复数的四则运算(含答案解析)
复数的代数形式的四则运算

五、课堂小结: 1.复数加减法的运算法则: (1)运算法则:设复数z1=a+bi,z2=c+di, 那么:z1+z2=(a+c)+(b+d)i; z1-z2=(a-c)+(b-d)i. (2)复数的加法满足交换律、结合律,即对 任何z1,z2,z3∈C,有:
z1+z2=z2+z1,
(z1+z2)+z3=z1+(z2+z3).
i
4n
4. i的指数变化规律:
1,
i
4 n 1
i ,
i
4n4n2Fra bibliotek1 ,
4n2
i
4 n 3
i
i i
4 n 1
i
i
4 n 3
0, (n N )
4.复数的除法法则
先把除式写成分式的形式,再把分子与分 母都乘以分母的共轭复数,化简后写成代数形 式(分母实数化).即
( 2 ) (2 i ) (2 3 i ) 4 i
(3 ) 5 (3 2 i )
(4) 4i (4i 4)
答案: (1) 2 + 2i
(2) 0
(3) 2 - 2i
(4) 4
练习: 1.计算 (2 3i )(2 3i )
13
2.已知 (3 i ) z 10 ,则 z _____. 3.已知 f ( x ) x 3 2 x 2 5 x 2 ,则 f (1 2i ) =_____.
z1(z2+z3)=z1z2+z1z3.
3. i的指数变化规律:
i i
4n
4 n 1
复数的四则运算

复数代数形式的四则运算制作人:高二数学组学习目标1、掌握复数的加法、减法、乘法、除法的运算法则。
2、能够熟练准确的运用法则解决相关的实际问题。
3、掌握共轭复数的概念及性质。
重点:复数的加法、减法、乘法、除法的运算法则。
难点:共轭复数的概念及性质。
一、复习1、虚数单位 ,有 。
2、复数的代数形式 ,其中a 为 ,b 为 。
3、对于 ),(,R b a bi a z ∈+=,①、当 ,z 为实数; ②、当 ,z 为虚数; ③、当 ,z 为纯虚数。
4、若 di c z bi a z +=+=21,,则⇔=21z z 。
特别的:若0=+bi a ,则 。
二、新授思考:复数可以相等,那么复数是否可以四则运算?<一>、复数的加法法则如下:设di c z bi a z +=+=21,是任意两个复数,那么=+++)()(di c bi a 。
复数的加法满足交换律: 。
结合律: 。
<二>、复数的减法法则如下:设di c z bi a z +=+=21,是任意两个复数,那么=+-+)()(di c bi a 。
练习1、)43()42(i i -++2、)32()2(i i +--3、)23(5i +-4、)43()2()65(i i i +--+-<三>、乘法法则设di c z bi a z +=+=21,是任意两个复数,那么=++))((di c bi a 。
例:1、)32)(43(i i ++ 2、)2)(43)(21(i i i +-+-练习1、)3)(67(i i --2、)43)(43(i i -+<四>、除法法则设di c z bi a z +=+=21,是任意两个复数,那么=+÷+)()(di c bi a 0)(≠+di c 。
例题:1、)43()21(i i -÷+ 2、i1练习:(1)ii -+11 (2)ii 437++小结:复数的四则运算法则: 。
复数的四则运算——高中数学湘教版(2019)必修二

2.两个复数的积仍为复数,可推广,任意多个复数的积仍然是一个复数.
微思考
in(n∈N+)有什么规律?
提示 i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N+),即in(n∈N+)是以4为周期的.
微练习
(1)(4-i)(3+2i)=
(2)由已知得z=(6+2i)-(1-3i)=5+5i.
探究二
复数的乘法与除法运算
例 2 计算下列各题:
(1)(1-2i)(3+6i);(2)(5-2i)
6
(4)( 3-i) ;(5)
4+4i
2
(2-i)
;(6)
2-i
;(3)-4-3i ;
2
1+i 8
.
1-i
分析按照复数乘法与除法的运算法则进行计算.
母实数化”,这个过程与“分母有理化”类似.
(2)复数除法运算的结果要进行化简,通常要写成复数的代数形式,即实部
与虚部要完全分开的形式.
