线性代数二阶与三阶行列式
二阶三阶行列式计算方法

二阶三阶行列式计算方法行列式是线性代数中的一个重要概念,它是一个数学工具,用于描述矩阵的性质和变换。
在实际应用中,行列式经常用于求解线性方程组、计算矩阵的逆、判断矩阵是否可逆等问题。
本文将介绍二阶三阶行列式的计算方法。
二阶行列式二阶行列式是一个2×2的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$是矩阵中的元素。
例如,对于矩阵$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$,它的二阶行列式为:$$\begin{vmatrix}1 &2 \\3 & 4\end{vmatrix} = 1\times4 - 2\times3 = -2$$三阶行列式三阶行列式是一个3×3的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$是矩阵中的元素。
二阶三阶行列式对角线法则-概述说明以及解释

二阶三阶行列式对角线法则-概述说明以及解释1.引言1.1 概述行列式是线性代数中的重要概念,它是一个数学工具,用于描述线性方程组的性质和解的情况。
二阶和三阶行列式是行列式理论中的基础,它们具有重要的数学意义和广泛的应用。
在本文中,我们将重点讨论二阶和三阶行列式的性质和计算方法,特别是介绍对角线法则在求解行列式值时的应用。
通过学习二阶和三阶行列式,可以深入理解行列式的概念和性质,为进一步学习多阶行列式奠定基础。
同时,对角线法则作为一种简便的计算方法,可以帮助我们更快速地求解行列式的值,提高解题效率。
因此,本文的目的是帮助读者全面了解二阶和三阶行列式,并掌握对角线法则的运用,为深入学习行列式理论打下坚实的基础。
1.2 文章结构文章结构部分:本文主要分为三个部分,即引言、正文和结论。
引言部分主要包括对二阶和三阶行列式的简要概述,介绍了行列式在数学和工程中的重要性和应用,并说明了文章的目的和意义。
正文部分分为二阶行列式、三阶行列式和对角线法则三个小节,将详细介绍二阶和三阶行列式的定义、性质和计算方法,以及介绍对角线法则在计算行列式时的应用和意义。
结论部分将对二阶和三阶行列式进行总结,展示其重要性和应用,并展望未来在更高阶行列式及其在数学和工程中的进一步研究和应用。
1.3 目的目的部分的内容应该概括文章的主要目标和意义。
例如:目的:本文旨在介绍二阶、三阶行列式以及它们的性质,并重点讲解对角线法则在计算行列式时的应用。
通过本文的阐述,读者可以深入了解行列式的计算方法,并且掌握对角线法则在简化计算过程中的重要作用。
同时,我们也希望读者能够进一步应用这些知识,解决实际问题和拓展数学思维。
2.正文2.1 二阶行列式二阶行列式是指一个2x2矩阵的行列式,通常表示为:a bc d其中,a、b、c、d分别为矩阵中的元素。
二阶行列式的计算公式为ad - bc。
这个公式也被称为“交叉相乘减交叉相乘”的方法。
举个例子,对于矩阵2 34 1其二阶行列式的计算过程为:2*1 - 3*4 = 2 - 12 = -10。
二阶与三阶行列式分析

二阶与三阶行列式分析二阶行列式分析:二阶行列式是由两行两列元素组成的方阵。
例如,一个二阶行列式可以表示为:abcd其中a、b、c、d是实数。
二阶行列式的计算方法是将对角线上的元素相乘,然后减去另一条对角线上的元素相乘。
根据这个定义,二阶行列式的值可以表示为:abc d , = ad - bc其中ad表示a和d的乘积,bc表示b和c的乘积。
三阶行列式分析:三阶行列式是由三行三列元素组成的方阵。
例如,一个三阶行列式可以表示为:abcdefghi其中a、b、c、d、e、f、g、h、i是实数。
三阶行列式的计算方法可以通过展开定理来计算。
展开定理指出,三阶行列式可以按照第一行或第一列展开为两个二阶行列式的乘积。
根据展开定理,三阶行列式的值可以表示为:abcdefg h i , = aei + bfg + cdh - ceg - bdi - afh其中aei、bfg、cdh分别表示第一行的元素与其对应的代数余子式的乘积,ceg、bdi、afh分别表示第一列的元素与其对应的代数余子式的乘积。
