D1_1二阶与三阶行列式
武汉大学线性代数-01 第一章

2019/11/29
16
逆序数为奇数的排列称为奇排列。 逆序数为偶数的排列称为偶排列。
例如:123 t = 0 为偶排列, 321 t = 3 为奇排列, 312 t = 2 为偶排列。
19 5
24 10
18 5 1 12 5 2 0 0
18 5 5 2
c1 3c4
0 0 01 00 01
2019/11/29
40
4 1 10 3 8 1 10 3
12 1 18 5 0 1 18 5
40
0 0 5 2 0 0 5 2
0 0 ann
2019/11/29
22
(2) 下三角形行列式
a11
D
a21
0 a22
0
0
a11a22 ann
a a a
n1
n2
nn
2019/11/29
23
(3) 对角行列式
a11
D
a22
a11a22 ann
ann
2019/11/29
24
(4) 副对角行列式
(1)t a1 p1 a2 p2 anpn
称为 n 阶行列式 (n≥1),记作
a11 a12 a1n a21 a22 a2n
an1 an2 ann
2019/11/29
19
例1:写出四阶行列式中含有因子 a11a 23 的项。
a11a 23a34a 42
a11a 23a32a 44
第一节 二阶与三阶行列式

a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
n 阶行列式定义
将n2个数排成n行n列的数表,按下列规
则计算出的数,即
D ( 1) a1 p1 a 2 p2 a np n n! a n1 a nn
2 D1 ( 1) ( 1) 1 x1 , 2 D ( 1) ( 2) 2
( 1) D2 x2 2 ( 1) ( 2) D
2
1 , 2
2 2 ( 1) ( 1) D3 x3 2 D ( 1) ( 2)
ci 2 ai 1b12 ai 2b22 ainbn 2 , (i 1,2,, n)
D
a11 a 21 a n1 1
a12 a1n a 22 a 2 n a n 2 a nn 1 1
再证唯一性.假设
x j c j , j 1,2,, n 也是(1)的解.
在(2)两端同时乘以cj
a11 a1 j c j a1n cjD an1 anj c j ann
a11 (a11c1 a1 j c j a1n cn ) a1n an1 (an1c1 anj c j anncn ) ann
例6.2 问λ在什么条件下,方程组
ì λx1 + x2 = 0, ï ï í ï ï î x1 + λx2 = 0
有非零解?
解 由定理6.5知,若方程组有非零解,则其系数行列
式必为零.
D
1
1
0 2 1 0,
线性代数ppt课件

x1
b1a22 a11a22
a12b2 a12a21
x2
a11b2 a11a22
b1a21 a12a21
x1
b1a22 a11a22
a12b2 a12a21
x2
a11b2 a11a22
b1a21 a12a21
5
第一章 行列式
我们用符号
aa1211表aa示1222代数和a11a22a12a21
解: 1 3 … (2n-1) 2 4 … 2k… (2n)
D3x24x189x2x212x25x6
即x25x60
x2或x3
值得注意的是:四阶及四阶以上行列式没有像二、三阶 行列式那样的对角线法则
13
第一章 行列式 §1-2 全排列及其逆序数
[引例]用1、2、3三个数字 可以组成多少个没有重复数字的 三位数?
[解依] 次选定百位数、十位数、个位数。 百位数有3种选法 十位数有2种选法 个位数有1种选法 所以可以组成6个没有重复数字的三位数 这6个三位数是 123 132 213 231 312 321
十八世纪开始,行列式开始作为独立的数学概念被研究。 十九世纪以后,行列式理论进一步得到发展和完善。
3
第一章 行列式
莱布尼茨:历史上少见的通才,被誉为 十七世纪的亚里士多德。在数学上,他 和牛顿先后独立发明了微积分。在哲学 上,莱布尼茨的“乐观主义”最为著名 。 他对物理学的发展也做出了重大贡献 。
并称它为三阶行列式。
10
第一章 行列式
2、行列式中的相关术语
行列式的元素、行、列、主对角线、副对角线 3、三阶行列式的计算 (对角线法则或沙路法则 )
线性代数第一章15

