x )=12x 2-9ln x 在区间[m -1,m +1]上单调,则实数m 的值可以是()A .1B .2C .3D .4答案BD解析f ′(x )=x -9x =x 2-9x (x >0),令f ′(x )>0,得x >3,令f ′(x )<0,得0<x <3,所以函数f (x )的单调递增区间为(3,+∞),单调递减区间为(0,3),因为函数f (x )在区间[m -1,m +1]上单调,-1>0,+1≤3或m -1≥3,解得1<m ≤2或m ≥4.8.(2024·邯郸模拟)已知函数f (x )x ,且a =f b =f c =12(e )f ,则()A .a >bB .b >aC .c >bD .c >a答案ACD解析由f (x )x ,得f ′(x )x 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,因为c =f 0<1e <23<45<1,所以f f f c >a >b .三、填空题9.函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为________.答案解析f ′(x )=-e -x cos x -e -x sin x =-e -x (cos x +sin x )=-2e -x当x e -x >0,,则f ′(x )<0;当x e -x >0,,则f ′(x )>0,∴f (x )在(0,π)10.若函数f (x )=x 3+bx 2+x 恰有三个单调区间,则实数b 的取值范围为________.答案(-∞,-3)∪(3,+∞)解析由题意得f ′(x )=3x 2+2bx +1,函数f (x )=x 3+bx 2+x 恰有三个单调区间,则函数f (x )=x 3+bx 2+x 有两个极值点,即f ′(x )=3x 2+2bx +1的图象与x 轴有两个交点,则判别式Δ=4b 2-12>0,解得b >3或b <- 3.所以实数b 的取值范围为(-∞,-3)∪(3,+∞).11.(2024·上海模拟)已知定义在(-3,3)上的奇函数y =f (x )的导函数是f ′(x ),当x ≥0时,y =f (x )的图象如图所示,则关于x 的不等式f ′(x )x>0的解集为________.答案(-3,-1)∪(0,1)解析依题意f (x )是奇函数,图象关于原点对称,由图象可知,f (x )在区间(-3,-1),(1,3)上单调递减,f ′(x )<0;f (x )在区间(-1,1)上单调递增,f ′(x )>0.所以f ′(x )x>0的解集为(-3,-1)∪(0,1).12.已知函数f (x )=3x a-2x 2+ln x (a >0),若函数f (x )在[1,2]上不单调,则实数a 的取值范围是________.答案解析f ′(x )=3a -4x +1x,若函数f (x )在[1,2]上单调,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在[1,2]上恒成立.令h (x )=4x -1x,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a≤3,又a >0,所以0<a ≤25或a ≥1.因为f (x )在[1,2]上不单调,所以25<a <1.四、解答题13.(2024·毕节模拟)已知函数f (x )=(a -x )ln x .(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )在(0,+∞)上单调递减,求实数a 的取值范围.解(1)根据题意,函数f (x )的定义域为(0,+∞),f (1)=0,f ′(x )=-ln x +a -x x,∴f ′(1)=a -1,∴曲线f (x )在点(1,f (1))处的切线方程为y =(a -1)(x -1).(2)f (x )的定义域为(0,+∞),f ′(x )=-ln x +a -x x =-x ln x -x +a x,令g (x )=-x ln x -x +a ,则g ′(x )=-ln x -2,令g ′(x )=0,则x =1e2,令g ′(x )>0,则0<x <1e2,令g ′(x )<0,则x >1e2,∴g (x )g (x )max ==1e 2+a ,∵f (x )在(0,+∞)上单调递减,∴f ′(x )≤0在(0,+∞)上恒成立,即1e2+a ≤0,∴a ≤-1e2.14.(2023·郑州模拟)已知函数f (x )=ln x +1.(1)若f (x )≤x +c ,求c 的取值范围;(2)设a >0,讨论函数g (x )=f (x )-f (a )x -a的单调性.解(1)f (x )≤x +c 等价于ln x -x ≤c -1.令h (x )=ln x -x ,x >0,则h ′(x )=1x -1=1-x x.当0<x <1时,h ′(x )>0,所以h (x )在(0,1)上单调递增;当x >1时,h ′(x )<0,所以h (x )在(1,+∞)上单调递减.故h (x )max =h (1)=-1,所以c -1≥-1,即c ≥0,所以c 的取值范围是[0,+∞).