变式训练 2 计算下列各题:
(1)(1+i)(1-i)+(-1+i);
(2)
1
2
+
3
i
2
3
2
+
1
i
2
(1+i);
(3)(-2+3i)÷(1+2i);
3+2i
(4)
2-3i
第3章
3.2
复数的四则运算
任何两个实数都可以相加,而且实数中的加法运算还满足交换律与结合律,
7.2复数的四则运算-高一数学同步备课系列(中档题,人教A版2019必修第二册)(解析版)

7.2复数的四则运算【课时分层练】2020-2021学年高一数学同步备课系列【中档题】一、单选题1.已知()12i z +=,其中i 为虚数单位,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】由复数除法求得z 后可得其对应点坐标,从而得出正确选项.【详解】 由题意22(1)2(1)11(1)(1)2i i z i i i i --====-++-,对应点为(1,1)-,在第四象限. 故选:D .2.如图,若向量OZ 对应的复数为z ,且z =1z=( )A .1255i +B .1255i --C .1255i -D .1255i -+ 【答案】D【分析】根据复数的求出复数z ,然后再计算1z .【详解】由题意,设1(0)z bi b =-+>,则z ==2b =,即12z i =-+, 所以1112121212(12)(12)555iii i i i z -+-+====-+-----+.故选:D .3.已知复数1z i =+,z 是z 的共轭复数,若z ·a =2+bi ,其中a ,b 均为实数,则b 的值为()A .-2B .-1C .1D .2【答案】A【分析】根据共轭复数的定义,结合复数的运算性质和复数相等的性质进行求解即可.【详解】因为1z i =+,所以1z i =-, 因此221bibz i i a a a +==+=-, 所以21a 且1,ba =-则2,2ab ==-.故选:A4.复数cos67.5sin 67.5z i =+,则22zz =( )A .22-B .22-+C .22--D .1【分析】根据复数的运算法则,结合复数的除法运算,即可求解.【详解】由题意,复数cos67.5sin 67.5z i =+,可得222cos 67.5sin 67.51z =+=, 2222(cos 67.5sin 67.5)cos135sin13522z i i =+=+=-+,所以2222i z z ===--. 故选:C.5.已知i 为虚数单位,且3(1)i z i +=,则复数z 的虚部为( )A .12i -B .12-C .12D .12i 【答案】B【分析】 根据复数运算法则结合21i =-,求解31i z i =+即可得出选项. 【详解】由题3(1)i z i +=,又21i =-,3(1)11111(1)(122)2i i i i i z i i i i i -----∴=====--+++-. 所以复数z 的虚部为12-6.若纯虚数z 满足()235z i mi ⋅-=+,则实数m 的值为( )A .152- B .152 C .103- D .103【答案】D【分析】利用复数的除法化简复数z ,根据题意可得出关于实数m 的等式,进而可求得实数m 的值.【详解】 由题意得,()()()()52351031522323231313mi i mimmz i i i i +++-+===+--+,则10301520m m -=⎧⎨+≠⎩,解得103m =,故选:D.7.设复数1z ,2z 在复平面内的对应点关于虚轴对称,且11z i =-(i 为虚数单位),则212z z +=()A B C .10 D .2【答案】A【分析】首先求2z ,再计算212z z +,最后根据公式计算模.【详解】21z i =--,()()2212112113z z i i i i i +=-+--=---=--,所以21213z z i +=--==故选:A8.i对应的点的坐标为( )A .(2,12-)B .(2,32-)C .12-)D .32-) 【答案】A【分析】把复数化为代数形式,可得对应点坐标.【详解】12i i i i =+==-,对应点坐标为12⎫-⎪⎪⎝⎭.故选:A .二、多选题9.下列命题为真命题的是( )A .若12,z z 互为共轭复数,则12z z 为实数B .若i 为虚数单位,n 为正整数,则43n i i +=C .复数52i -的共轭复数为2i -- D .若m 为实数,i 为虚数单位,则“213m <<”是“复数(3)(2)m i i +-+在复平面内对应的点位于第四象限”的充要条件【答案】AD【分析】根据复数的概念与运算法则判断各选项.