a11 a 21 D a n1
a1i a1n a11 a 2 i a 2 n a 21 a ni a nn a n1
i a1 n a1 a a2n 2i a a nn ni
性质6 把行列式的某一列(行)的各元素乘以 同一数然后加到另一列(行)对应的元素上去,行 列式值不变. a11 a1i a1 j a1n
1 7 5 1 7 5 6 6 2 3 5 8 , 3 5 8 6 6 2
1 7 6 6 3 5
7 1 5 2 6 6 2. 5 3 8 8
5
交换 i , j 两行,记作 ri rj . 交换 i , j 两列,记作 ci c j .
1 7 5 1 7 5 r2 r3 6 6 2 3 5 8 , 3 5 8 6 6 2
2. 二阶行列式的计算
主对角线 副对角线
对角线法则
a11a22 a12a21 .
a11
a12
a21
a22
对于二元线性方程组
若记
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 a12 D , a21 a22
系数行列式
b1 D1 b2
DT
a11 a21 an1 a12 a22 an 2
an1 an 2 ann
T
a1n a2 n ann
行列式 D 称为行列式 D 的转置行列式.
二、行列式的性质
性质1 行列式与它的转置行列式相等.
说明 行列式中行与列具有同等的地位,因此 行列式的性质凡是对行成立的对列也同样成立. 性质2 互换行列式的两行(列),行列式变号.
矩阵论基础1.1二阶和三阶行列式

矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。
即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。
定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。
⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。
可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。
若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。
例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。
例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。
二阶与三阶行列式

(2)对角线法则 a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式.
2
3 (4) 7 0,
21
12 D1 1
2 14,
1
3 D2 2
12 1
21,
x1
D1 D
14 7
2,
x2
D2 D
21 3. 7
二、三阶行列式
定义 设有9个数排成3行3列的数表
a11 a12 a13
a21 a22 a23
(5)
记
a31 a32 a33
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
(6)式称为数表(5)所确定的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标
a31 a32 a33 行标 三阶行列式的计算
a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22
a31 a32 a33 a31 a32 D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31.
称列)的数表
a11 a12
a21 a22
(4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶
线代第一章

上一页 下一页
可见,第一个位置有 3 种选择,第二个位置 有 2 种选择,第三个位置有 1 种选择,所以所有 的 3 级排列一共有
3 2 1 3! 6
个。显然,所有的 5 级排列一共有 5!= 120 个。 容易得出,n 级排列一共有 n! 个。而在 n
第一章
行列式
第一节 二阶与三阶行列式 第二节 n 阶行列式
第三节 行列式的性质
第四节 行列式的按行(列)展开 第五节 克莱姆法则
上一页 下一页
第一节 二阶与三阶行列式
一、二阶行列式
二、三阶行列式 三、小结
一、二阶行列式
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
上一页 下一页
a11 a12 a13 D a21 a22 a23 列标 a31 a32 a33 行标 三阶行列式的计算 a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22 a31 a32 a33 a31 a32
D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31 .
记 a11
a31
a21 a31
a12 a13 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a a a a a a a a a 11 23 32 12 21 33 13 22 31, a32 a33
(6)式称为数表(5)所确定的三阶行列式.
第1章 1、2、4、3节 行列式定义