行列式的应用:行列式在线性代数中起着重要的作用,具有广泛的应用。
以下是几个行列式的应用示例:1.解线性方程组:通过求解行列式的值,可以确定线性方程组的解的排列情况和数量。
2.计算面积和体积:通过行列式的计算,可以求得平面上一组向量所围成的面积,或者三维空间中一组向量所围成的体积。
3.判断向量的线性相关性:使用行列式可以判断一组向量是否线性相关,通过计算行列式的值,若行列式为0则表示向量线性相关,否则线性无关。
4.矩阵的逆、行列式的转置:行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
总结:二阶行列式可以通过对角线元素的乘积减去反对角线元素的乘积来计算。
三阶行列式可以通过展开定理,将其展开为两个二阶行列式的乘积。
行列式在线性代数中有广泛的应用,包括解线性方程组、计算面积和体积、判断向量的线性相关性等。
行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
线性代数§1.1二阶、三阶行列式

线性代数§1.1⼆阶、三阶⾏列式本章说明与要求⾏列式的理论是⼈们从解线性⽅程组的需要中建⽴和发展起来的,它在线性代数以及其他数学分⽀上都有着⼴泛的应⽤。
在本章⾥我们主要讨论下⾯⼏个问题:(1) ⾏列式的定义;(2) ⾏列式的基本性质及计算⽅法;(3) 利⽤⾏列式求解线性⽅程组(克莱姆法则)。
本章的重点:是⾏列式的计算,要求在理解n阶⾏列式的概念,掌握⾏列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶⾏列式。
计算⾏列式的基本思路是:按⾏(列)展开公式,通过降阶来计算.但在展开之前往往先利⽤⾏列式性质通过对⾏列式的恒等变形,使⾏列式中出现较多的零和公因式,从⽽简化计算。
常⽤的⾏列式计算⽅法和技巧:直接利⽤定义法,化三⾓形法,降阶法,递推法,数学归纳法,利⽤已知⾏列式法。
⾏列式在本章的应⽤:求解线性⽅程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应⽤的条件。
本章的重点:⾏列式性质;⾏列式的计算。
本章的难点:⾏列式性质;⾼阶⾏列式的计算;克莱姆法则。
==============================================§1.1 ⼆阶、三阶⾏列式⾏列式的概念起源于解线性⽅程组,它是从⼆元与三元线性⽅程组的解的公式引出来的。
因此我们⾸先讨论解⽅程组的问题。
设有⼆元线性⽅程组()()------1 ------2ax by c dx ey f +=+=?? ⽤消元法求解:()()12:e b - ()ae bd x ce bf -=-?,ce bf x ae bd-=-, ()()21:a d - ()ae bd y af dc -=-?,af dc y ae bd-=-。
即得⽅程组的解:ce bf x ae bd af dc y ae bd -?=??-?-?=?-?。
这就是⼀般⼆元线性⽅程组的解公式。
但这个公式很不好记忆,应⽤时⼗分不⽅便。
由此可想⽽知,多元线性⽅程组的解公式肯定更为复杂。
2-1_二阶_三阶行列式的性质

三阶行列式的性质
根据已经证明的关于2阶行列式的性质,3阶行列式也有同样的性质 性质 行列互换,3阶行列式的值不变,即 = 证明:等式左端的行列式按照第1列展开利用性质1可得
等式右端
■
性质 两行 (列) 互换,3阶行列式的值变号. (只给出行列式的前 2行变换的情形,其他情形类似). =
证明:把等式左端的行列式按第 3 行展开再利用性质3可得 = + + = 等式右端 ■
例0.4:计算下列行列式: (1) (2)
(3)
解:(1)
( 3) r1 r 2
解:(2)
( r 2 r 3) r1
c1 c2 c1 c3
注:此题的做法,对所有行(列)和相等的行列式均适用.