(2)g (x )=ln x +1-(ln a +1)x -a =ln x -ln a x -a(x >0且x ≠a ),因此g ′(x )=x -a -x ln x +x ln a x (x -a )2,令m (x )=x -a -x ln x +x ln a ,则m ′(x )=ln a -ln x ,当x >a 时,ln x >ln a ,所以m ′(x )<0,m (x )在(a ,+∞)上单调递减,当0<x <a 时,ln x <ln a ,所以m ′(x )>0,m (x )在(0,a )上单调递增,因此有m (x )<m (a )=0,即g ′(x )<0在x >0且x ≠a 上恒成立,所以函数g (x )在区间(0,a )和(a ,+∞)上单调递减.15.已知函数f (x )=e x x -ax ,当0<x 1<x 2时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,则实数a 的取值范围为()A .(-∞,e)B .(-∞,e]-∞,e 2答案D解析因为当0<x 1<x 2时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,所以f (x 1)x 2<f (x 2)x 1,即x 1f (x 1)<x 2f (x 2),令g (x )=xf (x )=e x -ax 2,则g (x 1)<g (x 2),又因为0<x 1<x 2,所以g (x )在(0,+∞)上单调递增,所以g ′(x )=e x -2ax ≥0在(0,+∞)上恒成立,分离参数得2a ≤e x x恒成立,令h (x )=e x x(x >0),则只需2a ≤h (x )min ,而h ′(x )=e x ·x -1x2,令h ′(x )>0,得x >1,令h ′(x )<0,得0<x <1,所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )≥h (1)=e ,故2a ≤e ,即a ≤e 2.16.已知偶函数f (x )在R 上存在导函数f ′(x ),当x >0时,f (x )x>-f ′(x ),且f (2)=1,则不等式(x 2-x )f (x 2-x )>2的解集为()A .(-∞,-2)∪(1,+∞)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .(-1,2)答案C 解析令g (x )=xf (x ),由于f (x )为偶函数,则g (x )为奇函数,所以g ′(x )=f (x )+xf ′(x ).因为当x >0时,f (x )x >-f ′(x ),即f (x )+xf ′(x )x>0,所以f(x)+xf′(x)>0,即g′(x)>0.所以当x>0时,g(x)在(0,+∞)上单调递增.因为g(x)在R上为奇函数且在R上存在导函数,所以g(x)在R上为增函数.因为f(2)=1,所以g(2)=2f(2)=2,又(x2-x)f(x2-x)>2等价于g(x2-x)>g(2),所以x2-x>2,解得x<-1或x>2.综上所述,x的取值范围为(-∞,-1)∪(2,+∞).。

高考大题规范解答系列——函数与导数高三数学新高考一轮复习优秀课件

高考大题规范解答系列——函数与导数高三数学新高考一轮复习优秀课件
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
若 a>0,则当 x∈(-∞,0)∪(a3,+∞)时,f′(x)>0;当 x∈(0,a3)时,f′(x)<0. 故 f(x)在(-∞,0),(a3,+∞)单调递增,在(0,a3)单调递减.3 分 得分点③
若 a=0,f(x)在(-∞,+∞)单调递增.4 分 得分点④ 若 a<0,则当 x∈(-∞,a3)∪(0,+∞)时,f′(x)>0;当 x∈(a3,0)时,f′(x)<0. 故 f(x)在(-∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.5 分 得分点⑤
综上,当且仅当 a=0,b=-1 或 a=4,b=1 时,f(x)在[0,1]的最小值为-1,最 大值为 1.12 分 得分点⑩
高 考 大 题 规 范解答 系列1————函函数数与与导导数数高-三20数21 学版新高高三 考数一学轮( 复新习高优考 秀)一pp轮t课复件习课 件(共3 4张PPT )
第二章 函数、导数及其应用
高 考 大 题 规 范解答 系列1————函函数数与与导导数数高-三20数21 学版新高高三 考数一学轮( 复新习高优考 秀)一pp轮t课复件习课 件(共3 4张PPT )
高考一轮总复习 • 数学 • 新高考
(2)满足题设条件的 a,b 存在. (ⅰ)当 a≤0 时,由(1)知,f(x)在[0,1]单调递增,所以 f(x)在区间[0,1]的最小值为 f(0)=b,最大值为 f(1)=2-a+b.此时 a,b 满足题设条件当且仅当 b=-1,2-a+b =1,即 a=0,b=-1.7 分 得分点⑥ (ⅱ)当 a≥3 时,由(1)知,f(x)在[0,1]单调递减,所以 f(x)在区间[0,1]的最大值为 f(0)=b,最小值为 f(1)=2-a+b.此时 a,b 满足题设条件当且仅当 2-a+b=-1,b =1,即 a=4,b=1.9 分 得分点⑦

高考数学第一轮复习教案-专题2函数概念与基本初等函数

高考数学第一轮复习教案-专题2函数概念与基本初等函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因 为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数 才是同一函数. (3)反函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.

