二阶与三阶行列式

合集下载

二阶三阶行列式的几何意义

二阶三阶行列式的几何意义

二阶三阶行列式的几何意义在数学中,行列式是一种用于表示矩阵的数学工具。

本文将探讨二阶和三阶行列式的几何意义,帮助读者更好地理解这一概念。

二阶行列式二阶行列式通常表示一个2x2矩阵的代数表达式。

在几何上,它可以被解释为平行四边形的面积或两点之间的距离。

具体来说,对于一个2x2矩阵A,其行列式可以表示为:| A | = | a11 a12 || :--: | :--: || A | = | a21 a22 |这个行列式的几何意义取决于矩阵A中的元素。

如果a11和a22为正,a12和a21为负,那么这个行列式表示的平行四边形面积就是正的;如果a11和a22为负,a12和a21为正,那么这个行列式表示的平行四边形面积就是负的。

如果a11和a22以及a12和a21的符号相同,那么这个行列式表示的平行四边形面积就是0。

此外,如果A表示一个向量,那么行列式|A|也可以被解释为该向量与其在原点处的反射之间的距离的平方。

三阶行列式三阶行列式通常表示一个3x3矩阵的代数表达式。

在几何上,它可以被解释为三维空间中一个平行六面体的体积或者一个三角形的面积。

具体来说,对于一个3x3矩阵A,其行列式可以表示为:A=a11 a12 a13A=a21 a22 a23A=a31 a32 a33这个行列式的几何意义取决于矩阵A中的元素。

如果a11、a22和a33均为正数,且a12、a13、a21、a23、a31和a32均为负数,那么这个行列式表示的平行六面体的体积就是正的。

如果这些元素的符号不完全相同,那么这个行列式表示的平行六面体的体积就是0。

如果元素的符号出现四种或更多种不同的情况,那么这个行列式表示的平行六面体的体积是负数。

二阶和三阶行列式

二阶和三阶行列式

二阶和三阶行列式
(1-5) 为二阶矩阵A的行列式,简称二阶行列式.其中aij(i,j=1, 2)的第一个下标i表示元素所在行,称为行标,第二个下标j表示 元素所在列,称为列标,则aij就是位于构成行列式的数表第i行与 第j列交叉位置的数,称为行列式的元素.
二阶和三阶行列式
从式(1-5)可以看出,二阶行列 式实际上是一个算式,即从左上角到右 下角的对角线(主对角线)上两个元素 相乘以后减去从右上角到左下角的对角 线(副对角线)上两个元素的乘积,这 就是计算二阶行列式的对角线法则.
谢谢聆听
二阶和三阶行列式
【例1-2】
求下列各二阶行列式的值.
二阶和三阶行列式
二阶和三阶行列式
二阶和,简称三阶行列 式.三阶行列式的展开式 也可以用对角线法则得到, 三阶行列式的对角线法则 如图1-3所示.
图1-3 三阶行列式的对角线法则
二阶和三阶行列式
其中每条实线上三个元素的乘积带 正号,每条虚线上三个元素的乘积带负 号,所得六项的代数和就是三阶行列式 的展开式.
二阶和三阶行列式
二阶和三阶行列式
在中学时已通过求解二元、三元一次线性方程组 的问题引出了二阶、三阶行列式的定义.在此,再进行 简单的复习.
设有二元一次线性方程组
该方程组用矩阵形式可表示为AX=b,其中
二阶和三阶行列式
当a11a22-a12a21≠0时,方程组有唯一解:
上述结论可作为公式使用,但这种公式解的表达式比较 复杂,应用起来也不方便,为方便记忆,我们引进新的记号 来表示这个结果,就是行列式的概念.

1-1 二、三阶行列式

1-1 二、三阶行列式

(6)式称为数表(5)所确定的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标 a31 a32 a33 行标 2. 三阶行列式的计算 a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22 a31 a32 a33 a31 a32
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
3 x1 2 x2 12, 2 x1 x2 1.