解:(3)
c1 c2 c1 c3
本讲小结
1、转置不变(行列等价) 2、行(列)加法拆项法则 3、行(列)倍乘 4、对换取反 5、倍加不变 6、行列展开公式 行(列)初等变换,产生尽量多的0元素. 初等变换,是行列式 计算中最常用的方法.
称为三阶行列式对其第一行的展开公式.
= = ( ) ( ) ( )
=
因此,我们已经有
类似地,我们也可以得到
以上三个式子分别称为三阶行列式对其第一、二、三行的展开公式.
同样也有三阶行列式对其一、二、三列的展开公式,即
易知,2阶行列式也满足这个结论,故我们就证明了以下的定理. 定理 2、3阶行列式等于它的任一行 (或列) 元素与自己的代数余子式 乘积之和.
■
性质2 若二阶行列式中某行(列)每个元素分成两个数之和,则该行列 式可关于该行(列)拆开成两个行列式之和,拆开时其他行均保持不变, 即 = + 证明: = ( = + ■
行列式的求解方法

行列式的求解方法行列式是线性代数中的重要概念,它在代数学、几何学以及物理学等领域中都有广泛的应用。
行列式的求解方法有很多,接下来将介绍一些常见的求解方法。
1. 二阶和三阶行列式的求解:对于二阶行列式:$D = \begin{vmatrix} a & b\\ c & d \end{vmatrix} = ad - bc$对于三阶行列式:$D = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$这种求解方法适用于二阶和三阶行列式,其实质是按照一定的规律对行列式进行展开计算。
2. 扩展行列式法:对于n阶行列式的求解,可以利用扩展行列式法逐步缩小求解规模。
首先选择行列式中的某一行或者某一列,将其展开并作为公因子,得到n个n-1阶的代数余子式。
然后,对每个n-1阶代数余子式再次进行类似的展开操作,得到n-1个n-2阶的代数余子式。
如此循环递归,直到求得1阶行列式,即可得到n阶行列式的解。
例如,对于4阶行列式:$D = \begin{vmatrix} a & b & c & d\\ e & f & g & h\\ i & j & k & l \\ m & n & o & p \end{vmatrix}$,选择第一行进行展开,得到:$D = a \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p\end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & o& p \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m& n & p \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k\\ m & n & o \end{vmatrix}$然后,对每个3阶代数余子式再次进行展开,最终得到4阶行列式的解。
常见行列式

常见行列式常见行列式是指在线性代数中常出现的一些具有特定形式的行列式。
行列式是一个矩阵的一个重要性质,它代表了该矩阵的某些特征。
接下来我将介绍一些常见的行列式,并解释它们的特点和应用。
首先,最常见的行列式就是二阶和三阶行列式。
二阶行列式是一个2×2的矩阵,记作|A|=ad-bc。
其中,a、b、c和d为矩阵A的元素。
二阶行列式的求解方法是将对角线上的乘积相加,并减去非对角线上的乘积。
二阶行列式常用于计算平面上两个向量的行列式,从而判断它们的线性相关性。
三阶行列式是一个3×3的矩阵,记作|A|=a(ei-fh)-b(di-fg)+c(dh-eg)。
三阶行列式的求解方法是将每个元素与与其对应的代数余子式相乘,然后按正负号相加。
三阶行列式广泛应用于三维几何体的体积计算和解线性方程组等问题。
其次,特殊的行列式包括单位矩阵和零矩阵的行列式。
单位矩阵是一个n×n的矩阵,主对角线上的元素均为1,其他元素均为0。
单位矩阵的行列式为1,它表示了一个矩阵在相似变换下的不变性。
零矩阵是一个所有元素都为0的矩阵,它的行列式为0。
此外,对角矩阵和上三角矩阵的行列式也具有一定的特殊性质。
对角矩阵是一个所有非对角元素都为0的矩阵,对角元素可以相同也可以不同。