【详解】设221212,,z a bi z a bi z z a b R =+=-=+∈,所以A 正确;43i i n +=-,所以B 错;522i i =---,所以共轭复数为2i -+,所以C 错; 复数(3)(2)(32)(1)m i i m m i +-+=-+-在复平面内对应的点位于第四象限的充要条件是32010m m ->⎧⎨-<⎩,即213m <<,所以D 正确, 故选:AD .10.早在古巴比伦时期,人们就会解一元二次方程.16世纪上半叶,数学家得到了一元三次、一元四次方程的解法.此后数学家发现一元n 次方程有n 个复数根(重根按重数计).下列选项中属于方程310z -=的根的是( )A .12+B .12-+C .12-D .1【答案】BCD【分析】逐项代入验证是否满足310z -=即可.【详解】解:对A ,当122z =+时, 31z -122+- ⎪ ⎪⎭=⎝ 211122⎛⎫⎛⎫+⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= 213121334242i i i ⎛⎫=++⋅ ⎪⎛⎫+- ⎪ ⎝ ⎭⎭⎪⎪⎝12112⎛⎫=-+⋅⎛⎫+- ⎪ ⎪⎝⎭⎪ ⎪⎝⎭2114⎫=-+-⎪⎪⎝⎭13144=--- 2=-,故3120z -=-≠,A 错误;对B ,当12z =-+时, 31z -3112⎛⎫-+- ⎪ ⎪⎝⎭= 21112222⎛⎫⎛⎫-+⋅-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=21131442i ⎛⎫=+⋅ ⎪ ⎪⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭1221122⎛⎫-⎛⎫=--⋅ ⎪+ - ⎪ ⎪⎝⎭⎪⎝⎭142i =-- ⎪ ⎪⎝⎭13144=+- 0=,故310z -=,B 正确;对C ,当12z =--时, 31z -3112⎛⎫-- ⎪ ⎪⎝⎭= 211122⎛⎫⎛⎫-⋅-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=2113124242i ⎛⎫=++⋅ ⎪ ⎪⎛⎫--- ⎪ ⎪⎝⎭⎝⎭12112⎛⎫-⎛⎫=-+⋅ ⎪ - ⎪ ⎪⎝⎭⎪⎝⎭2114⎫=--⎪⎪⎝⎭13144=+- 0=故310z -=,C 正确;对D ,显然1z =时,满足31z =,故D 正确.故选:BCD.三、填空题11.若复数z 1=1+3i ,z 2=-2+ai ,且z 1+z 2=b +8i ,z 2-z 1=-3+ci ,则实数a =________,b =________,c =________.【答案】5 -1 2【分析】根据复数的加法法则和减法法则分别求出z 1+z 2,z 2-z 1,再根据复数相等的定义得到方程组,解出即可.【详解】z 1+z 2=(1-2)+(3+a )i =-1+(3+a )i =b +8i ,z 2-z 1=(-2-1)+(a -3)i =-3+(a -3)i =-3+ci ,所以1383b a a c =-⎧⎪+=⎨⎪-=⎩,解得152b a c =-⎧⎪=⎨⎪=⎩.故答案为: 5;-1;2.12.复数z 满足122z z i+=-,则=z _______________________. 【答案】21515i - 【分析】设,,z a bi a b R =+∈,然后根据22()5i a bi a bi +++=-建立方程组求解即可. 【详解】 设,,z a bi a b R =+∈,因为22()5i a bi a bi +++=-,所以225125a ab b ⎧+=⎪⎪⎨⎪+=-⎪⎩解得25a =,115b =-,即21515z i =- 故答案为:21515i - 13.设z 1=i +i 2+i 3++i 11,z 2=i 1·i 2··i 12,则z 1·z 2=________. 【答案】1【分析】利用*,n i n N ∈的周期性求出12,z z ,从而可求12z z【详解】对任意的*n N ∈,若41,n k k N =+∈,则41k i i +=,若42,n k k N =+∈,则421k i +=-, 若43,n k k N =+∈,则43k i i +=-,若44,n k k N =+∈,则441k i +=, 故()121111z i i i i =--++--=-, ()()()()221111z i i i i =⋅-⋅-⋅⋅⋅-⋅-=-⎡⎤⎣⎦,故121z z =,故答案为:114.设复数1z 、2z 满足12120z z A z A z ⋅+⋅+⋅=,其中||A =12||||z A z A +⋅+=_______. 【答案】6【分析】根据复数的运算性质,对12||||z A z A +⋅+进行化简后把12120z z A z A z ⋅+⋅+⋅=代入可得答案.