9.4.2 三阶行列式(含答案)
二阶和三阶行列式

二阶和三阶行列式
(1-5) 为二阶矩阵A的行列式,简称二阶行列式.其中aij(i,j=1, 2)的第一个下标i表示元素所在行,称为行标,第二个下标j表示 元素所在列,称为列标,则aij就是位于构成行列式的数表第i行与 第j列交叉位置的数,称为行列式的元素.
二阶和三阶行列式
从式(1-5)可以看出,二阶行列 式实际上是一个算式,即从左上角到右 下角的对角线(主对角线)上两个元素 相乘以后减去从右上角到左下角的对角 线(副对角线)上两个元素的乘积,这 就是计算二阶行列式的对角线法则.
谢谢聆听
二阶和三阶行列式
【例1-2】
求下列各二阶行列式的值.
二阶和三阶行列式
二阶和三阶行列式
二阶和,简称三阶行列 式.三阶行列式的展开式 也可以用对角线法则得到, 三阶行列式的对角线法则 如图1-3所示.
图1-3 三阶行列式的对角线法则
二阶和三阶行列式
其中每条实线上三个元素的乘积带 正号,每条虚线上三个元素的乘积带负 号,所得六项的代数和就是三阶行列式 的展开式.
二阶和三阶行列式
二阶和三阶行列式
在中学时已通过求解二元、三元一次线性方程组 的问题引出了二阶、三阶行列式的定义.在此,再进行 简单的复习.
设有二元一次线性方程组
该方程组用矩阵形式可表示为AX=b,其中
二阶和三阶行列式
当a11a22-a12a21≠0时,方程组有唯一解:
上述结论可作为公式使用,但这种公式解的表达式比较 复杂,应用起来也不方便,为方便记忆,我们引进新的记号 来表示这个结果,就是行列式的概念.
_三阶行列式

0 1 3 按第1列和第2行分别 1
例1.将行列式 D 2 1 2 3
展开并求值. 1 3 0 1 0 1 解: D 3 2 (2) 32 3 1 3 1 1 3
0 1 3 1 3 0 D 2 1 3 32 3 1 2 1 2 3
若 a1 A 1 a2 A 2 a3 A 3 0
d1 A1 d 2 A2 d3 A3 则:x a1 A1 a2 A2 a3 A3
b 2 b1 A1 b2 A2 b3 A3 0 改写为: c1 A1 c2 A2 c3 A3 0 c 2
一般选择0较多的行或列进行展开求值.
例2.证明下列恒等式:
a1 a2 a3 0 c1 a1 b1 b2 b3 b1 a1 c1 c2 c3 b1 a1 b1 b2 b3 c1 c2 c1 c2 c3 0 0 c2 0, a2 0 c3 a3 a1 0 c1 a3 a1 a2 a3 b1 b2 b3 b2 0, a2 b3 a3 b2 a2 b3 a3 c1 a1 0 c3 a2
D a1 A1 b1B1 c1C1 a2 A2 b2 B2 c2C2 a3 A3 b3 B3 c3C3
一、三阶行列式的展开II(续) 定理1:三阶行列式等于其任意列(或行)的所有元 素分别和它们的代数余子式的乘积的和.
a1 D a2 a3 b1 b2 b3
2 1
(b1c3 b3c1 ) b1c2 b2c1 b2c3 b3c2 b1 b2 b2 b3
b1
c1
b3 c3 c1 c2
c2 c3
不妨令:
A1 b2 b3 c2 c3 A2 b1 b3 c1 c3 b1 A3 b2 c1 c2
9.4三阶行列式(2)

2 , 3
(4)已知二次函数 f ( x)满足f (1) 0,
f (2) 3, f (3) 28, 求f x 的解析式.
解 : 设f x ax2 bx c, a 0x a b c 0 1 1 1 则 : 4a 2b c 3 D 4 2 1 20 9a 3b c 28 9 3 1
i j
一般用该元素的大写字母加相同的下标表示. b c1 2 1 1 例2 元素 a2 的代数余子式 A2 ( 1) b3 c3
2
4
0
例3.已知行列式 D 2 1 的代数余子式.