对角矩阵的行列式等于对角元素的乘积。
上三角矩阵是一个除了主对角线以下的元素都为0的矩阵,它的行列式等于主对角线上的元素的乘积。
对角矩阵和上三角矩阵的行列式的计算相对简单,这使得它们在实际问题中的应用更加方便。
另外,行列式的特征值和特征向量是线性代数中的重要概念。
特征值是一个矩阵的一个标量,特征向量是对应于特征值的一个向量。
行列式的特征值和特征向量有着丰富的几何意义和应用。
特征值和特征向量可以用于求解线性方程组、矩阵的对角化和求取矩阵的幂等等问题。
最后,通过行列式的定义和性质,我们可以推导出一些行列式的重要公式,如拉普拉斯展开公式和克拉默法则等。
线性代数1-3n阶行列式的定义

行列式的值具有可消性,即 行或列中某些元素为0时,其 对应的因子也为0。
THANKS
感谢观看
线性代数1-3n阶行列式的定义
• 1阶行列式 • 2阶行列式 • 3阶行列式 • n阶行列式
01
1阶行列式
定义
1阶行列式表示为|a|,其中a是一个数。
它表示数a的绝对值。
计算方法
计算方法很简单,直接取绝对值即可 。
如果a是正数,则|a|=a;如果a是负数, 则|a|=-a;如果a=0,则|a|=0。
计算方法
01
按照定义,三阶行列式是由三个行组成的矩阵,每个行有3个元素。
02
计算三阶行列式时,需要按照定义展开,即按照行优先的顺序展开。
03
具体计算方法为:将第一行的元素与第二行对应元素的代数余子式相乘,加上 第一行的元素与第三行对应元素的代数余子式相乘,最后加上第二行的元素与 第三行对应元素的代数余子式相乘。
03
行列式的值等于主对角线上的元素之积减去副对角线上的元 素之积。
计算方法
01
计算二阶行列式,需要先计算出矩阵中各元素的代数余子式。
02
行列式的值等于主对角线上的元素之积减去副对角线上的元素
之积。
如果行列式中存在0元素,则可以简化计算过程。
03
性质
01
行列式的值与矩阵的转置无关 。
02
行列式的值与矩阵的行变换或 列变换无关。
03
行列式的值是非负的,且等于0 当且仅当矩阵是奇异的(即行列 式中至少有一个元素为0)。
03
3阶行列式
式的扩展,由三个行组成的矩阵,每 个行有3个元素。
02
三阶行列式通常表示为3|a b c|,其中a、b、c分别表示三个 行中的元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 a12 a13 D a21 a22 a23 a31 a32 a33 a11 a12 b1 D3 a21 a22 b2 . a31 a32 b3
b1 D1 b2 b3
a12 a13 a22 a23 , a32 a33 a13 a23 , a33
a11 b1 D2 a21 b2 a31 b3
例4
解线性方程组 x1 2 x2 x3 2, 2 x1 x2 3 x3 1, x x x 0. 1 2 3
解
由于方程组的系数行列式
1 D 2 1
2 1 1
3 1 1 1 2 3 1 1
由方程组的四个系数确定.
(3)
定义
由四个数排成二行二列(横排称行、竖排
称列)的数表
a11 a12 a21 a22 ( 4)
表达式 a11a22 a12a21称为数表( 4)所确定的二阶 a11 a12 行列式,并记作 a21 a22
即
( 5)
a11 a12 D a11a22 a12a21 . a21 a22
若记
或
b1 b2 b 1
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1 D1 b2 b3 b1 D1 b2 b3 a12 a13 a22 a23 , a32 a33 a12 a13 a22的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标 a31 a32 a33 行标 三阶行列式的计算 a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22 a31 a32 a33 a31 a32
D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31 .
