2-1_二阶_三阶行列式的性质

合集下载

2-1-3行列式定义-性质

2-1-3行列式定义-性质
第二章 行列式
第一节
二阶、三阶行列式
一、二阶行列式的引入 二、三阶行列式 三、小节、思考题
一、二阶行列式的引入 定义 由四个数排成二行二列(横排称行、竖排 称列)的矩阵:
a11 a12 a21 a22 ( 4)
称表达式 a11a22 − a12 a21为矩阵(4)所确定的二阶 行列式,并记作

a11 a21
第三节
行列式的性质
一、行列式的性质
二、应用举例
一、行列式的性质
性质1 说明
AT = A 行列式与它的转置行列式相等即,
行列式中行与列具有同等的地位,因此行列 式的性质凡是对行成立的对列也同样成立. 交换两行(列),行列式变号
性质2
推论
两行(列)相同,此行列式为零
性质3
a11 a12 L a1n LLLLLLL kai 1 kai 2 L kain = k LLLLLLL a n1 an 2 L ann
A23 = (− 1)
2+ 3
M 23 = − M 23 , 叫做元素 a23的代数余子式 .
注意:一个元素的代数余子式 只与该元素所处位置 相关;而与该元素等于 多少无关!
比如上例中,即便把 a 23的值换成 a 33,它的 代数余子式仍然不变! 亦即仍有
A23 = − M 23
a11 a21 D= a31 a41
k =1 k =1 n
n
(i = 1,2,L, n )
3. 在按行、按列展开时, 建议挑选含零最多
的行、列!
思考题
设n阶行列式
1 2 3 L n 1 2 0 L 0 Dn = 1 0 3 L 0 M M M O M 1 0 0 L n

线性代数Ⅰ—行列式

线性代数Ⅰ—行列式

对角行列式
ann
11
a11 (3) a21 an 1,1 an1
a12 a22 an 1, 2 0
a1,n 1 a2,n 1 0 0
பைடு நூலகம்
a1n 0 0 = (1) 0
n ( n 1) 2
a1n a2,n 1 an1
(4)
1 1 x1 x2 2 x12 x2 n x1n 1 x2 1
n-1阶行列式 可化为 ……
n-2阶行列式
最终可用二阶、三阶行列式表示任意阶行列式。 注意:对角线法不适合四阶及四阶以上行列式的计算。 实际上,n阶行列式 展开式也有以下特点:
(1) 有n!项的代数和 Dn (2) 每项都取自n个不同列不同行,为n个元素乘积 (3) 每项前的符号一半为“+”,一半为“-”
6
推论: 推论:n阶行列式某一行(列)元素与另一行(列)对应元素代 数余子式乘积之和为0
ai1 A j1 + ai 2 A j 2 + + ain A jn = 0
或 例:
a1i A1 j + a2i A2 j + + ani A jn = 0
1 1 1 2 2 2
1
i ≠ j i, j = 1,2, , n
(1)
a11 0 0 a12 a1n a22 a2 n 0 0 ann 0 0 = a11a22 ann = a11a22 ann
上三角行列式
(2)
a11 a21 an1
a22
下三角行列式
an 2 ann a11 0 0 0 0
特例:
0 0 = a11a22 ann a22
(C) 3个
18
a