D
3 2 2 1 1
3 ( 4) 7 0,
D1
12 2 1
14, D2
3 12 2 1
21,
D1 14 D2 21 x1 2, x 2 3. D 7 D 7
公式不好记,引入行列式的记号
(3)
2. 定义 由四个数排成二行二列(横排称行、竖排 称列)的数表
a11 a12 a21 a22 ( 4)
表达式 a11a22 a12a21称为数表( )所确定的二阶 4 a11 a12 行列式,并记作 a21 a22

( 5)
a11 a12 D a11a22 a12a21 . a21 a22
a11 a12 a13 的系数行列式 D a21 a22 a23 0, a31 a32 a33
a11 a12 a13 D a21 a22 a23 a31 a32 a33 a11 b1 D2 a21 b2 a31 b3 a13 a23 , a33
b1 D1 b2 b3
a12 a13 a22 a23 , a32 a33
第一节
二阶与三阶行列式
一、二阶行列式的引入 二、三阶行列式
一、二阶行列式的引入

二阶三阶行列式对角线法则-概述说明以及解释

二阶三阶行列式对角线法则-概述说明以及解释

二阶三阶行列式对角线法则-概述说明以及解释1.引言1.1 概述行列式是线性代数中的重要概念,它是一个数学工具,用于描述线性方程组的性质和解的情况。

二阶和三阶行列式是行列式理论中的基础,它们具有重要的数学意义和广泛的应用。

在本文中,我们将重点讨论二阶和三阶行列式的性质和计算方法,特别是介绍对角线法则在求解行列式值时的应用。

通过学习二阶和三阶行列式,可以深入理解行列式的概念和性质,为进一步学习多阶行列式奠定基础。

同时,对角线法则作为一种简便的计算方法,可以帮助我们更快速地求解行列式的值,提高解题效率。

因此,本文的目的是帮助读者全面了解二阶和三阶行列式,并掌握对角线法则的运用,为深入学习行列式理论打下坚实的基础。

1.2 文章结构文章结构部分:本文主要分为三个部分,即引言、正文和结论。

引言部分主要包括对二阶和三阶行列式的简要概述,介绍了行列式在数学和工程中的重要性和应用,并说明了文章的目的和意义。

正文部分分为二阶行列式、三阶行列式和对角线法则三个小节,将详细介绍二阶和三阶行列式的定义、性质和计算方法,以及介绍对角线法则在计算行列式时的应用和意义。

结论部分将对二阶和三阶行列式进行总结,展示其重要性和应用,并展望未来在更高阶行列式及其在数学和工程中的进一步研究和应用。

1.3 目的目的部分的内容应该概括文章的主要目标和意义。

例如:目的:本文旨在介绍二阶、三阶行列式以及它们的性质,并重点讲解对角线法则在计算行列式时的应用。

通过本文的阐述,读者可以深入了解行列式的计算方法,并且掌握对角线法则在简化计算过程中的重要作用。

同时,我们也希望读者能够进一步应用这些知识,解决实际问题和拓展数学思维。

2.正文2.1 二阶行列式二阶行列式是指一个2x2矩阵的行列式,通常表示为:a bc d其中,a、b、c、d分别为矩阵中的元素。

二阶行列式的计算公式为ad - bc。

这个公式也被称为“交叉相乘减交叉相乘”的方法。

举个例子,对于矩阵2 34 1其二阶行列式的计算过程为:2*1 - 3*4 = 2 - 12 = -10。

矩阵论基础1.1二阶和三阶行列式

矩阵论基础1.1二阶和三阶行列式

矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。

即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。

定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。

⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。

可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。

若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。

例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。

例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。

§1二阶与三阶行列式

§1二阶与三阶行列式

性质
总结词
二阶行列式具有交换律、结合律、代数余子式等性质。
详细描述
二阶行列式满足交换律,即|A|=|AT|,其中AT是矩阵A的转置矩阵。结合律表现为|AB|=|A|*|B|,其中A、B为可 乘矩阵。代数余子式是去掉一个二阶行列式中的一个元素后得到的二阶行列式,其值等于原行列式除以被去掉元 素所在的行和列的乘积。
等于零、代数余子式的乘积等于零等。
应用
03
代数余子式在计算高阶行列式的值、求解线性方程组等领域有
广泛的应用。
转置行列式
定义