高三一轮复习建议——单元五:函数与导数

高三一轮复习建议——单元五:函数与导数
第一部分 函数 (一)近五年的全国卷(Ⅰ)(理)高考题及分析
1、13年11题【考题分析】:本题考查分段函数及导数的几 何意义。体现了数形结合思想和化归与转化思想,函数与 方程思想。
解析: 可画出 y1=|f(x)|的图象如图所示. 当 a>0 时,y=ax 与 y=|f(x)|恒有公共点,所以排除 B,C; 若 x ≤0,则以 y=ax 与 y=|-x2+2x|相切为界限,由
' x
,可以看到,主要研究的是 ex 与一次函
数,应该说不难;
14 年第二问证明不等式,转化为 两个常见函数(xlnx 与 x/ ex )的最值问题(最小值大于最大值)。
就是研究我们所说的
3.16 年与 17 年的第一问就开始提升难度(是否是刻意为之);16 年的第一问是求通 过零点个数讨论参数范围,求导后核心函数是:
(一)本单元近五年来全国高考试题卷(Ⅰ)统计分析 (理科)
年份 (理) 题号 2013 11 16 21 3 2014 11 21 分值 5 5 12 5 5 12 题型 选择题 填空题 解答题 选择题 选择题 解答题 知识考点 分段函数 函数的对称性 导数的 几何意义,导 数与函数的最 值, 导数与函数的单调性 函数的奇偶性 函数与方程 导数的几何 意义, 导数与函数 的单调性, 两小一大 利用导数求函数的最值 22 分 12 2015 13 21 7 2016 8 21 5 2017 11 21 5 12 5 5 12 5 5 12 填空题 解答题 选择题 选择题 解答题 选择题 选择题 解答题 5 选择题 函数的 图象与性 质、导数公式 和导数运 算法则 函数的奇偶性 导数的 几何意义,分 段函数的处理 ,函 数的零点 函数的图象 幂函数、指数函数 、对数函数 函数的零点,不等式的 证明 函数的单调性、奇偶性 对数与对数函数 函数的零点,导数与函 数的单调性 22 分 22 分 两小一大 22 分 两小一大 两小一大 22 分 两小一大 说明

高考一轮复习第2章函数导数及其应用第9讲函数与方程

第九讲函数与方程知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE知识梳理知识点一函数的零点1.函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.注:函数的零点不是点.是函数f(x)与x轴交点的横坐标,而不是y=f(x)与x轴的交点.2.几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.知识点二二分法1.对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε,即:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)(3)(4).重要结论1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示.所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶个零点)时,函数值才变号,即相邻两个零点之间的函数值同号.(5)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)·f(b)<0⇒函数f(x)在[a,b]上只有一个零点.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0 Δ=0 Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数两个零点一个零点无零点双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.( ×)(2)二次函数y=ax2+bx+c(a≠0)在当b2-4ac<0时没有零点.( √)(3)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×)(4)若f(x)在区间[a,b]上连续不断,且f(a)·f(b)>0,则f(x)在(a,b)内没有零点.( ×)(5)函数y=2x与y=x2只有两个交点.( ×)[解析](1)函数的零点是函数图象与x轴交点的横坐标.(2)当b2-4ac<0时,抛物线与x轴无交点,故没有零点.(3)函数图象若没有穿过x轴,则f(a)·f(b)>0.(4)若在区间[a,b]内有多个零点,f(a)·f(b)>0也可以.(5)y=x2与y=2x在y轴左侧一个交点,y轴右侧两个交点,如在x=2和x=4处都有交点.题组二走进教材2.(必修1P92AT2改编)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1 2 3 4 5f(x) -4 -2 1 4 7在下列区间中,函数f(x)A.(1,2) B.(2,3)C.(3,4) D.(4,5)[解析]由所给的函数值的表格可以看出,x=2与x=3这两个数字对应的函数值的符号不同,即f(2)·f(3)<0,所以函数在(2,3)内有零点,故选B.3.(必修1P92AT1改编)下列函数图象与x轴均有公共点,其中能用二分法求零点的是( C )[解析]A,B图中零点两侧不异号,D图不连续.故选C.4.