线性代数自考知识点汇总

线性代数自考知识点汇总

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行列,行列式变号.推论1 如果行列式有两行列的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行列中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行列元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行列的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132aa M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行列展开法则定理1 行列式的值等于它的任一行列的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行列的元素与另一行列的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 1二阶行列式1112112212212122a a a a a a a a =- 2三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 3对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-4三角行列式1111121n 2122222n 1122nn n1n2nn nn a a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-5消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.6降阶法:利用行列式的性质,化某行列只有一个非零元素,再按该行列展开,通过降低行列式的阶数求出行列式的值.7加边法:行列式每行列所有元素的和相等,将各行列元素加到第一列行,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 1矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 2数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.3矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵即一个数,即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B,若AB=E 或BA=E,则A,B 都可逆,且11A B,B A --==.1二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭两调一除法. 2对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.3分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 4一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式各元素的位置不变叫做方阵A 的行列式.记作A 或detA. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行列变换:1互换两行列;2数乘某行列;3某行列的倍数加到另一行列. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作RA 或rA. 求矩阵的秩的方法:1定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.2初等行变换法:ERTA −−−→行阶梯形矩阵,RA=R 行阶梯形矩阵=非零行的行数. 8. 重要公式及结论 1矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O,则无A=O 或B=O.()222A B ?A 2AB B +++.2逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E 即A 与单位矩阵E 等价 3矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R AB ≤R A , R AB ≤R B .特别地,当A 可逆时,RAB=RB ;当B 可逆时,RAB=RA.()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程1设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .2设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系1等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B,那么称矩阵A 与B 等价.即存在可逆矩阵P,Q,使得PAQ=B.