转置行列式是将n阶行列式的行和列互换后得到的新 行列式。
性质
转置行列式的值等于原行列式的值,即|A|=|AT|。
应用
转置行列式在求解线性方程组、判断矩阵是否可逆等 领域有广泛的应用。
性质
线性性质
三阶行列式满足线性性质,即|ka b c| = k|a b c|,其中k是标量。
交换律
|a b c| = |c b a|。
结合律
(|a b c| + |d e f|) = |a b c| + |d e f||a d|。
分配律
|a+b c d| = |a b c| + |b c d||a b c|。
矩阵的转置
行列式可以用于计算矩阵的转置,通过计算转置矩阵的行列式,可以得到原矩阵 的行列式。
05
CATALOGUE
二阶与三阶行列式的扩展
高阶行列式
定义
高阶行列式是n阶方阵的展开式,其一般形式为D=∑(-1)^t * M(t1,t2,...,tn) * A(t1,t2,...,tn),其中t为对角线上的元素下标的排列顺序,M为排列数,A为n阶行列式中 元素的下标构成的排列。

二阶与三阶行列式


(2)对角线法则 a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式.
2
3 (4) 7 0,
21
12 D1 1
2 14,
1
3 D2 2
12 1
21,
x1
D1 D
14 7
2,
x2
D2 D
21 3. 7
二、三阶行列式
定义 设有9个数排成3行3列的数表
a11 a12 a13
a21 a22 a23
(5)

a31 a32 a33
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
(6)式称为数表(5)所确定的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标
a31 a32 a33 行标 三阶行列式的计算
a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22
a31 a32 a33 a31 a32 D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31.
称列)的数表
a11 a12
a21 a22
(4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶

二阶和三阶行列式


a11 D
a12
a13 a23 a33 a43
a12
a14 a24 a34 a44
a13 a23 a33
a21 a22 a31 a32 a41 a42
a11
a21 a23 M 12 a31 a33 a41 a43
1 2
a24 a34 a44
A12 1 M 12 M 12
M 44 a21 a22 a31 a32
a41 a42 a43 a44
a 32 的代数余子式 A32 ( 1)32 M 32 a13 的代数余子式 A ( 1)13 M 13 13
a21 a31 a41

a22b1 a12 a21b1 x2 a11a22 a12a21
a11 a12 D a11a22 a12a21 , a21 a22
a12 a22
主对角线 a11 a21 称 D 为二阶行列式。 副对角线
(-)
a13 a11 a33 a31
(+)
a12 a32
(+) (+)
a23 a21 a22
(-)
(-)
三元线性方程组
a11 x1 a12 x2 a13 x3 b1 设有三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b 31 1 32 2 33 3 3
解 计算二阶行列式
D
2 1 3 2
7 , D1
5 11
1 2
21 , D2
2
5
3 11
7 .
由 D 7 0 知方程组有唯一解:
D1 D2 x1 3 , x2 1. D D

二阶与三阶行列式分析

二阶与三阶行列式分析二阶行列式分析:二阶行列式是由两行两列元素组成的方阵。

例如,一个二阶行列式可以表示为:abcd其中a、b、c、d是实数。

二阶行列式的计算方法是将对角线上的元素相乘,然后减去另一条对角线上的元素相乘。

根据这个定义,二阶行列式的值可以表示为:abc d , = ad - bc其中ad表示a和d的乘积,bc表示b和c的乘积。

三阶行列式分析:三阶行列式是由三行三列元素组成的方阵。

例如,一个三阶行列式可以表示为:abcdefghi其中a、b、c、d、e、f、g、h、i是实数。

三阶行列式的计算方法可以通过展开定理来计算。

展开定理指出,三阶行列式可以按照第一行或第一列展开为两个二阶行列式的乘积。

根据展开定理,三阶行列式的值可以表示为:abcdefg h i , = aei + bfg + cdh - ceg - bdi - afh其中aei、bfg、cdh分别表示第一行的元素与其对应的代数余子式的乘积,ceg、bdi、afh分别表示第一列的元素与其对应的代数余子式的乘积。