(必修1P92AT4改编)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值(精确度0.1)如下表所示:x 1.25 1.312 5 1.375 1.437 5 1.5 1.562 5f(x) -0.871 6 -0.578 8 -0.281 3 0.210 1 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为( C )A.1.32 B.1.39C.1.4 D.1.3[解析]通过上述表格得知函数唯一的零点x0在区间(1.375,1.437 5)内,故选C.题组三走向高考5.(2015·安徽,5分)下列函数中,既是偶函数又存在零点的是( A )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1[解析]y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点,故选A.6.(2019·全国卷Ⅲ,5分)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( B )A.2 B.3C.4 D.5[解析]f(x)=2sin x-2sin xcos x=2sin x(1-cos x),令f(x)=0,则sin x=0或cos x=1,所以x=kπ(k∈Z),又x∈[0,2π],所以x=0或x=π或x=2π.故选B.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一,函数的零点考向1 确定函数零点所在区间——自主练透例1 (1)若函数f(x)的图象是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是( D )A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点(2)(2021·开封模拟)函数f(x)=x+ln x-3的零点所在的区间为( C )A.(0,1) B.(1,2)C.(2,3) D.(3,4)(3)(多选题)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)·(x-c)+(x-c)(x-a)的零点位于区间可能为( BC )A.(-∞,a) B.(a,b)C.(b,c) D.(c,+∞)[解析](1)因为f(1)·f(2)·f(4)<0,所以f(1)、f(2)、f(4)中至少有一个小于0.若f(1)<0,则在(0,1)内有零点,在(0,4)内必有零点;若f(2)<0,则在(0,2)内有零点,在(0,4)内必有零点;若f(4)<0,则在(0,4)内有零点.故选D.(2)解法一:利用零点存在性定理因为函数f(x)是增函数,且f(2)=ln 2-1<0,f(3)=ln 3>0,所以由零点存在性定理得函数f(x)的零点位于区间(2,3)内,故选C.解法二:数形结合函数f(x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的图象的交点横坐标所在范围.如图所示,可知f(x)的零点在(2,3)内.(3)易知f(a)=(a-b)(a-c),f(b)=(b-c)·(b-a),f(c)=(c-a)(c-b).又a<b<c,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别位于区间(a,b)和(b,c)内,故选B、C.名师点拨MING SHI DIAN BO确定函数零点所在区间的方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 考向2 函数零点个数的确定——师生共研例2 (1)函数f(x)=⎩⎪⎨⎪⎧x 2+x -2,x≤0,-1+ln x ,x>0的零点个数为( B )A .3B .2C .7D .0(2)已知f(x)=⎩⎪⎨⎪⎧|lg x|,x>0,2|x|,x≤0,则函数y =2f 2(x)-3f(x)+1的零点个数为5.[解析] (1)解法一:(直接法)由f(x)=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x>0,-1+ln x =0,解得x =-2或x =e. 因此函数f(x)共有2个零点.解法二:(图象法)函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点. (2)令2f 2(x)-3f(x)+1=0,解得f(x)=1或f(x)=12,作出f(x)的简图:由图象可得当f(x)=1或f(x)=12时,分别有3个和2个交点,则关于x 的函数y =2f 2(x)-3f(x)+1的零点的个数为5.名师点拨 MING SHI DIAN BO函数零点个数的判定有下列几种方法(1)直接求零点:令f(x)=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b]上是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:利用函数y =f(x)的图象与x 轴的交点的个数,从而判定零点的个数,或转化为两个函数图象交点个数问题.画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.〔变式训练1〕(1)已知函数f(x)=⎩⎪⎨⎪⎧x 2-2x ,x≤0,1+1x ,x>0,则函数y =f(x)+3x 的零点个数是( C )A .0B .1C .2D .3(2)设函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=e x+x -3,则f(x)的零点个数为( C ) A .1 B .2 C .3D .4(3)(2020·河南名校联考)函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0,则函数g(x)=3[f(x)]2-8f(x)+4的零点个数是( A )A .5B .4C .3D .6[解析] (1)由已知得y =f(x)+3x =⎩⎪⎨⎪⎧x 2+x ,x≤0,1+1x+3x ,x>0.