性质:等价矩阵的秩相等.2相似矩阵:如果存在可逆矩阵P,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 3合同矩阵:如果存在可逆矩阵P,使得TP AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合1若α=k β,则称向量α与β成比例. 2零向量O是任一向量组的线性组合.3向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关1 单独一个向量线性相关当且仅当它是零向量.2 单独一个向量线性无关当且仅当它是非零向量.3 两向量线性相关当且仅当两向量对应成比例.4 两向量线性无关当且仅当两向量不对应成比例.5 含有O向量的向量组一定线性相关.6 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.7n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.8 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.9 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.10当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m m ≥2线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.即部分相关,则整体相关;整体无关,则部分无关. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩; 结论1 线性无关的向量组的极大无关组就是它本身;结论2 如果向量组的秩是r ,那么该向量组的任意 r 个线性无关的向量都是它的一个极大无关组; 定理1 设向量组A:a 1,a 2, …,a r ;及向量组B:b 1,b 2, …, b s ,如果组A 能由组B 线性表示,且组A 线性无关,则r ≦s.推论1 等价的向量组有相同的秩.定理2 矩阵的秩=矩阵列向量组的秩=矩阵行向量组的秩. 4. 向量空间定义1 设V 为n 维向量的集合,如果集合V 非空,且集合V 对于加法及乘数两种运算封闭,那么就称集合V 为向量空间.5. 基与向量在基下的坐标定义2 设V 是向量空间,如果向量组a 1 , a 2 ,……, a r ,满足条件: 1向量组 a 1 , a 2 ,……, a r 线性无关; 2T α∀∈,2r 1,,,,αααα线性相关.那么称向量组a 1 , a 2 ,……, a r 是向量空间V 的一个基, 基中所含向量的个数称为向量空间V 的维数,记作dimV ,并称V 为r 维向量空间.定义3 设向量组 a 1 , a 2 , … , a r 是向量空间V 的一个基,则V 中任一向量x 可唯一地表示为基的一个线性组合,即 1122r r x a a a λλλ=+++,称有序数组12r ,,,λλλ为向量x 在基 a 1 , a 2 , … , a r 下的坐标.线性方程组1. 线性方程组解的判定1 线性方程组Ax=b 有解的充分必要条件是它的系数矩阵A 和增广矩阵A,b 的秩相同,即RA=RA,b . 当RA=RA,b=r① 方程组AX=b 有惟一解的充分必要条件是r=n; ② 方程组AX=b 有无穷多解的充分必要条件是r < n. 2 方程组AX= b 无解的充分必要条件是R A ≠RA,b. 2. 齐次线性方程组有非零解的判定1 齐次方程组AX=0有非零解的充分必要条件是系数矩阵A 的秩 RA < 未知量的个数n .2 含有n 个方程,n 个未知量的齐次线性方程组AX=0有非零解的充分必要条件是方程组的系数行列式等于零.即|A |=03 齐次线性方程组AX=0中,若方程的个数m<未知量的个数n,则方程组有非零解 3. 齐次线性方程组解的性质(1) 若12,ξξ是Ax=0的解,则12ξξ+也是Ax=0的解; (2) 若ξ是Ax=0的解,则k ξ也是Ax=0的解.4. 齐次线性方程组的基础解系与通解 (1) 解空间齐次线性方程组Ax=0的全体解向量所组成的集合,是一个向量空间,称为方程组 Ax=0的解空间.记作V,即V={ x | Ax=0,x ∈R }. 2 基础解系齐次方程组AX=0的解空间 V 的一个基,称为齐次方程组AX=0 的一个基础解系. 基础解系中解向量的个数是n-rA.方程组AX=0的任意n-r 个线性无关的解都是AX=0的基础解系. 3齐次线性方程组的通解为1122n r n r k k k ξξξ--+++,其中12n r ,,,ξξξ-是Ax=0的一个基础解系.5. 非齐次线性方程组解的性质1若12,ηη是Ax=b 的解,则12ηη-是Ax=0的解; 即Ax=b 的任意两个解的差必是其导出组A x =0的解. 2若η是Ax=b 的解,ξ是Ax=0的解,则ηξ+是Ax=b 的解.即Ax=b 的任意一个解和其导出组 A x =0 的任意一个解之和仍是 Ax=b 的解. 6. 非齐次线性方程组的通解非齐次线性方程组AX=b 的通解为*1122n r n r k k k ξξξη--++++其中12n r ,,,ξξξ-为对应的齐次线性方程组Ax=0的一个基础解系, *η为非齐次线性方程组AX=b 的任意一个解,称为特解.方阵的特征值1. 