行列式的应用:行列式在线性代数中起着重要的作用,具有广泛的应用。

以下是几个行列式的应用示例:1.解线性方程组:通过求解行列式的值,可以确定线性方程组的解的排列情况和数量。

2.计算面积和体积:通过行列式的计算,可以求得平面上一组向量所围成的面积,或者三维空间中一组向量所围成的体积。

3.判断向量的线性相关性:使用行列式可以判断一组向量是否线性相关,通过计算行列式的值,若行列式为0则表示向量线性相关,否则线性无关。

4.矩阵的逆、行列式的转置:行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。

总结:二阶行列式可以通过对角线元素的乘积减去反对角线元素的乘积来计算。

三阶行列式可以通过展开定理,将其展开为两个二阶行列式的乘积。

行列式在线性代数中有广泛的应用,包括解线性方程组、计算面积和体积、判断向量的线性相关性等。

行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。

线性代数§1.1二阶、三阶行列式

线性代数§1.1⼆阶、三阶⾏列式本章说明与要求⾏列式的理论是⼈们从解线性⽅程组的需要中建⽴和发展起来的,它在线性代数以及其他数学分⽀上都有着⼴泛的应⽤。

在本章⾥我们主要讨论下⾯⼏个问题:(1) ⾏列式的定义;(2) ⾏列式的基本性质及计算⽅法;(3) 利⽤⾏列式求解线性⽅程组(克莱姆法则)。

本章的重点:是⾏列式的计算,要求在理解n阶⾏列式的概念,掌握⾏列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶⾏列式。

计算⾏列式的基本思路是:按⾏(列)展开公式,通过降阶来计算.但在展开之前往往先利⽤⾏列式性质通过对⾏列式的恒等变形,使⾏列式中出现较多的零和公因式,从⽽简化计算。

常⽤的⾏列式计算⽅法和技巧:直接利⽤定义法,化三⾓形法,降阶法,递推法,数学归纳法,利⽤已知⾏列式法。

⾏列式在本章的应⽤:求解线性⽅程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应⽤的条件。

本章的重点:⾏列式性质;⾏列式的计算。

本章的难点:⾏列式性质;⾼阶⾏列式的计算;克莱姆法则。

==============================================§1.1 ⼆阶、三阶⾏列式⾏列式的概念起源于解线性⽅程组,它是从⼆元与三元线性⽅程组的解的公式引出来的。

因此我们⾸先讨论解⽅程组的问题。

设有⼆元线性⽅程组()()------1 ------2ax by c dx ey f +=+=?? ⽤消元法求解:()()12:e b - ()ae bd x ce bf -=-?,ce bf x ae bd-=-, ()()21:a d - ()ae bd y af dc -=-?,af dc y ae bd-=-。

即得⽅程组的解:ce bf x ae bd af dc y ae bd -?=??-?-?=?-?。

这就是⼀般⼆元线性⽅程组的解公式。

但这个公式很不好记忆,应⽤时⼗分不⽅便。

由此可想⽽知,多元线性⽅程组的解公式肯定更为复杂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两式相减x消 2,去 得
( a 1 a 2 1 a 2 1 a 2 ) 2 x 1 b 1 a 2 a 2 1 b 2 ; 2
类似地,消 x1,去得 ( a 1 a 2 1 a 2 1 a 2 ) 2 x 1 2 a 1 b 2 1 b 1 a 2 ,1
当 a1a 1 22 a1a 2 21 0时方, 程组的解为 x1 ab111aa2222aa1122ba221,x2aa 11a 1b 1 222 a b1 1aa 2 2211.