1 0 ,写出第一列元素 0 1
11
解:-2的代数余子式为 (1)
1 0 1 0 0 1 0 1
2的代数余子式为 (1)
21
4 0 4 0 0 1 0 1 4 0 4 0 1 0 1 0
1的代数余子式为 (1)
31
三、三阶行列式的展开
定理1:三阶行列式等于其任意列(或行)的所有元 素分别和它们的代数余子式的乘积的和.
四、应用举例
3
0 1 3 按第1列和第2行分别 1
第九章 矩阵和行列式初步
9.4.1 三阶行列式
9.4.2 三阶行列式
一、复习回顾
a1
(1)三阶行列式 a2
b1
c1 c2 对角线方则展开 c3
.
b2 b3
a3
a1 x b1 y c1 z d1 (2) 方程 a2 x b2 y c2 z d 2 有唯一解的条件是 D 0. a x b y c z d 3 3 3 3
(3) 已知 A x1 , y1 , B x2 , y2 , C x3 , y3 ,则 ABC的面积 为 .
三阶行列式

9.4 三阶行列式(2) 教学目标:
1.掌握三元线性方程组的行列式解法
2.理解三元线性方程组有唯一解时,系数行列式应满足的条件
3.会根据三元先行方程组有唯一解的条件,确定含字母系数的三元方程组中,字母的范围 教学重点:
三元线性方程组的行列式解法 教学过程:
1.根据二元线性方程组的行列式解法易知,三元线性方程组111122223
333a x b y c z d a x b y c z d a x b y c z d
++=⎧⎪
++=⎨⎪++=⎩,也能利
用行列式的方法求解
2.1
112
223
3
3a b c D a b c a b c =;1112
2
233
3x d b c D d b c d b c =;1112
2233
3
y a d c D a d c a d c =;1112
2233
3
z a b d D a b d a b d = 当0D ≠时,方程组有唯一解x y z D x D D y D D z D ⎧
=⎪⎪
⎪
=⎨⎪
⎪=⎪⎩
3.例题:利用行列式解方程组:632752215x y z x y z x y z ++=⎧⎪
-+=⎨⎪++=⎩
4. 当0D ≠时,方程组有唯一解x y z D x D D y D D z D ⎧=⎪⎪
⎪
=⎨⎪
⎪=⎪⎩
当0D =时,方程组无解或有无穷多解,不展开讨论
5.求关于,,x y z 的方程组1
3x y mz x my z m x y z ++=⎧⎪
++=⎨⎪-+=⎩
有唯一解的条件,并在此条件下写出该方程组的
解。
沪教版高二上学期数学9.3-9.4 二阶行列式 三阶行列式 同步练习(含答案)

9.3-9.4 二阶行列式 三阶行列式 同步练习一、选择题1.已知(5,6)AB =,(3,1)AC =-,则△ABC 的面积为( ). A .5631- B .3516-C .561312-D .351162-2.三阶行列式111222333a b c a b c a b c 中,1b 的代数余子式是( ). A .1122a c a cB .2233a c a c C .2233c a c a D .1122c a c a3.关于x ,y ,z 的方程组2(21)212ax a y a a x ay a⎧+-=+-⎨+=⎩,则下列说法错误的是( ).A .一定有解B .可能有唯一解C .可能有无穷多解D .可能无解4.已知()11,AB x y =,()22,AC x y =,则三个不同点A ,B ,C 共线是11220x y x y =的( ).A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分又非必要条件5.系数行列式0D ≠是二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩有唯一解的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件6.已知ABC 的三边长为,,a b c ,且1101a c ba cb =,则ABC 的形状为( ). A .等腰三角形 B .等边三角形C .直角三角形D .等腰直角三角形7.满足方程sin 2cos20sin3cos3x x xx-=的一个解是( ).A .18︒B .30︒C .36︒D .60︒8.设二元一次方程组为1112220,0.a xb yc a x b y c ++=⎧⎨++=⎩若x Dx D =,则x D 为( ).A .1212b bc c -B .1122b c b c -C .1122c b c b -- D .1122b c b c --二、填空题9.