向量的内积设1122n n x y x y x ,y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则x,y 的内积为[]1122n n x,y x y x y x y =+++.1向量x 的长度:2n x x ==++2非零向量的单位化:若向量 x ≠0 , 1x .x则是单位向量 3当[]x,y 0,x y =时称向量与正交.4若非零向量组中的向量两两正交,则称该向量组为正交组. 5若正交组中每个向量都是单位向量,则称它为标准正交组. 定理1 正交向量组必线性无关定理2 A 为正交矩阵的充分必要条件是 A 的列行向量都是单位向量且两两正交. 6施密特正交化过程设123,,ααα是一个线性无关的向量组,① 正交化:令11,βα=[][]1222111,a ,,ββββββ=-[][][][]132333121122,a ,a a ,,βββββββββ=--;② 单位化:取312123123e ,e ,e ββββββ===. 则123e ,e ,e 是与123,,ααα等价的标准正交组. 2. 特征值与特征向量1方阵A 的特征值λ是特征方程A E 0λ-=的根. 2三角矩阵和对角矩阵的全部特征值就是它的全部对角元.3方阵和它的转置方阵有相同的特征值. 4设12n ,,,λλλ是n 阶方阵A 的全部特征值,则()12n tr A λλλ=+++,12n A λλλ=⋅⋅.即方阵A 的对角线上元素之和等于A 的全部特征值之和,方阵A 的行列式等于A 的全部特征值的乘积. 5若λ是方阵A 的特征值,则()fλ是方阵()f A 的特征值. 特别地,当()f A 0=时,方阵A 的特征值是()f 0λ=的根.说明:m m 1m m 110f (x )a x a xa x a --=++++,m m 1m m 110f (A )a A a A a A a E --=++++.例如λ是方阵A 的特征值,则方阵()f A A 2E =+的特征值是()f2λλ=+.方阵()2f A A 3A 4E =--的特征值是()2f34λλλ=--.例如若2A 3A 4E 0--=,则方阵A 的特征值是2340λλ--=的根,即121,4λλ=-=.6设12P ,P 都是方阵A 的属于同一特征值0λ的特征向量,则()112212k P k P k ,k +不全为零也是0λ的特征向量.7属于不同特征值的特征向量线性无关.8属于不同特征值的线性无关的特征向量的并集仍线性无关. 3. 方阵的对角化1若方阵A 与对角矩阵Λ相似,则说A 可以对角化.即存在可逆矩阵P,使得1P AP Λ-=. Λ是以A 的n 个特征值为对角元素的对角矩阵. 2n 阶方阵A 可以对角化的充分必要条件是①A 有n 个线性无关的特征向量;②属于每一个特征值的线性无关的特征向量的个数与该特征值的重数相同. 3n 阶方阵A 可以对角化的充分条件是n 阶方阵A 的n 个特征值互不相等. 4若A 与B 相似,则()f A 与()f B 相似.4. 实对称矩阵的对角化1实对称矩阵的属于不同特征值的特征向量彼此正交.2实对称矩阵一定可以对角化. 即存在正交矩阵P,使得1P AP Λ-=.Λ是以A 的n 个特征值为对角元素的对角矩阵.3利用正交矩阵将对称矩阵化为对角矩阵的步骤:1求特征值;2求特征向量;3将特征向量正交化,单位化;4最后将这些特征向量做成矩阵.二次型1. 二次型的标准化(1) 用正交变换化二次型为标准形的具体步骤:① 写出二次型T f x Ax =的对称矩阵A ;② 求A 的全部特征值12n ,,,λλλ;③ 求每个特征值的线性无关的特征向量12n ,,,ξξξ; ④ 将特征向量正交化,单位化,得12n ,,,ηηη;⑤ 将这些特征向量做成矩阵,记()12n C ,,,ηηη=,最后做正交变换x=Cy ,得到f 的标准形为 2221122n n f y y y λλλ=+++.其中12n ,,,λλλ是T f x Ax =的矩阵A 的特征值.(2) 用配方法化二次型为标准形的具体步骤:① 若二次型含有i x 的平方项,则先把含有i x 的项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆的线性变换,就得到标准形;② 若二次型中不含有平方项,则先作可逆线性变换,令i i j j i j kk x y y x y y x y =-⎧⎪=+⎨⎪=⎩,k=1,2,…,n,i≠j化二次型为含有平方项的二次型,然后再按1中方法配方.2. 规范二次型设二次型T f x Ax =的标准形为222211p p p 1p 1r r f d y d y d y d y ++=++---,i d 0>,r 是f 的秩令11p p p 1p 1r r y z y z y z y z ++⎧=⎪⎪⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪⎪⎪=⎪⎩,得22221p p 1r f z z z z +=++---,称为二次型T f x Ax =的规范形.注:规范形是唯一的.其中正平方项的个数p 称为Tf x Ax =正惯性指数,负平方项的个数r-p 称为T f x Ax =负惯性指数,它们的差p-r-p=2p-r 称为T f x Ax =符号差.3. 正定二次型二次型T f x Ax =正定⇔矩阵A 正定⇔A 的特征值全为正⇔A 的各阶顺序主子式都为正. 二次型T f x Ax =负定⇔矩阵A 负定⇔A 的奇数阶顺序主子式为负,偶数阶顺序主子式为正.。