【详解】设12,z a bi z c di =+=+,,,,a b c d R ∈,12z z a bi c di ⋅=+⋅+=()()()()12z z a bi c di ac bd ad bc i ⋅=++=-++==所以1212z z z z ⋅=⋅, 所以121212||||||||||||z A z A z A z A z A z A +⋅+=+⋅+=+⋅+121212|()()|||z A z A z z z A A z A A =+⋅+=⋅+⋅+⋅+⋅, 把12120z z A z A z ⋅+⋅+⋅=代入上式,得212||||||||6z A z A A A A +⋅+=⋅==.故答案为:6.四、解答题15.已知z 是复数,若z i +为实数,2z -为纯虚数,①求复数z ;①求21z z i-+的值.【答案】①2z i =-;【分析】①设复数z a bi =+,根据题意求出,a b 即可求解.①由①,利用复数的乘、除运算以及复数模的计算公式即可求解.【详解】①设复数z a bi =+,则1z i a b i ,()22z a bi -=-+,因为z i +为实数,2z -为纯虚数,则10200b a b +=⎧⎪-=⎨⎪≠⎩,解得2a =,1b =-,所以2z i =-. ①()()()()()()2222131131211111i i i i z z i i i i i i i -------====--=++++- 16.已知复数51i 12iz =+++,i 为虚数单位. (1)求z 和z ;(2)若复数z 是关于x 的方程20x mx n ++=的一个根,求实数m ,n 的值.【答案】(1)|z |=2z i =+;(2)4m =-,5n =.【分析】(1)利用复数的运算法则求出2z i =-,由此能求出||z 和z .(2)由复数z 是关于x 的方程20x mx n ++=的一个根,得到2(2)(2)0i m i n -+-+=,整理得()32(4)0m n m i ++-+=,由此能求出实数m ,n . 【详解】解:(1)复数55(12)1112(12)(12)i z i i i i i -=++=++++- 1212i i i =-++=-,||z ∴==2z i =+.(2)复数z 是关于x 的方程20x mx n ++=的一个根,2(2)(2)0i m i n ∴-+-+=,24420i i m mi n ∴-++-+=,(32)(4)0m n m i ∴++-+=,∴32040m n m ++=⎧⎨+=⎩, 解得4m =-,5n =.【点睛】本题考查复数的模、共轭复数、实数值的求法,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.。
复数的四则运算

先把除式写成分式的形式,再把分子与分母 都乘以分母的共轭复数,化简后写成代数形式 (分母实数化).
例4.计算
1 2 i 解: (1 2i ) (3 4i ) 3 4i (1 2i)(3 4i) (3 4i )(3 4i ) 3 8 6 i 4 i 5 10 i 2 2 3 4 25 1 2 i 5 5
1.对虚数单位i 的规定
① i 2= -1; ②i 可以与实数一起进行四则运算,并且加、 乘法运算律不变.
2. 我们把形如a+b i(其中 a、b R )的数 称为 复数,
记作: z=a+bi, 其中a叫做复数 z的 虚部 实部 b叫做复数 的 . z 全体复数集记 C 为 .
、
2 3. 由于i2= (-i) = -1,知 i为-1的一个 平方根 、-1的另一个 平方根为-i
→ 练习.在复平面内,点 A 对应的复数为 2+3i,向量OB对 → 应的复数为-1+2i,则向量BA对应的复数为( A.1+5i C.-3-i B.3+i D.1+i )
→ → → 【解析】 ∵BA=OA-OB,
→ 对应的复数为(2+3i) -( -1+2i) =(2+1) +(3-2)i ∴BA =3+i.故选 B.
;
一般地,a(a>0)的平方根为 a 、 - a (a>0)的平方根为 a i
小数 实数 (b=0) 有理数 分数 正分数 零
负分数
无理数 不循环小数
4. 复数z=a+bi
(a、bR) 虚数 (b0)
特别的当 a=0 时 纯虚数
a=0是z=a+bi(a、bR)为纯虚数的 必要但不充分 条件.
§2 复数的四则运算(2)

(2)设 1 3 i, 则 1 3 i. 且有下列性质:
22
22
① 3k 1, 3k1 , 3k2 2; ② 2 1 0 ; ③ 1 .
1i 1i
4 3i
(2) 1 (
2
2i)5 (
1
)4
1 (
i
)7
;
i
1i 1i
(3)(
3 1 i)12 ( 2 2i )8 .
22
1 3i
答案(1) 16i; (2)(16 2 1) (16 2 1)i; 4 (3)7 8 3i.