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若22=+ab a b c,则角C 的大小为______.10.行列式274434358x x-中,第3行第2列的元素的代数余子式记作()f x .则函数1()y f x =+的零点是________.11.若行列式212410139xx =-,则 .12.当实数m ________时,方程组()221(1)1(1)1m x m y m m x m y m ⎧--+=+⎪⎨-+=-⎪⎩有唯一解.13.行列式cossin 36sincos36ππππ的值是________.14.关于x ,y 的方程组242x my m mx y ⎧+=⎨+=⎩无实数解,则m =________.15.函数3cos 4sin x y x=的最大值是_____________.16.若三元一次方程组的系数行列式0D =,则方程组解的情况为_____________.17.若方程组1,1,1ax y ay z az x +=⎧⎪+=⎨⎪+=⎩无解,则实数a 的值为__________.18.在三阶行列式206135479中,5的余子式的值是____________.三、解答题 19.求函数322xy x =-的最小值.20.关于,x y 的方程组6,(2)320.x my m x y m +=-⎧⎨-++=⎩请对方程组解的情况进行讨论.21.已知三角形三边的和6a b c ++=,又0a b cca b b ca=,求各边之长.参考答案 1.C 2.C 3.D 4.A 5.C 6.B 7.C 8.C 9.4π 10.1- 11.2或3- 12.1m ≠- 13.0 14.2- 15.516.无解或有无穷多组解 17.1- 18.14 19.520.当1m ≠-且3m ≠时,方程组有唯一解,即2(3),14;1m x m y m +⎧=-⎪⎪+⎨⎪=-⎪+⎩当3m =时,方程组有无穷多解;即36,().x t t R y t =--⎧∈⎨=⎩;当1m =-时,此方程组无解21.2a b c ===。
二阶、三阶行列式

1 − 2 =
例5用三阶行列式解线性方程组ቐ2 − 3 = 的值。
1 + 3 =
解
由于
1
= 0
1
−1 0
1 −1 =1+1=2≠ 0
0
1
1
2 = 0
1
0
−1 =b−a+c
1
1 =
−1
1
0
1 −1
3 = 0 1
1 0
0
−1 =a+b+c
1
=c−b−a
定行列式等于零。
线 性 代 数
31 32 33
−1322131 −122133 −112332
11 12 13
= 21 22 23 称为三阶行列式,它由三行、三列共9个元素组成,
31 32 33
是6项的代数和,每一项都是三个元素的乘积并适当附上正号或负号,而且
这三个元素必须来自不同的行和不同的列。如图1-2所示,可用对角线法则
2
(1)当λ 为何值时,D=0;
解
λ
1
,问:
(2)当λ 为何值时,D≠0。
λ2 λ
因为 =
= λ2 − λ = λ(λ − 2),所以
2 1
(1)当λ=0或λ=2时,D=0;
(2)当λ≠0且λ≠2时,D≠0。
3 − 42 = 2
例3用二阶行列式解线性方程组ቊ 1
1 + 22 = 4
解
=
表示a11a22-a12a21,称为
21 22
二阶行列式,即
a11
a12
D
a11a22 - a12 a21
二阶、三阶行列式

a11 x1 + a12 x2 + a13 x3 = b1 , a21 x1 + a22 x2 + a23 x3 = b2 , a x + a x + a x = b ; 31 1 32 2 33 3 3
得
a11 b1 D2 = a21 b2 a31 b3
a13 a23 , a33 a11 a12 D = a21 a22 a31 a32 a13 a23 a33
记
即
a11 x1 + a12 x2 + a13 x3 = b1 , a21 x1 + a22 x2 + a23 x3 = b2 , a x + a x + a x = b ; 31 1 32 2 33 3 3 a11 a12 D = a21 a22 a31 a32 a13 a23 a33
则三元线性方程组的解为: 则三元线性方程组的解为
D1 x1 = , D
D2 x2 = , D
D3 x3 = . D
三、小结
二阶和三阶行列式是由解二元和三元线性方 程组引入的. 程组引入的 二阶与三阶行列式的计算 对角线法则
a11 a21
a12 a22
= a11a22 − a12 a21 .