二阶三阶行列式对角线法则-概述说明以及解释

二阶三阶行列式对角线法则-概述说明以及解释

二阶三阶行列式对角线法则-概述说明以及解释1.引言1.1 概述行列式是线性代数中的重要概念,它是一个数学工具,用于描述线性方程组的性质和解的情况。

二阶和三阶行列式是行列式理论中的基础,它们具有重要的数学意义和广泛的应用。

在本文中,我们将重点讨论二阶和三阶行列式的性质和计算方法,特别是介绍对角线法则在求解行列式值时的应用。

通过学习二阶和三阶行列式,可以深入理解行列式的概念和性质,为进一步学习多阶行列式奠定基础。

同时,对角线法则作为一种简便的计算方法,可以帮助我们更快速地求解行列式的值,提高解题效率。

因此,本文的目的是帮助读者全面了解二阶和三阶行列式,并掌握对角线法则的运用,为深入学习行列式理论打下坚实的基础。

1.2 文章结构文章结构部分:本文主要分为三个部分,即引言、正文和结论。

引言部分主要包括对二阶和三阶行列式的简要概述,介绍了行列式在数学和工程中的重要性和应用,并说明了文章的目的和意义。

正文部分分为二阶行列式、三阶行列式和对角线法则三个小节,将详细介绍二阶和三阶行列式的定义、性质和计算方法,以及介绍对角线法则在计算行列式时的应用和意义。

结论部分将对二阶和三阶行列式进行总结,展示其重要性和应用,并展望未来在更高阶行列式及其在数学和工程中的进一步研究和应用。

1.3 目的目的部分的内容应该概括文章的主要目标和意义。

例如:目的:本文旨在介绍二阶、三阶行列式以及它们的性质,并重点讲解对角线法则在计算行列式时的应用。

通过本文的阐述,读者可以深入了解行列式的计算方法,并且掌握对角线法则在简化计算过程中的重要作用。

同时,我们也希望读者能够进一步应用这些知识,解决实际问题和拓展数学思维。

2.正文2.1 二阶行列式二阶行列式是指一个2x2矩阵的行列式,通常表示为:a bc d其中,a、b、c、d分别为矩阵中的元素。

二阶行列式的计算公式为ad - bc。

这个公式也被称为“交叉相乘减交叉相乘”的方法。

举个例子,对于矩阵2 34 1其二阶行列式的计算过程为:2*1 - 3*4 = 2 - 12 = -10。

二阶与三阶行列式

二阶与三阶行列式

2 3 4 1 . 3 4 1 2 4 1 2 3
解 把所有列都加到第一列上去,然后,从第一列提 取公因子,再把第二、三、四行都减去第一行.
1 2 3 4
2 3 4 1
3 4 1 2
4 10 1 10 2 10 3 10
2 3 4 1
3 4 1 2
4 1 2 3
1 1 10 1 1
2 3 4 1
3 4 1 2
3
4 1 2 3 4 1 0 1 1 3 10 2 0 2 2 2 3 0 1 1 1
4
1 2
2r2 r3 0 1 1 3 10 120. r1 r4 0 0 3 1 0 0 0 4
例5.5 设
a11 D am1 c11 cn1 a11
D1 am1
0 x2
x2 x1
x3 x1 x3 x3 x1 x3
n2
x3 x1
xn
xn x1
1 x2 x1 x3 x1 xn x1 x2 x2
n2
1 x3 x3
n2

1 xn
n2
( x2 x1 )( x3 x1 )
a11 ai1 D a j1 an1 a j2 an 2 a jn ann a12 ai 2 a1n ain a j1 kai1 a j 2 kai 2 an1 an 2 a jn kain ann a11 ai1 a12 ai 2 a1n ain .
例5.3 计算
a b c d a ab abc abcd D . a 2a b 3a 2b c 4a 3b 2c d a 3a b 6a 3b c 10a 6b 3c d

线性代数§1.1二阶、三阶行列式

线性代数§1.1二阶、三阶行列式

线性代数§1.1⼆阶、三阶⾏列式本章说明与要求⾏列式的理论是⼈们从解线性⽅程组的需要中建⽴和发展起来的,它在线性代数以及其他数学分⽀上都有着⼴泛的应⽤。

在本章⾥我们主要讨论下⾯⼏个问题:(1) ⾏列式的定义;(2) ⾏列式的基本性质及计算⽅法;(3) 利⽤⾏列式求解线性⽅程组(克莱姆法则)。

本章的重点:是⾏列式的计算,要求在理解n阶⾏列式的概念,掌握⾏列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶⾏列式。

计算⾏列式的基本思路是:按⾏(列)展开公式,通过降阶来计算.但在展开之前往往先利⽤⾏列式性质通过对⾏列式的恒等变形,使⾏列式中出现较多的零和公因式,从⽽简化计算。

常⽤的⾏列式计算⽅法和技巧:直接利⽤定义法,化三⾓形法,降阶法,递推法,数学归纳法,利⽤已知⾏列式法。

⾏列式在本章的应⽤:求解线性⽅程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应⽤的条件。

本章的重点:⾏列式性质;⾏列式的计算。

本章的难点:⾏列式性质;⾼阶⾏列式的计算;克莱姆法则。

==============================================§1.1 ⼆阶、三阶⾏列式⾏列式的概念起源于解线性⽅程组,它是从⼆元与三元线性⽅程组的解的公式引出来的。