例3.已知 x, y R, 若 x2 2x (2 y x)i 和3x ( y 1)i 是共轭 复数, 求复数 z x yi 和z . 答案: z i, z i或z 1, z 1.
z 1
z 2
z 1
z 2
a bi c di
(a bi)(c di) (c di)(c di)
(ac bd ) (bc ad )i c2 d2
ac bd bc ad c2 d2 c2 d2 i
a bi ac bd bc ad (a bi) (c di) c di c2 d 2 c2 d 2 i
复习回顾
1. (a bi) (c di) (a c) (b d )i
2. (a bi) (c di) (ac bd ) (ad bc)i
复数的加、减、乘法类似于多项式的加、减、乘法运算, 不同的是在运算过程中,需要用i2=-1进行化简,然后把实部与 虚部分别合并,结果应写成复数的标准形式.
3.共轭复数概念 复数z的共轭复数用 z来表示,即当z=a+bi时,z a bi. z z a2 b2 z 2 z 2 z z z z z R
第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算一、考点梳理考点1 复数的加减法、乘法运算设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .几个常用结论(1)()i i 212=+,(2)()i i 212-=-,(3)()()22b a bi a bi a +=-+例1.(1)设i 是虚数单位,复数z 1=1+2i ,z 2=1﹣3i ,那么z 1+z 2=( )A .2﹣iB .2+iC .﹣2﹣iD .﹣2+i【分析】利用复数的加法运算即可求解.【解答】解:∵复数z 1=1+2i ,z 2=1﹣3i ,∴z 1+z 2=2﹣i ,故选:A .(2)复数(2+i )2=( )A .4﹣3iB .3﹣4iC .4+3iD .3+4i【分析】直接利用复数代数形式的乘除运算化简即可.【解答】解:因为(2+i )2=3+4i ,故选:D .(3)设z =i 3+1(i 是虚数单位),是z 的共轭复数,则﹣z 2=( )A .3﹣iB .1+3iC .﹣1﹣iD .1﹣2i【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:z =i 3+1=﹣i +1,∴=1+i,∴﹣z2=1+i﹣(1﹣i)2=1+i﹣1+2i﹣i2=1+3i,故选:B.(4)已知复数z1=2+i,z2=﹣1+2i,则z1•z2虚部为()A.﹣4B.4C.3D.3i【分析】利用复数的四则运算求出z1•z2,然后由复数的定义即可得到答案.【解答】解:因为复数z1=2+i,z2=﹣1+2i,所以z1•z2=(2+i)(﹣1+2i)=﹣2+4i﹣i+2i2=﹣2+3i﹣2=﹣4+3i,由复数的定义可知,z1•z2虚部为3.故选:C.(5)已知2+i是关于x的方程x2+ax+5=0的根,则实数a=()A.2﹣i B.﹣4C.2D.4【分析】由题意利用实系数一元二次方程虚根成对定理,韦达定理,求得实数a.【解答】解:∵已知z=2+i是关于x的方程x2+ax+5=0的根,∴2﹣i是关于x的方程x2+ax+5=0的根,∴2+i+(2﹣i)=﹣a,解得a=﹣4,故选:B.【变式训练1】.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【变式训练2】.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i【分析】根据复数代数形式的运算法则,计算即可.【解答】解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.【变式训练3】.若Z=1+i,则|Z2﹣Z|=()A.0B.1C.D.2【分析】由Z=1+i,得到Z2﹣Z=(1+i)2﹣(1+i)=﹣1+i,再求出|Z2﹣Z|.【解答】解:∵Z=1+i,∴Z2﹣Z=(1+i)2﹣(1+i)=1+2i+i2﹣1﹣i=i2+i=﹣1+i,∴|Z2﹣Z|==.故选:C.【变式训练4】.若复数z=m(m﹣1)+(m﹣1)i是纯虚数,实数m=()A.1B.0C.0或1D.1或﹣1【分析】利用纯虚数的定义即可得出.【解答】解:∵复数z=m(m﹣1)+(m﹣1)i是纯虚数,∴m(m﹣1)=0,m﹣1≠0,∴m=0,故选:B.【变式训练5】.若2﹣i是关于x的实系数方程x2+ax+b=0的一根,则a+b=()A.1B.﹣1C.9D.﹣9【分析】题目给出的是实系数一元二次方程,2﹣i是该方程的一个虚根,则方程的另一个根为2+i,则根据韦达定理即可求出.【解答】解:因为2﹣i是关于x的实系数方程x2+ax+b=0的一根,根据实系数方程虚根成对原理知,方程x 2+ax +b =0的另一根为2+i ,根据韦达定理得2﹣i +2+i =﹣a ,(2+i )(2﹣i )=b ,∴a =﹣4,b =5,∴a +b =1,故选:A .考点2 复数的除法运算复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 几个常用结论(1)i i -=1, (2) i ii =-+11 , (3) i i i -=+-11 例2.