a11 a12 a21 a22 a31 a32
a13 a23 = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31, a33
若记 系数行列式
D=
a11
a12
a21 a22
,
a11 x1 + a12 x2 = b1 , a21 x1 + a22 x2 = b2 .
二阶三阶行列式

二阶三阶行列式1.引言1.1 概述二阶行列式和三阶行列式是线性代数中常见的概念。
行列式是一个整数或实数的方阵,它具有很多重要的性质和应用。
二阶行列式是一个2×2的方阵,而三阶行列式是一个3×3的方阵。
在本文中,我们将介绍二阶行列式和三阶行列式的定义以及计算方法,并总结它们的特点和重要性。
在二阶行列式部分,我们将详细介绍二阶行列式的定义和计算方法。
二阶行列式的定义是由其中的四个元素按一定的规则相乘再相减得到的一个数值。
计算二阶行列式可以使用简单的公式,即将对角线上的两个元素相乘再相减。
我们将提供详细的计算示例,并讨论二阶行列式在几何学和线性方程组中的应用。
在三阶行列式部分,我们将进一步介绍三阶行列式的定义和计算方法。
三阶行列式的计算比较复杂,需要按一定的规则进行乘法和加减运算。
我们将解释这些规则,并提供实际的计算例子。
此外,我们还将探讨三阶行列式在向量空间和线性方程组中的应用,以及它们与二阶行列式之间的关系。
通过本文的学习,读者将能够理解二阶行列式和三阶行列式的概念和计算方法。
同时,他们还将认识到行列式在数学和实际应用中的重要性。
了解行列式可以帮助我们解决各种问题,包括求解线性方程组、计算向量的正交性和计算面积和体积等。
行列式是线性代数中的基础知识,对于进一步学习和应用线性代数的内容具有重要的意义。
1.2文章结构1.2 文章结构本文将首先介绍二阶行列式的概念和定义,详细阐述其计算方法。
然后,我们将进一步探讨三阶行列式的定义和计算方法。
在分析和比较二阶行列式与三阶行列式的异同之后,我们将总结这两者的特点和应用。
本文的主要目的是通过对二阶和三阶行列式的研究,帮助读者更好地理解和应用行列式的相关概念和计算方法。
具体来说,本文的内容安排如下:2. 正文2.1 二阶行列式2.1.1 定义在这一部分中,我们将引入二阶行列式的概念,并详细解释其定义。
通过具体的例子,我们将展示如何构建并计算二阶行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课堂例题】
例1.解关于,,x y z 的方程组:13x y mz x my z m x y z ++=⎧⎪
++=⎨⎪-+=⎩
例2.已知行列式2
40
2
101
01
D -=--,写出第一列元素的代数余子式.
【知识再现】
1.设关于,,x y z 的三元线性方程组111122223
333a x b y c z d a x b y c z d a x b y c z d
++=⎧⎪
++=⎨⎪++=⎩,其中a 1、a 2、a 3、b 1、b 2、b 3、c 1、
c 2、c 3不全为零.
若记1
11
2
223
3
3
a b c D a b c a b c =,
x D =
,
y D =
,
z D =
当D ,方程组有唯一解:x = ,y = ,z = . 当0D =且,,x y z D D D 至少有一个不为零时,方程组 . 当0x y z D D D D ====时,方程组 .
【基础训练】
1.方程组273514223x y z x y x y -+=⎧⎪
-=⎨⎪-=⎩
的系数行列式为 ,系数行列式的值为 .