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
得
a11 b1 D2 a21 b2 a31 b3
a13 a23 , a33 a11 a12 a13 D a21 a22 a23 a31 a32 a33
3 x1 2 x2 12, 2 x1 x2 1.
解
D
3 2 2 1
3 ( 4) 7 0,
D1
12 2 1 1
14, D2
3 12 2 1
21,
D1 14 D2 21 x1 3. 2, x 2 D 7 D 7
1
1 2 1 1 1 1 2 2 1 1 3 1 5 0,
同理可得
2 2 D1 1 0 1 D3 2 1 1 1 1 1
1
1
2 1 0
1 3 10, 1
3 5, D2 2 1 1 1 5, 0
二、三阶行列式
定义
设有9个数排成3行3列的数表 a11 a12 a21 a22 a13 a23 a33 ( 5)
记 a11
a31 a32
a21 a31
a12 a13 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a a a a a a a a a 11 23 32 12 21 33 13 22 31, a32 a33
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
4 6 32 4 8 24 14.
1 1
例3 解
1 x 0. x2
求解方程 2 3 4 9
方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
x 2 5 x 6,
由 x 5x 6 0 解得
2
x 2 或 x 3.
2. 三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正,三项为 负. 利用三阶行列式求解三元线性方程组 a11 x1 a12 x2 a13 x3 b1 , 如果三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
思考题
求一个二次多项式 f x , 使
f 1 0, f 2 3, f 3 28.
思考题解答
解 设所求的二次多项式为
f x ax2 bx c,
由题意得
f 1 a b c 0, f 3 9a 3b c 28, f 2 4a 2b c 3,
二阶行列式的计算
主对角线 副对角线
对角线法则
a11a22 a12a21 .
a11 a12
a12
a22
a11 x1 a12 x2 b1 , 对于二元线性方程组 a21 x1 a22 x2 b2 .
若记 系数行列式
a11 a12 D , a21 a22
学习交流:89903800
学习交流:89903800
则二元线性方程组的解为
b1
a12
a11
b1
D1 b2 a22 x1 , D a11 a12 a21 a22
注意
D2 a21 b2 x2 . D a11 a12 a21 a22
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
两式相减消去 x2,得
(a11a22 a12a21)x1 b1a22 a12b2 ;
类似地,消去 x1,得 (a11a22 a12a21)x2 a11b2 b1a21 ,
当 a11a22 a12a21 0 时, 方程组的解为
b1a22 a12b2 a11b2 b1a21 x1 , x2 . a11a22 a12a21 a11a22 a12a21
记
即
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11 a12 a13 D a21 a22 a23 a31 a32 a33
得一个关于未知数 a , b, c 的线性方程组, 又 D 20 0, D1 40, D2 60, D3 20.
得 a D1 D 2, b D2 D 3, c D3 D 1
故所求多项式为
2 f x 2 x 3 x 1.
得
a11 b1 D2 a21 b2 a31 b3
a13 a23 , a33
a11 a12 b1 a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , D3 a21 a22 b2 . a x a x a x b ; a31 a32 b3 31 1 32 2 33 3 3
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 a12 D , a21 a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
b1 D1 b2 a12 , a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
则三元线性方程组的解为:
D1 x1 , D
D2 x2 , D D3 x3 . D
1
2 -4
例2 计算三阶行列式 D - 2 2 解 按对角线法则,有
1 -3 4 -2
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4
1 1 4 2 ( 2 ) ( 2 ) ( 4 ) 2 ( 3 )
a11 a12 D , a21 a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
b1 D1 b2 a12 , a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 b1 D2 . a21 b2
a11 a12 a13 的系数行列式 D a21 a22 a23 0, a31 a32 a33
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1 D1 b2 b3 a11 D a21 a31 a12 a22 a32 a12 a22 a32 a13 a23 , a33 a13 a23 a33
学习交流:89903800
一、二阶行列式的引入
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
1 2
1 a22 : 2 a12 :
a11a22 x1 a12a22 x2 b1a22 , a12a21 x1 a12a22 x2 b2a12 ,