(1)复数=( )A .﹣2﹣9iB .C .﹣D . 【分析】利用复数除法的运算法则,分子分母同乘以分母的共轭复数,即可求出所求.【解答】解:=, 故选:C .(2)复数(i 为虚数单位)的共轭复数是( ) A .i B .﹣i C .1+iD .1﹣i 【分析】利用复数的运算法则求出复数=i ,由此能求出复数(i 为虚数单位)的共轭复数. 【解答】解:复数====i ,∴复数(i 为虚数单位)的共轭复数为﹣i . 故选:B .(3)设z =+i ,则|z |=( ) A . B . C . D .2【分析】先求z ,再利用求模的公式求出|z |.【解答】解:z=+i=+i=.故|z|==.故选:B.(4)=()A.B.C.D.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:D.【变式训练1】.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【变式训练2】.已知z=,则=()A.﹣1+2i B.﹣1﹣2i C.﹣1+3i D.﹣1﹣3i【分析】先根据复数除法的运算法则进行化简,然后根据复数的共轭复数的定义进行求解即可.【解答】解:z==,所以=﹣1﹣3i,故选:D.【变式训练3】.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【分析】通分得出,利用i的性质运算即可.【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选:C.【变式训练4】.复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.考点3 解方程例3.(1)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.(2)已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:,∴=(1+i)(2+i)=1+3i.则复数z=1﹣3i.故选:A.(3)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.(4)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选:B.(5)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2B.3C.4D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【变式训练1】.若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.【变式训练2】.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【变式训练3】.若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【变式训练4】.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.【变式训练5】.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z 的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.二、课堂检测1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【分析】利用复数的运算法则、纯虚数的定义即可判断出结论.【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.4.=()A.i B.C.D.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.5.若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.6.(多选)设复数z满足=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为﹣iC.在复平面内,z对应的点位于第二象限D.|z|=【分析】利用复数的运算法则化简z,再利用有关知识即可判断出正误.【解答】解:复数z满足=i,∴z===﹣﹣i,则z不是纯虚数,虚部为﹣,在复平面内,z对应的点位于第三象限,|z|==.故说法错误的是ABC.故选:ABC.7.(多选)设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2【分析】利用复数的模的有关性质和运算,结合共轭复数的概念对各个选项逐一分析判断即可.【解答】解:由复数的形式可知,选项A错误;当z1z2=z1z3时,有z1z2﹣z1z3=z1(z2﹣z3)=0,又z1≠0,所以z2=z3,故选项B正确;当=z3时,则,所以=,故选项C正确;当z1z2=|z1|2时,则,可得,所以,故选项D错误.故选:BC.8.计算:(2+7i)﹣|﹣3+4i|+|5﹣12i|+3﹣8i=13﹣i.【分析】根据复数的基本运算法则和复数模长的定义进行化简即可.