2.已知方程组10x my z x my z m mx y z ++=-⎧⎪
-+=⎨⎪++=⎩
,
(1)该方程组有唯一解,则实数m 的取值范围是 . (2)若0m =,则该方程组解的情况为 .
3.关于,,x y z 的方程组1111
22223
333(1)a x b y c z d a x b y c z d a x b y c z d ++=⎧⎪
++=⎨⎪++=⎩中,若记111
2
2233
3
a b c D a b c a b c =,则“0D =”
是“方程组(1)有无穷多组解”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.非充分非必要条件 4.任写两个关于,,x y z 的线性方程组,要求满足0x y z D D D D ====,但第一个方程组要求无解,第二个方程组要求有无穷多解.
, .
5.用行列式解方程组3112341339x y z x y z x y z ++=⎧⎪
+-=⎨⎪--+=-⎩
.
6.已知多项式函数()f x 通过平面上的三点(1,0),(2,3),(3,28)-, 写出一个符合条件的函数()f x 并说明理由.
注:多项式函数是形如1110n n n n y a x a x a x a --=++
++的函数,10,,,n n a a a -是常数.
7.已知a R ∈,求关于,,x y z 的方程组000ax y z x ay z x y z ++=⎧⎪
++=⎨⎪-+=⎩
的解.
【巩固提高】
8.齐次线性方程组23045607890x y z x y z x y z ++=⎧⎪
++=⎨⎪++=⎩
的解是否唯一?若不唯一,求出它全部的解.
9.求矩阵120210631A -⎛⎫ ⎪
= ⎪ ⎪⎝⎭
的逆矩阵B .
注:
AB BA I
==
(选做)10.,a b R ∈,求关于,,x y z 的方程组4324ax y z x by z x by z ++=⎧⎪
++=⎨⎪++=⎩
的解.
【温故知新】
11.一元一次方程23x =的解可以用数轴上的一个点表示,二元一次方程3x y += 的全部解可以用直角坐标平面上的一条直线来表示,猜想:三元一次方程0x y z ++= 的全部解可以怎样表示?
.
【课堂例题答案】
例1.①当1m ≠±时有唯一解34
4,,11
m x y z m m -===-++; ②当1m =-时无解;③当1m =时有无穷多解1,2x t y t R z t =⎧⎪
=-∈⎨⎪=-⎩
例2.2,2,1-的代数余子式分别是112131
104040
(1),(1),(1)010110
+++------- 【知识再现答案】
1.1
11111
1
11
1
112
222222
2
22
223
3
333
333
33
3
3
,,,x y z a b c d b c a d c a b d D a b c D d b c D a d c D a b d a b c d b c a d c a b d ==== 0,
,,y x z
D D D D D D
≠;无解;无解或无穷解. 【习题答案】
1.121
3
50220
---,4 2.(1)(,0)(0,1)(1,)-∞+∞;(2)无解
3.B
4.112,131x y z x y z x y z x y z x y z x y z ++=++=⎧⎧⎪⎪
++=++=⎨⎨⎪⎪++=++=⎩⎩
答案不唯一 5.7,1,1x y z === 6.2
()231f x x x =-+
7.当1a ≠±时,有唯一解0x y z ===;当1a =时,有无穷多解,0,,x t y z t t R ===-∈; 当1a =-时,有无穷多解,,0,x t y t z t R ===∈
8.不唯一,无穷多解2,x t
y t t R z t =⎧⎪
=-∈⎨⎪=⎩
9.12055
21
055
031⎛⎫
⎪ ⎪ ⎪- ⎪ ⎪- ⎪
⎪⎝⎭
10.当1,0a b ≠≠时,有唯一解121421
,,b b ab x y z b ab b b ab
---=
==--;
当11,2a b ==时,有无穷多解2,2x t
y t R z t
=⎧⎪
=∈⎨⎪=-⎩
;
当1
1,2
a b =≠
或0b =时,无解. 提示:(1),12,(1),421x y z D b a D b D a D b ab =-=-=--=--
11.空间直角坐标系中的一个平面.。