D2 a21 b2 a23 ,
a31 b3 a33
aa2111xx11
a12x2 a22x2
( 3)
由方程组的四个系数确定.
定义 由四个数排成二行二列(横排称行、竖排
称列)的数表
a11 a12 a21 a22
(4)
表达a式 11a22a12a21称为数4) 表所 (确定的 行列式,并 a11记a1作 2 (5)
a21 a22

Da11 a21
a a1 22 2a1a 122 a1a 22.1
a31 a32 a33
aa2111xx11
a12x2 a22x2
a13x3 a23x3
b1, b2,
a31x1 a32x2 a33x3 b3;
b1 a12 a13

D1 b2 a22 a23 ,
b3 a32 a33
b1 a12 a13

D1 b2 a22 a23 ,
b3 a32 a33
aa2111xx11
a12x2 a22x2
a13xபைடு நூலகம் a23x3
b1, b2,
a31x1 a32x2 a33x3 b3;
a11 a12 a13 D a21 a22 a23
a31 a32 a33
aa2111xx11
a12x2 a22x2
a13x3 a23x3
b1, b2,
a31x1 a32x2 a33x3 b3;
a11 b1 a13
二阶行列式的计算 对角线法则
主对角线 a11 副对角线 a12
a12 a11a22a12a21.
a 22
对于二元线性方程组 a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,.
若记
Da11 a12,
系数行列式
a21 a22
a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,. Da11 a12, a21 a22
注意 分母都为原方程组的系数行列式.
例1 求解二元线性方程组
32x1x12
x2 x2
12, 1.

3 2
D
3(4)70,
21
12 D1 1
2
3
1 14, D2 2
12 1
21,
x1
D1 D
14 7
2,
x2
D2 D
21 3. 7
二、三阶行列式
定义 设有 9个数排3行 成3列的数表
a11 a12 a13
一、二阶行列式的引入
用消元法解二元线性方程组
a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,.
1 2
1a22: a 1 a 2 1 x 1 2 a 1 a 2 2 x 2 2 b 1 a 2 ,2 2a12: a 1 a 2 2 x 1 1 a 1 a 2 2 x 2 2 b 2 a 1 ,2
2.三阶行列式包括3!项,每一项都是位于不同行,
不同列的三个元素的乘积,其中三项为正,三项为 负.
利用三阶行列式求解三元线性方程组
如果三元线性方程组
aa2111xx11
a12x2 a22x2
a13x3 a23x3
b1, b2,
a31x1 a32x2 a33x3 b3;
a11 a12 a13 的系数行列式 D a21 a22 a23 0,
a21 a22 a23
(5)

a31 a32 a33
a 11 a 12 a 13
a 21 a 22 a 23 a 1a 1 2a 2 3 3a 1a 2 2a 3 3 1a 1a 3 2a 1 32(6)
a 31 a 32 a 33
a 1a 1 2a 3 3 2a 1a 2 2a 1 3 3a 1a 3 2a 2 3,1
D1
b1 b2
a12, a22
a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,.
D2
a11 a21
b1 . b2
则二元线性方程组的解为
b1
x1
D1 D
b2 a11
a21
a12 a22 , a12 a22
a11
x2
D2 D
a21 a11
a21
b1 b2 . a12 a22
a31 a32 a33
aa2111xx11
a12x2 a22x2
a13x3 a23x3
b1, b2,
a31x1 a32x2 a33x3 b3;
若记
b1 a12 a13 D1 b2 a22 a23 ,
b3 a32 a33

b 1 b2
a11 a12 a13 D a21 a22 a23
b 1
(2)对角线法则 a11 a12 a13 a 21 a 22 a 23 a 31 a 32 a 33
a1a 122 a33a12 a23 a31a13 a2a 132 a13a22a31a12a2a133a1a 12a 33.2
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式.
(6)式称为数表(5)所确定的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标
a31 a32 a33 行标 三阶行列式的计算
a11 a12 a13 a 11 a 12 (1)沙路法 D a21 a22 a23 a 21 a 22
a31 a32 a33 a 31 a 32 D a 1 a 2 1 a 3 2 3 a 1 a 2 2 a 3 3 a 1 1 a 2 3 a 3 12 a 1 a 2 a 1 3 3 a 2 1 a 2 a 2 3 1 a 3 1 a 2 a 3 3 2 .1
a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,.
D1
b1 b2
a12, a22
a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,.
Da11 a12, a21 a22
a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,.
相关文档
最新文档