§1_二阶与三阶行列式共22页文档
二阶与三阶行列式

一、二元线性方程组与二阶行列式 二、三阶行列式
一、二元线性方程组与二阶行列式
a11x1+a12x2=b1 用消元法解二元线性方程组 a21x1+a22x2=b2
得
b1a22 - a12b2 a11b2 - b1a21 x2 = x1 = a11a22 - a12a21 a11a22 - a12a21
2 2
下页
a11 a1 =a11a22 -a12a21 a2 2 1 a2 2 例1 求解二元线性方程组 3x1 - 2x2 =12 2x + x =1 1 2 解 由于
D = 3 - 2 = 3- (-4) = 7 0 2 1 D1 = 12 - 2 =12 - (-2) =14 1 1 D2 = 3 12 = 3- 24 = -21 2 1 因此 D1 14 D2 - 21 x1 = = = 2 x2 = = = -3 D 7 D 7
a11 a12 a13 为了便于记忆和计算 我们用符号 a21 a22 a23 表示代数和 a31 a32 a33
a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31
下页
二、三阶行列式
a11 a12 a13 我们用符号 a21 a22 a23 表示代数和 a31 a32 a33 a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31 并称它为三阶行列式
1 例2 计算三阶行列式 D= -2 -3 解 按对角线法则 有
2 2 4
D =12(-2)+21(-3)+(-4)(-2)4 -114 -2(-2)(-2) -(-4)2(-3)
第一节 二阶与三阶行列式

a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
n 阶行列式定义
将n2个数排成n行n列的数表,按下列规
则计算出的数,即
D ( 1) a1 p1 a 2 p2 a np n n! a n1 a nn
2 D1 ( 1) ( 1) 1 x1 , 2 D ( 1) ( 2) 2
( 1) D2 x2 2 ( 1) ( 2) D
2
1 , 2
2 2 ( 1) ( 1) D3 x3 2 D ( 1) ( 2)
ci 2 ai 1b12 ai 2b22 ainbn 2 , (i 1,2,, n)
D
a11 a 21 a n1 1
a12 a1n a 22 a 2 n a n 2 a nn 1 1
再证唯一性.假设
x j c j , j 1,2,, n 也是(1)的解.
在(2)两端同时乘以cj
a11 a1 j c j a1n cjD an1 anj c j ann
a11 (a11c1 a1 j c j a1n cn ) a1n an1 (an1c1 anj c j anncn ) ann
例6.2 问λ在什么条件下,方程组
ì λx1 + x2 = 0, ï ï í ï ï î x1 + λx2 = 0
有非零解?
解 由定理6.5知,若方程组有非零解,则其系数行列
式必为零.
D
1
1
0 2 1 0,
第一节 二阶与三阶行列式讲 解课件

8.有限个向量的向量组与矩阵一一对应
列向量组
行向量组
9、向量的运算
(特殊矩阵)
转置、相等、加法、数乘、乘法;运算律
T T T ( 1 , 1 , 1 ) , ( 0 , 1 , 2 ) , ( 1 , 0 , 1 ) 例:设
求 解
.
T T T
7.向量组:
若干个同维数的向量所组成的集合叫做向量组.
行向量组 列向量组
有限个向量 无限个向量
本课程默认为列向量组 先讨论有限个向量
m个n维列向量构成向量组 称为向量组 a1 , a2 ,, am ,或者称为向量组A
A : a1 , a2 ,, am
,或者称为向量组 A :
a1 , a2 ,, am .
T T T
T
等表示,如:
a T (a1 , a 2 ,, a n )
n 维向量写成一列,称为列向量,也就是列
矩阵,通常用 a , b, , 等表示,如:
a1 a2 a a n
注意
1.行向量和列向量总被看作是两个不同的 向量; 2.行向量和列向量都按照矩阵的运算法则 进行运算;
1 2 3 1 2 1 5 3 6 r ~ 0 1 2 2 8 0 5 4 5 7 0
7 0 0 0 5 4 1 0 0 5 0 0 1 0 0 0 0 1
R( A) 3 R( B) 4
因此向量 b 不能由向量组 A 线性表示.
a1 x1 a 2 x 2 a n x n b
a1 , a2 ,, an , b
线性方程组与增广矩阵的列向量组一一对 应
二、 线性组合与线性表示
一二阶与三阶行列式-PPT精品文档

三阶行列式
a11 D a 21 a 31
a12 a 22 a 32
a13
a a a a a a a a a a 23 11 22 33 12 23 31 13 21 32
a 33
a a a a a a a a a 13 22 31 12 21 33 11 23 32
a 11 A a 21 a 31
a 12 a 22 a 32
a 13 a 23 a11a22a33 a12a23a31a13a21a32 a 33 a13a22a31a12a21a33a11a23a32
例:
2 1 1
0 4 8
1 1 3
118 0(1 ) (1 ) 4 )3 2(
a b b a 1 a 11 11 2 1 21 x 2 a a a a A a 21 11 22 12 21
a 12 a 22
b1 b2
2.
a11x1 a12x2 a13x3 b 1 类似地,为讨论三元线性方程组 a21x a22x2 a23x3 b 1 2 a x a x a x b 31 1 32 2 33 3 3
a 13 a 23 a 33
a 14 a 24 a 34
a21 a23 a24 M12 a31 a33 a34 a41 a43 a44
1 2 M A 1 M 12 12 12
a 43 aa444 4
a11 a12 a13 M44 a21 a22 a23 a31 a32 a33
a 12 a 22
算出来是一个数。
(2) 记忆方法:对角线法则 主对角线上两元素之积 - 副对角线上两元素之积
A
§1二阶与三阶行列式