令x 2+x =0,解得x =0或x =-1.令1+1x +3x =0(x>0)可得3x 2+x +1=0.因为Δ=1-12<0,所以方程3x 2+x +1=0无实根.所以y =f(x)+3x 的零点个数是2.(2)f(x)=e x+x -3在(0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫12=e 12-52<0,f(1)=e -2>0,∴f(x)在(0,+∞)上只有一个零点,由奇函数性质得f(x)在(-∞,0)上也有一个零点,又f(0)=0,所以f(x)有三个零点,故选C .(3)本题考查函数的零点与方程根的个数的关系.函数g(x)=3[f(x)]2-8f(x)+4=[3f(x)-2][f(x)-2]的零点,即方程f(x)=23和f(x)=2的根.函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0的图象如图所示,由图可得方程f(x)=23和f(x)=2共有5个根,即函数g(x)=3[f(x)]2-8f(x)+4有5个零点. 考向3 函数零点的应用——多维探究 角度1 与零点有关的比较大小例3 已知函数f(x)=2x+x ,g(x)=x -log 12x ,h(x)=log 2x -x 的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系为( D )A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 1[解析] 由f(x)=2x+x =0,g(x)=x -log 12x =0,h(x)=log 2x -x =0,得2x=-x ,x =log 12x ,log 2x=x ,在平面直角坐标系中分别作出y =2x与y =-x 的图象;y =x 与y =log 12x 的图象;y =log 2x 与y =x 的图象,由图可知:-1<x 1<0,0<x 2<1,x 3>1.所以x 3>x 2>x 1.角度2 已知函数的零点或方程的根求参数例4 (2018·全国Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧e x,x≤0,ln x ,x>0,g(x)=f(x)+x +a.若g(x)存在2个零点,则a 的取值范围是( C ) A .[-1,0) B .[0,+∞) C .[-1,+∞) D .[1,+∞)[解析]令h(x)=-x -a ,则g(x)=f(x)-h(x).在同一坐标系中画出y =f(x),y =h(x)图象的示意图,如图所示.若g(x)存在2个零点,则y =f(x)的图象与y =h(x)的图象有2个交点.由图知-a≤1,∴a≥-1.名师点拨 MING SHI DIAN BO 1.比较零点大小常用方法:(1)确定零点取值范围,进而比较大小; (2)数形结合法.2.已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解. 〔变式训练2〕(1)(角度1)(2021·安徽蚌埠月考)已知函数f(x)=3x+x ,g(x)=log 3x +x ,h(x)=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( B )A .a<b<cB .a<c<bC .a>b>cD .c>a>b(2)(角度2)(2021·杭州学军中学月考)已知函数f(x)=⎩⎪⎨⎪⎧2x-a ,x≤0,2x -1,x>0(a∈R),若函数f(x)在R 上有两个零点,则a 的取值范围是( D )A .(-∞,-1)B .(-∞,-1]C .[-1,0)D .(0,1][分析] (1)解法一:依据零点存在定理,确定a ,b ,c 所在区间,进而比较大小;解法二:分别作出y =3x、y =log 3x 、y =x 3与y =-x 的图象,比较其交点横坐标的大小即可.[解析](1)解法一:∵f(-1)=3-1-1=-23,f(0)=1,∴a∈⎝ ⎛⎭⎪⎫-23,0,又g ⎝ ⎛⎭⎪⎫13=log 313+13=-23,g(1)=1,∴b∈⎝ ⎛⎭⎪⎫13,1,显然c =0,∴a<c<b,故选B .解法二:数形结合法,在同一坐标系中分别作出y =3x、y =log 3x 、y =-x 的图象,结合图象及c =0可知a<c<b ,故选B .解法三:由概念知b>0,a<0,c<0,∴b 最大,选B .(2)∵当x>0时,f(x)=2x -1, 由f(x)=0得x =12,∴要使f(x)在R 上有两个零点, 则必须2x-a =0在(-∞,0]上有解. 又当x ∈(-∞,0]时,2x∈(0,1]. 故所求a 的取值范围是(0,1].考点二 二分法及其应用——自主练透例5 (1)用二分法研究函数f(x)=x 3+3x -1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈(0,0.5),第二次应计算f(0.25).(2)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可判定该根所在的区间为⎝ ⎛⎭⎪⎫32,2. (3)在用二分法求方程x 2=2的正实数根的近似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是7.[解析] (1)因为f(0)<0,f(0.5)>0,由二分法原理得一个零点x 0∈(0,0.5);第二次应计算f ⎝ ⎛⎭⎪⎫0+0.52=f(0.25).