因此我们⾸先讨论解⽅程组的问题。

设有⼆元线性⽅程组()()------1 ------2ax by c dx ey f +=+=?? ⽤消元法求解:()()12:e b - ()ae bd x ce bf -=-?,ce bf x ae bd-=-, ()()21:a d - ()ae bd y af dc -=-?,af dc y ae bd-=-。

即得⽅程组的解:ce bf x ae bd af dc y ae bd -?=??-?-?=?-?。

这就是⼀般⼆元线性⽅程组的解公式。

但这个公式很不好记忆,应⽤时⼗分不⽅便。

由此可想⽽知,多元线性⽅程组的解公式肯定更为复杂。

1、二阶、三阶行列式

1、二阶、三阶行列式

4、克拉默法则。
Ynu hyq
5
线性代数 二阶、三阶行列式
Ynu hyq
6
线性代数 二阶、三阶行列式
一、二阶行列式
1、引入
一元一次方程 ax = b 当 a≠0 时, x a 1b 例 解二元线性方程组 2 x1 3 x 2 22 x 2 x 10 2 1 得 于是 二元 (三元)线性方程组
1
线性代数 二阶、三阶行列式
a11 a21 a31 a n1
a12 a22 a32 an 2
a13 a1n a23 a3 n a33 a3 n an 3 ann
Ynu hyq
2
线性代数 二阶、三阶行列式
1、知道n 阶行列式的定义,熟练掌握行列式 的基本性质及展开定理,掌握计算行列式 的一般方法,熟悉范德蒙行列式,了解行 列式的乘法定理及某些特殊分块矩阵行列 式的计算方法; 2、正确使用克拉默(Cramer)法则解线性方 程组。
Ynu hyq
22
线性代数 二阶、三阶行列式
3、三元线性方程组 a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
a11 若系数行列式 D a21 a31 b1 a12 a13 a11 D1 b2 a22 a23 , D2 a21 b3 a32 a33 a31
Ynu hyq
3
线性代数 二阶、三阶行列式
本章要点
• 1、n 阶行列式的定义及基本性质,展开 定理,行列式的乘法定理,某些特殊分块 矩阵的行列式,范德蒙行列式; 2、克莱姆(Cramer)法则。

2-1二阶、三阶行列式

2-1二阶、三阶行列式

a11
a12
a13 a23 a33
D = a21 a22 a31 a32
a11
a12
a13 a23 a33
b1 D1 = b2 b3 a11
a12 a22 a32 a12
a13 a23 , a33 b1 b2 . b3
D = a21 a22 a31 a32
a11
b1
a13 a23 , a33
D2 = a21 b2 a31 b3
1 × 1 × 4 2 × ( 2 ) × ( 2 ) ( 4 ) × 2 × ( 3 )
= 4 6 + 32 4 8 24 = 14.
1 1
例3 解
1 x = 0. 2 x
求解方程
方程左端
2 3 4 9
D = 3 x 2 + 4 x + 18 9 x 2 x 2 12 = x 2 5 x + 6,
若记 系数行列式
D=
a11
a12
a21 a22
,
a11 x1 + a12 x2 = b1 , a21 x1 + a22 x2 = b2 .
D= a11 a12 ,
a21 a22
a11 x1 + a12 x2 = b1 , a21 x1 + a22 x2 = b2 .
D1 =
b1 b2
a12 a22
a11 a12 D = a21 a22 a31 a32
a13 a23 .列标 a33 行标
三阶行列式的计算方法: 三阶行列式的计算方法:
对角线法则: 对角线法则: a11 a12
a13
a21 a31
a22 a32
a23 = a11a22a33+ a12a23a31 + a13a21a32 a a13a22a31 a12a21a33 a11a23a32.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三阶行列式的性质
根据已经证明的关于2阶行列式的性质,3阶行列式也有同样的性质 性质 行列互换,3阶行列式的值不变,即 = 证明:等式左端的行列式按照第1列展开利用性质1可得
等式右端