性质
总结词
二阶行列式具有交换律、结合律、代数余子式等性质。
详细描述
二阶行列式满足交换律,即|A|=|AT|,其中AT是矩阵A的转置矩阵。结合律表现为|AB|=|A|*|B|,其中A、B为可 乘矩阵。代数余子式是去掉一个二阶行列式中的一个元素后得到的二阶行列式,其值等于原行列式除以被去掉元 素所在的行和列的乘积。
等于零、代数余子式的乘积等于零等。
应用
03
代数余子式在计算高阶行列式的值、求解线性方程组等领域有
广泛的应用。
转置行列式
定义
转置行列式是将n阶行列式的行和列互换后得到的新 行列式。
性质
转置行列式的值等于原行列式的值,即|A|=|AT|。
应用
转置行列式在求解线性方程组、判断矩阵是否可逆等 领域有广泛的应用。
性质
线性性质
三阶行列式满足线性性质,即|ka b c| = k|a b c|,其中k是标量。
交换律
|a b c| = |c b a|。
结合律
(|a b c| + |d e f|) = |a b c| + |d e f||a d|。
分配律
|a+b c d| = |a b c| + |b c d||a b c|。
矩阵的转置
行列式可以用于计算矩阵的转置,通过计算转置矩阵的行列式,可以得到原矩阵 的行列式。
05
CATALOGUE
二阶与三阶行列式的扩展
高阶行列式
定义
高阶行列式是n阶方阵的展开式,其一般形式为D=∑(-1)^t * M(t1,t2,...,tn) * A(t1,t2,...,tn),其中t为对角线上的元素下标的排列顺序,M为排列数,A为n阶行列式中 元素的下标构成的排列。
二阶与三阶行列式

(2)对角线法则 a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式.
2
3 (4) 7 0,
21
12 D1 1
2 14,
1
3 D2 2
12 1
21,
x1
D1 D
14 7
2,
x2
D2 D
21 3. 7
二、三阶行列式
定义 设有9个数排成3行3列的数表
a11 a12 a13
a21 a22 a23
(5)
记
a31 a32 a33
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
(6)式称为数表(5)所确定的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标
a31 a32 a33 行标 三阶行列式的计算
a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22
a31 a32 a33 a31 a32 D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31.
称列)的数表
a11 a12
a21 a22
(4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶
二阶和三阶行列式

a11 D
a12
a13 a23 a33 a43
a12
a14 a24 a34 a44
a13 a23 a33
a21 a22 a31 a32 a41 a42
a11
a21 a23 M 12 a31 a33 a41 a43
1 2
a24 a34 a44
A12 1 M 12 M 12
M 44 a21 a22 a31 a32
a41 a42 a43 a44
a 32 的代数余子式 A32 ( 1)32 M 32 a13 的代数余子式 A ( 1)13 M 13 13
a21 a31 a41
完
a22b1 a12 a21b1 x2 a11a22 a12a21
a11 a12 D a11a22 a12a21 , a21 a22
a12 a22
主对角线 a11 a21 称 D 为二阶行列式。 副对角线
(-)
a13 a11 a33 a31
(+)
a12 a32
(+) (+)
a23 a21 a22
(-)
(-)
三元线性方程组
a11 x1 a12 x2 a13 x3 b1 设有三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b 31 1 32 2 33 3 3
解 计算二阶行列式
D
2 1 3 2
7 , D1
5 11
1 2
21 , D2
2
5
3 11
7 .
由 D 7 0 知方程组有唯一解:
D1 D2 x1 3 , x2 1. D D
二阶与三阶行列式分析

二阶与三阶行列式分析二阶行列式分析:二阶行列式是由两行两列元素组成的方阵。
例如,一个二阶行列式可以表示为:abcd其中a、b、c、d是实数。
二阶行列式的计算方法是将对角线上的元素相乘,然后减去另一条对角线上的元素相乘。
根据这个定义,二阶行列式的值可以表示为:abc d , = ad - bc其中ad表示a和d的乘积,bc表示b和c的乘积。
三阶行列式分析:三阶行列式是由三行三列元素组成的方阵。
例如,一个三阶行列式可以表示为:abcdefghi其中a、b、c、d、e、f、g、h、i是实数。
三阶行列式的计算方法可以通过展开定理来计算。
展开定理指出,三阶行列式可以按照第一行或第一列展开为两个二阶行列式的乘积。
根据展开定理,三阶行列式的值可以表示为:abcdefg h i , = aei + bfg + cdh - ceg - bdi - afh其中aei、bfg、cdh分别表示第一行的元素与其对应的代数余子式的乘积,ceg、bdi、afh分别表示第一列的元素与其对应的代数余子式的乘积。
行列式的应用:行列式在线性代数中起着重要的作用,具有广泛的应用。
以下是几个行列式的应用示例:1.解线性方程组:通过求解行列式的值,可以确定线性方程组的解的排列情况和数量。
2.计算面积和体积:通过行列式的计算,可以求得平面上一组向量所围成的面积,或者三维空间中一组向量所围成的体积。
3.判断向量的线性相关性:使用行列式可以判断一组向量是否线性相关,通过计算行列式的值,若行列式为0则表示向量线性相关,否则线性无关。
4.矩阵的逆、行列式的转置:行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
总结:二阶行列式可以通过对角线元素的乘积减去反对角线元素的乘积来计算。
三阶行列式可以通过展开定理,将其展开为两个二阶行列式的乘积。
行列式在线性代数中有广泛的应用,包括解线性方程组、计算面积和体积、判断向量的线性相关性等。
行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
0
、
倚
南
窗
以
寄
傲
,
审容膝之易安。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
§1_二阶与三阶行列式
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
45、自己的饭量自己知道。——苏联