(2)区间(1,2)的中点x 0=32,令f(x)=x 3-2x -1,f ⎝ ⎛⎭⎪⎫32=278-4<0,f(2)=8-4-1>0,则根所在区间为⎝ ⎛⎭⎪⎫32,2. (3)设至少需要计算n 次,由题意知1.5-1.42n<0.001,即2n >100.由26=64,27=128,知n =7. 名师点拨 MING SHI DIAN BO1.用二分法求函数零点的方法:定区间,找中点,中值计算两边看,同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.2.利用二分法求近似解需注意的问题(1)在第一步中:①区间长度尽量小;②f(a),f(b)的值比较容易计算且f(a)·f(b)<0; (2)根据函数的零点与相应方程根的关系,求函数的零点与相应方程的根是等价的.(3)虽然二分法未单独考过,但有可能像算法中的“更相减损术”一样,嵌入到程序框图中去考查.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数零点的综合问题例6 (2021·山西五校联考)已知函数f(x)=⎩⎪⎨⎪⎧-2x ,x≤0-x 2+x ,x>0,若函数g(x)=f(x)-a 恰有三个互不相同的零点x 1,x 2,x 3,则x 1x 2x 3的取值范围是( A )A .⎝ ⎛⎭⎪⎫-132,0B .⎝ ⎛⎭⎪⎫-116,0 C .⎝ ⎛⎭⎪⎫0,132 D .⎝ ⎛⎭⎪⎫0,116 [解析] 解法一:显然x≤0时,-2x =a ,有一根不妨记为x 1,则x 1=-a 2(a≥0),当x>0时-x 2+x=a 即x 2-x +a =0有两个不等正根,不妨记为x 2,x 3,则Δ=1-4a>0,即a<14,从而-a 2∈⎝ ⎛⎭⎪⎫-116,0且x 2x 3=a.∴x 1x 2x 3=-a 22∈⎝ ⎛⎭⎪⎫-132,0,故选A .解法二:作出y =f(x)及y =a 的图象,显然0<a<14,不妨设x 1<x 2<x 3显然x 1<0,x 2>0,x 3>0,∴x 1x 2x 3<0排除C 、D ,又当x 2趋近x 3时,x 2x 3趋近14,x 1趋近-18,故x 1x 2x 3趋近-132.故选A .名师点拨 MING SHI DIAN BO以函数图象、图象的变换方法及函数的零点等相关知识为基础,通过作图、想象,发现该问题的相关数学知识及其联系,快速解决该问题.〔变式训练3〕(2021·东北三省四市模拟)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +1,x≤0,|lg x|,x>0.若f(x)=a(a∈R)有四个不等实根,则所有实根之积的取值范围是( B )A .(-∞,1)B .[0,1)C .(0,1)D .(1,+∞)[解析] 本题考查已知方程根的个数求根的乘积的取值范围. 设四个根依次为x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4), 则-2≤x 1<-1,-1<x 2≤0,x 1+x 2=-2, 由|lg x 3|=|lg x 4|,得-lg x3=lg x4,则lg x3+lg x4=lg(x3x4)=0,∴x3x4=1,∴x1x2x3x4=x1x2=(-2-x2)x2=-(x2+1)2+1∈[0,1).故选B.。

高考数学一轮复习导数在函数中的应用-教学课件


聚焦中考——语文 第五讲
表达方式与记叙的顺序
• (2013·荆门)阅读下文,完成习题。 • ①那天下午6点多,该上公交车的人早已上了车,唯独有个小女孩,在车
门边来回徘徊。眼看着司机就要开车了,我在想,这小女孩肯定是没钱 上车。 ②“小姑娘,上车吧,我帮你交车票钱。”当看到我为她刷完卡后,她 随即上了车,说了声“谢谢阿姨”,一时脸蛋儿全红了。近距离一看, 才发现,小女孩左侧脸上有颗小痣。几天前的一幕不由浮现眼前—— ③送走远方的朋友,我从火车站迎着风雨赶到就近的公交车站台,已是 下午5点多。这时正是下班高峰期,来了几辆公交车,我总也挤不上去。 雨还在急速地下着,人还在不断地涌来。当又一辆10路公交驶来后,我 和许多人一起先往前门挤,但挤不上去。等司机发话后,才从后门好不 容易挤上车。车内人头攒动,人满为患。这人贴人的,身体若要移动一 下都难。正感叹着,我突然感觉好像有一件事还没做。是什么事呢?哦, 对了,没买车票。本想挤到前面去交车钱,可大伙儿都好像没事人一样 在原地一动不动,根本挤不过去。见此情形,司机也没说什么,这样, 我也就心安理得地和大家一样坐了一次免费的公交车。
本题在当年的高考中,出错最多的就是将第(1)题 的 a=4 用到第(2)题中,从而避免讨论,当然这是错误的.
【互动探究】 1.(2011 届广东台州中学联考)设 f′(x)是函数 f(x)的导函数,
将 y=f(x)和 y=f′(x)的图象画在同一直角坐标系中,不可能正确 的是( D )
考点2 导数与函数的极值和最大(小)值
高考数学一轮复习导数在函数中的应用-教学课件
第2讲 导数在函数中的应用
考纲要求
考纲研读
1.了解函数单调性和导数的关系;能利用 1.用导数可求函数的单 导数研究函数的单调性,会求函数的单调 调区间或以单调区间为 区间(对多项式函数一般不超过三次). 载体求参数的范围.

2012年高考“函数与导数”专题分析


有 北 京 文 、福 建 文 、湖 北 理 文 、江 西 理 、陕 西 理 文 、新 课 程 全
、命 题 特 点 国卷文 8份 ;还 有江苏 卷 3小 2大 、上海理 文卷 4小 2大和 3
小 2大 、 山东 卷 4小 1 的设 计 格 局 . ( 大 由于 函数 与 导数 知 识 的
1 考 查题 型和 内容 稳 定 .