„—‟三元素乘积取“+”号;
‘…‟三元素乘积取“-”号。
例2 计算三阶行列式
1 2 4 D 2 2 1 3 4 2
解:由主对角线法,有
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4 ( 4 ) 2 ( 3 ) 2 ( 2 ) ( 2 ) 1 1 4 4 6 32 24 8 4
于是方程组的解为
D3 15 D1 55 D2 20 x1 11,x2 4, x3 3. D 5 D 5 D 5
思考与练习(三阶行列式) 1 1 1
1.解方程 1 2 1 x
x 1 6 2 x1 x 2 3 x 3 5 2.解线性方程组 3 x1 x 2 5 x 3 5 4x x x 9 2 3 1
i1…it…is …in,这种变换称为一个对换, 记为( isit).
例6
3421 1423 1243 1234
( 31)
( 42)
( 43)
5 2 1 0
结论: ①对换改变排列的奇偶性. ②任意一个n级排列与标准排列12…n都可以经过一 系列对换互变.
① 的证明 对换在相邻两数间发生,即
ann
jn n, jn1 n 1,, j2 2, j1 1时,
(123 n )
课程及扩大数学知识都将奠定必要的数学基础。 4、线性代数作为大学理工科的一门主要的数学基础课, 也是硕士研究生入学考试的一门重要课程。
教材与参考书
•1、教材:《线性代数》第五版,同济大学数学教研室 •2、参考书: 《线性代数附册 》学习辅导与习题选解 (同济第五 版),同济大学数学系, 高等教育出版社,2007.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则三元线性方程组的解为:D1 1 , DD2 x2 , D
D3 x3 . D
机动
目录
上页
下页
返回
结束
1
2 -4
例2. 计算三阶行列式 D - 2 2 1 -3 4 -2 解 按对角线法则,有
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4
a11
a12
a13 a23 0, a33
的系数行列式 D a21 a22
a31 a32
机动
目录
上页
下页
返回
结束
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1
x+2y+3z=800
第一章
行列式
行列式的定义 行列式的性质 行列式的计算 应用:Cramer法则
第一章
1.1 二阶与三阶行列式
一、二阶行列式的引入
二、三阶行列式
机动
目录
上页
下页
返回
结束
一、二阶行列式的引入
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
机动
目录
上页
下页
返回
结束
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11
得
b1
a13 a23 , a33 a11 a12 a13 a23 a33 D a21 a22 a31 a32
D1 b1 b2 a12 a22 ,
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
D a11 a12
a21 a22
,
机动
目录
上页
下页
返回
结束
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
D1 b1 b2 a12 a22 ,
上页
下页
返回
结束
三、小结
二阶和三阶行列式是由解二元和三元线性方 程组引入的. 二阶与三阶行列式的计算 对角线法则
a11
a12
a21 a22
a11 a12
a11a22 a12a21 .
a13
a21 a22 a31 a32
a23 a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31, a33
类似地,消去x1,得
(a11a22 a12a21)x2 a11b2 b1a21 ,
方程组的解为 当a11a22 a12a21 0 时,
b1a22 a12b2 a11b2 b1a21 x1 , x2 . a11a22 a12a21 a11a22 a12a21
1 2
1 a22 :
a11a22 x1 a12a22 x2 b1a22 ,
2 a12 : a12a21 x1 a12a22 x2 b2a12 ,
两式相减消去x2,得
机动
目录
上页
下页
返回
结束
(a11a22 a12a21)x1 b1a22 a12b2 ;
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
注意 兰线上三元素的乘积冠以正号,黄线上三 元素的乘积冠以负号.
说明 1. 对角线法则只适用于二阶与三阶行列式.
机动
目录
上页
下页
返回
结束
2. 三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正,三项为 负. 利用三阶行列式求解三元线性方程组 a11 x1 a12 x2 a13 x3 b1 , 如果三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
D1 14 D2 21 x1 2, x2 3. D 7 D 7
机动
目录
上页
下页
返回
结束
二、三阶行列式
定义 设有9个数排成3行 3列的数表
a11 a12 a 21 a22
记 a11
a13 a 23 a 33 ( 5)
a 31 a32
a12 a13 a23 a33
a21 a22 a31 a32
a11a22 a12a21 .
机动
目录
上页
下页
返回
结束
二阶行列式的计算
主对角线
对角线法则
a11a22 a12a21 .
a11
a 21
a12 a22
副对角线
a11 x1 a12 x2 b1 , 对于二元线性方程组 a21 x1 a22 x2 b2 .
若记
D
系数行列式
a11
a12
a21 a22
,
机动
目录
上页
下页
返回
结束
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
D a11 a12 ,
a21 a22
机动
目录
上页
下页
返回
结束
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
得
b1
a13 a23 , a33 b1 b2 . b3
D2 a21 b2 a31 b3
a11 a12 a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , D3 a21 a22 a x a x a x b ; a31 a32 31 1 32 2 33 3 3
机动
目录
上页
下页
返回
结束
a11
a12
a13 a23 a33 b1 b2 . b3
D a21 a22 a31 a32 a11 a12 D3 a21 a22 a31 a32
b1 D1 b2 b3 a11
a12 a22 a32 b1
a13 a23 , a33 a13 a23 , a33
D2 a21 b2 a31 b3
a11a22a33 a12a23a31 a13a21a32 (6) a11a23a32 a12a21a33 a13a22a31,
(6) 式称为数表 (5) 所确定的三阶行列式.
机动
目录
上页
下页
返回
结束
对角线法则 a11 a12
a13 a23 a33
a21 a31
a22 a32
分母都为原方程组的系数行列式.
机动
目录
上页
下页
返回
结束
例1. 求解二元线性方程组
解
3 x1 2 x 2 12, 2 x1 x 2 1. 3 2 3 ( 4) 7 0, D 2 1
12 2 1 1
D1
14, D2
3 12 2 1
21,
1 1 4 2 ( 2 ) ( 2 ) ( 4 ) 2 ( 3 )
4 6 32 4 8 24 14.
机动
目录
上页
下页
返回
结束
1 1
例3. 求解方程 2 3
1 x 0. x2
4 9
解 方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
解
1 D 2 1
2 1 1
3 1 1 1 2 3 1 1
1
1 2 1 1 1 1 2 2 1 1 3 1 5 0,
机动
目录
上页
下页
返回
结束
同理可得
若记
a12 a22
a13 a23 ,
D1 b2
或
b1 b2 b 1
b3 a32 a33 a11 a12 a13 D a21 a22 a31 a32 a23 a33
机动
目录
上页
下页
返回
结束
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1
D2 a21 b2 a31 b3
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
机动
目录
上页
下页
返回
结束
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11
记
a12 a22 a32 a12 a22 a32
a13 a23 , a33 a13 a23 , a33
D1 b2 b3 b1
即
D1 b2 b3