性质 两行 (列) 互换,3阶行列式的值变号. (只给出行列式的前 2行变换的情形,其他情形类似). =
证明:把等式左端的行列式按第 3 行展开再利用性质3可得 = + + = 等式右端 ■
例0.4:计算下列行列式: (1) (2)
(3)
解:(1)
( 3) r1 r 2
解:(2)
( r 2 r 3) r1
c1 c2 c1 c3
注:此题的做法,对所有行(列)和相等的行列式均适用.
解:(3)
c1 c2 c1 c3
本讲小结
1、转置不变(行列等价) 2、行(列)加法拆项法则 3、行(列)倍乘 4、对换取反 5、倍加不变 6、行列展开公式 行(列)初等变换,产生尽量多的0元素. 初等变换,是行列式 计算中最常用的方法.
称为三阶行列式对其第一行的展开公式.
= = ( ) ( ) ( )
=
因此,我们已经有
类似地,我们也可以得到
以上三个式子分别称为三阶行列式对其第一、二、三行的展开公式.
同样也有三阶行列式对其一、二、三列的展开公式,即
易知,2阶行列式也满足这个结论,故我们就证明了以下的定理. 定理 2、3阶行列式等于它的任一行 (或列) 元素与自己的代数余子式 乘积之和.

性质2 若二阶行列式中某行(列)每个元素分成两个数之和,则该行列 式可关于该行(列)拆开成两个行列式之和,拆开时其他行均保持不变, 即 = + 证明: = ( = + ■
= (
)
(
性质3 两行(列)互换,行列式的值变号,即 = -
证明:由行列式的定义,等式两边都等于 注:1、由于行列等价,我们只对行来说明性质2.
利用性质计算行列式
例0.2:试证
= 2
利用性质计算行列式
例0.2的证明: 左端 =
=
+ 0 + 0 +
=
+ 0 + 0 +
= 2
= 右端

例0.3:试证 = 证明:把左端行列式按第一行展开即得. ■
注:由上面的例0.3可知,在计算3阶行列式时,我们可以利用初等行 变换和行列式的性质,把某一行 (或列) 的3个元素中的2个变成0, 然后再按此行 (或列) 展开就化成计算一个2阶行列式了.
线性代数——先修课 第二章 行列式
§2.1 二阶、三阶行列式的性质
内容提要
二阶行列式的性质 三阶行列式的展开式与性质 利用性质计算行列式
二阶行列式的性质
性质1 行列互换,二阶行列式的值不变,即 = 证明: 由行列式的定义,等式两边都等于 .
注:1、性质1说明二阶行列式中,行与列地位相同,即二阶行列 式对行成立的结论,对列也同样成立. 2、行列互换,对应到每个元素就是交换两个下标的表示,即 第一下标表示列数,而第二下标表示行数. Nhomakorabea■
2、由性质3可知,若二阶行列式的性质对某一行成立,则对 另一行也成立(最多相差一个符号),例如,对性质2, 我们是对第一行证明的加法拆分,从而对该性质对第二 行也成立.
性质4 二阶行列式中某行(列)有公因子 时, 可以提出公因式外, 即 = 证明: = ( = ( ) ) = -( )

性质5 二阶行列式中某一行(列)加上另一行(列)的 倍时,其值 不变, 即 =
类似的,我们可以证明下面的性质: 性质 :若 3 阶行列式某行 (列) 各个元素分成两个数的和,则该行 列式可关于该行 (列) 拆开成两个行列式之和,拆开时其他行 (列) 均 保持不变. 性质 :行列式的某一行 (列) 的公因式 可以提到行列式的外面. 特 别的,若行列式有一行 (列) 为零,则行列式的值为0. 性质 :把一行 (列) 的倍数加到另一行 (列) 上,行列式的值不变.
证明: = = =
=(
)
(
)

三阶行列式的展开公式
下面考察 3 阶行列式,由定义可得
= = ( )
(
)
(
)
=
在上述 3 阶行列式中,划去第 行第 列后所剩下的 2 阶行列式称 ,则 为元素 的余子式,记为
再令:
称之为元素
的代数余子式,例如
因此,利用上面的符号,我们可以把刚才的关系式重新表示如下:
相关文档
最新文档