收 稿 日期 :2 1— 7 2 020 — 1
大的比重 ,高考命题严格遵循 《 普通高中数 学课程标准 ( 实验) 数 的性 质 ( 》 单调性 、奇偶性 、周期性 、对称性) ;函数 的 象 ; 和 (0 2年高考考试说明》 的教学要 求,继承近几年 高考命题的 函 数 的应 用 以 及 四 大 类 基 本 初 等 函数 ( 次 函 数 、 幂 函 数 、指  ̄ 1 二
2 .考 查 力 度 有 差 异 21 0 2年 共 3 5份 试 卷 , 新 课 程 全 国 卷 2份 ,大 纲 全 国 卷
1 容 的教学要求 ,重点热 点 内容 突出 ,课程 内容 的更新部分 在高 2份 ,省 市 自主命题卷 3 份 ,这 些试卷对 函数 与导数的考查 总 考试题 中逐 年得 以体现 . 这对 日常 的函数与导数教学发挥了积极 体来讲 ,每份 文 、理试 卷 中一般 有两道选 择题或是填 空题 ,每 的导 向作用 :重视 函数 性质 的综 合考查 、体现文 理差异 、注重 份 试 卷 中均 至 少 有 一 道 解 答 题 , 知 识 点 涵 盖 较 为 广 泛 全 面 ,分
灵 活性 、开放性转变 也是我们要格外 关注 的. 本文从 命题特点 、 1 1 题 目的 有 安 徽 理 、大 纲 全 国卷 理 文 、北 京 理 、广 东 理 、 大 小

高三数学一轮复习 第2章 函数、导数及其应用第5课时 指数与指数函数精品课件 理 北师大

• ③(ab)r= arbr(a>0,b>0,r∈Q).
• 3.指数函数的图象和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图象
图象特征
在x轴 上方,过定点 (0,1)
当x逐渐增大时, 图象逐渐下降
当x逐渐增大时, 图象逐渐上升
函数
定义域
值域
性 单调性 质
函数 值变 化规律
y=ax(a>0,且a≠1)
D.f(-2)>f(2)
解析: 由a-2=4,a>0,得a=12, ∴f(x)=21-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|,即f(-2)>f(-1). 答案: A
4.方程3x-1=19的解是________. • 答案: -1
5.函数y=121-x的值域是________. 解析: 函数的定义域为R,令u=1-x∈R, ∴y=21u>0. 答案: (0,+∞)
• (2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函 数.
• 1.与指数函数有关的复合函数的定义域、值域的求法
• (1)函数y=af(x)的定义域与y=f(x)的定义域相同; • (2)先确定f(x)的值域,再根据指数函数的值域、单调性,可确定y=
af(x)的值域. • 2.与指数函数有关的复合函数的单调性的求解步骤 • (1)求复合函数的定义域; • (2)弄清函数是由哪些基本函数复合而成的; • (3)分层逐一求解函数的单调性; • (4)求出复合函数的单调区间(注意“同增异减”).
【变式训练】 1.计算下列各式:
• 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的 图象,通过平移、对称变换得到其图象.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编辑ppt
14
返回目录
考点三 零点性质的应用
(1)若函数f(x)=ax2-x-1有且仅有一个零点,求实数 a的值; (2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取 值范围.
【分析】 (1)二次项系数含有字母,需分类讨论. (2)利用函数图象求解.
编辑ppt
15
返回目录
【解析】 (1)若a=0,则f(x)=-x-1, 令f(x)=0,即-x-1=0,得x=-1,故符合题意; 若a≠0,则f(x)=ax2-x-1是二次函数, 故有且仅有一个零点等价于Δ=1+4a=0,
【评析】若采用基本作图法,画出函数y=lnx+2x-6的
图象求零点个数,则太冗长.构造新函数y=lnx与y=6-2x,用
数形结合法求交点,则简洁明快.
编辑ppt
12
返回目录
*对应演练* x -2
已知函数f(x)=ax+ x 1 (a>1).判断f(x)=0的根的个数.
编辑ppt
13
返回目录
设f1(x)=ax(a>1),f2(x)= -
编辑ppt
5
返回目录
题型分析 考点一 函数零点的判断与求解
判断下列函数在给定区间上是否存在零点. (1)f(x)=x2-3x-18,x∈[1,8]; (2) f(x)=x3-x-1,x∈[-1,2]; (3) f(x)=log2(x+2)-x,x∈[1,3].
【分析】利用函数零点的存在性定理或图象进
1
解得a=- 4 .
1
综上所述,a=0或a=- 4 .
编辑ppt
16
返回目录
(2)若f(x)=|4x-x2|+a有4个零点,
即|4x-x2|+a=0有四个根,
即|4x-x2|=-a有四个根.
令g(x)=|4x-x2|,h(x)=-a.
作出g(x)的图象如图所示,由图象可知,如果要使|4x-
x2|=-a有四个根,
编辑ppt
8
返回目录
*对应演练*
求下列函数的零点: (1)y=x3-7x+6; (2)y=x+ 2 -3.
x
编辑ppt
9
返回目录
(1)∵x3-7x+6=(x3-x)-(6x-6)
=x(x2-1)-6(x-1)=x(x+1)(x-1)-6(x-1)
=(x-1)(x2+x-6)=(x-1)(x-2)(x+3),
行判断.
编辑ppt
6
返回目录
【解析】 (1)解法一:∵f(1)=-20<0,f(8)=22>0,
∴f(1)·f(8)<0,故f(x)=x2-3x-18,x∈[1,8]存在零点.
解法二:令x2-3x-18=0,解得x=-3或6,
∴函数f(x)=x2-3x-18,x∈[1,8]存在零点.
(2)∵f(-1)=-1<0,f(2)=5>0,
解x3-7x+6=0,即(x-1)(x-2)(x+3)=0,
可得x1=-3,x2=1,x3=2. ∴函数y=x3-7x+6的零点为-3,1,2.
(2)x+ 2 -3= x2-3x 2(x-1)-(2x)0 .
x
x
x
解x+ 2
x
-3=0,即
(x-1)(x-2)0 ,可得x=1或x=2. x
∴函数y=x+ 2 -3的零点为1,2.
x -2 x1
, 则 f(x)=0 的解
即为f1(x)=f2(x)的解,即为函数f1(x)与f2(x)图象交点的
横坐标.
在同一坐标系中,作出函数f1(x)=ax(a>1)与f2(x)=-
x - 2 3 1 的图象(如图所示). x 1 x1
两函数图象有且只有
一个交点,即方程 f(x)=0有
且只有一个根.
那么g(x)与h(x)的图象
应有4个交点. 故需满足0<
-a<4,即-4<a<0.
∴a的取值范围是(-4,0).
编辑ppt
17
返回目录
【评析】此类方程根的分布问题,通常有两种解法.一 是利用方程中根与系数的关系或利用函数思想结合图 象 求解;二是构造两个函数分别作出图象,利用数形结合法求 解.此类题目也体现了函数与方程、数形结合的思想.
∴f(x)=x3-x-1,x∈[-1,2]存在零点.
(3)∵f(1)=log2(1+2)-1>log22-1=0, f(3)=log2(3+2)-3<log28-3=0, ∴f(1)·f(3)<0,
故f(x)=log2(x+2)-x在x∈[1,3]存在零点.
编辑ppt
7
返回目录
【评析】函数的零点存在性问题常用的办法有三种: 一是用定理,二是解方程,三是用图象.
学案5 函数与方程
编辑ppt
1
考点分析
1.函数零点的定义
(1)对于函数y=f(x)(x∈D),把使 f(x)=0 的实数x
叫做函数y=f(x)(x∈D)的零点.
(2)方程f(x)=0
⇔ y=f(x)的图象与 x轴
⇔ y=f(x)有 零点 .
编辑ppt
2
返回目录
2.函数零点的判定 如果函数y=f(x)在区间[a,b]上的图象是连续不断 的一条曲线,并且有 f(a)·f(b)<0 ,那么,函数y=f(x)在区 间 (a,b) 内有零点,即存在c∈(a,b),使得 f(c)=0 , 这个c也就是f(x)=0的根.我们不妨把这一结论称为零点 存在性定理. 3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
编辑ppt
3
返回目录
二次函数 y=ax2+bx
+c (a>0)的
图象
与X轴的交 点
零点个数
0
(x1,0),(x2,0) 两个
0
(x1,0) 一个
0
无交点 无
编辑ppt
4
返回目录
4.用二分法求函数f(x)零点近似值的步骤 第一步,确定区间[a,b],验证 f(a)·f(b)<0,给定精确
度ε;
第二步,求区间(a,b)的中点c;
x
编辑ppt
10
返回目录
考点二 零点个数问题 求函数y=lnx+2x-6的零点个数.
【分析】该问题转化为求函数y=lnx与y=6-2x的 图象的交点个数,因此只需画出图象,数形结合即可.
编辑ppt
11
返回目录
【解析】在同一坐标系 中画出y=lnx与y=6-2x的图 象如图所示, 由图已知两图 象只有一个交点,故函数y= lnx+2x-6只有一个零点.
第三步,计算 f(c) :
①若 f(c)=0 ,则c就是函数的零点;
②若 f(a)·f(c)<0 ,则令b=c(此时零点x0∈(a,c)); ③若 f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)); 第四步,,则得到零
点近似值a(或b);否则重复第二、三、四步.
相关文档
最新文档