【解答】解:原式=2+7i﹣5+13+3﹣8i=13﹣i,故答案为:13﹣i.9.已知复数z满足1+2zi=i,其中i是虚数单位,则|z|=.【分析】先化简复数z,再直接求模即可.【解答】解:依题意,,故.故答案为:.10.设复数z满足=|1﹣i|+i(i为虚数单位),则复数z=﹣i.【分析】利用复数模的计算公式、共轭复数的定义即可得出结论.【解答】解:复数z满足=|1﹣i|+i=+i=+i,则复数z=﹣i,故答案为:﹣i.11.已知复数在z1=a+i,z2=1﹣i,a∈R.(Ⅰ)当a=1时,求z1•的值:(Ⅱ)若z1﹣z2是纯虚数,求a的值;(Ⅲ)若在复平面上对应的点在第二象限,求a的取值范围.【分析】(Ⅰ)把a=1代入,再由复数代数形式的乘除运算化简得答案;(Ⅱ)利用复数代数形式的减法运算化简,再由实部为0求解;(Ⅲ)利用复数代数形式的乘除运算化简,再由实部小于0且虚部大于0求解.【解答】解:(Ⅰ)当a=1时,z1•=(1+i)(1+i)=1+i+i﹣1=2i;(Ⅱ)由z1﹣z2=(a+i)﹣(1﹣i)=a﹣1+2i是纯虚数,得a﹣1=0,即a=1;(Ⅲ)由=在复平面上对应的点在第二象限,得,即﹣1<a<1.12.已知:复数z=(1+i)2+,其中i为虚数单位.(1)求z及|z|;(2)若z2+a,求实数a,b的值.【分析】(1)利用复数代数形式的乘除运算化简z,再由复数模的计算公式求解;(2)把z代入z2+a,整理后利用复数相等的条件列式求解.【解答】解:(1)∵,∴;(2)由z2+a,得:(﹣1+3i)2+a(﹣1﹣3i)+b=2+3i,即(﹣8﹣a+b)+(﹣6﹣3a)i=2+3i,∴,解得.。
复数的四则运算(上课用)很实用优质课

一.复数的加法与减法
2、复数减法的运算法则 复数减法规定是加法的逆运算 (a+bi )-(c+di) = x+yi , ∴(c+di )+(x+yi) = a+bi , 由复数相等定义,有 c+x=a , d+y=b 由此,x=a-c , y=b-d
复数的除法
a bi (a bi ) (c di ) x yi ,那么 x ? , y ? c di
由刚才的求商过程可以形式上写成(体会其中的过程):
a bi (a bi )(c di ) (a bi ) (c di ) c di (c di )(c di ) ac bd (bc ad )i ac bd bc ad i 2 2 2 2 2 2 c d c d c d
Z1(a,b)
2.复数减法运算的几何意义?
复数z2-z1
向量Z1Z2
o
y
x
Z2(c,d)
|z1-z2|表示什么?
表示复平面上两点Z1 ,Z2的距离
Z1(a,b
o
x
例1:已知复数z对应点A,说明下列各式所表示的几何意义.
(1)|z-(1+2i)| (2)|z+(1+2i)| (3)|z-1| (4)|z+2i|
当堂检测
1. 若复数z满足方程 zi i 1 ,则z ?
2. 求8+6i的平方根 .
2
3、在复平面内,若复数 z 满足 z 1 z 1 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数的四则运算
1.复数z=的虚部为()
A.-1
B.-3
C.1
D.2
2.已知m为实数,i为虚数单位,若m+(m2-4)i>0,则=()
A.i
B.1
C.-i
D.-1
3.已知a∈R,i为虚数单位,若(1-i)(a+i)为纯虚数,则a的值为()
A.2
B.1
C.-2
D.-1
4.已知(a,b∈R),其中i为虚数单位,则a+b=()
A.0
B.1
C.-1
D.2
5.计算=()
A.-1
B.i
C.-i
D.1 6.已知i是虚数单位,,则|z|=()
A. B.2 C. D.4
7.复数z满足z(2-i)=2+i(i为虚数单位),则在复平面内对应的点所在象限为()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
8.若a=i+i2+…+i2013(i是虚数单位),则的值为()
A.i
B.1-i
C.-1+i
D.-1-i
9.设i是虚数单位,如果复数的实部与虚部是互为相反数,那么实数a的值为()
A. B. C.3 D.-3
10.复数z满足(z+2i)i=1+i,则z=()
A.1+3i
B.1-3i
C.-1+3i
D.-1-3i
11.已知复数z的实部为a(a<0),虚部为1,模长为2,是z的共轭复数,则的值为()A. B.--i C.-+i D.-
12.设x,m均为复数,若x2=m,则称复数x是复数m的平方根,那么复数3-4i(i是虚数单位)的平方根为()
A.2-i或-2+i
B.2+i或-2-i
C.2-i或2+i
D.-2-i或-2+i
13.设i为虚数单位,则()2014等于()
A.21007i
B.-21007i
C.22014
D.-2201414.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2= ______ .
15.复数z=,i是虚数单位,则z2015=
______ .
复数的四则运算答案和解析
1. B解:∵z==
,∴复数z=的虚部为-3.
2. A 解:∵m+(m2-4)i>0,∴,解得:m=2.则=.
3. D 解:∵(1-i)(a+i)=1+a+(1-a)i为纯虚数,∴,解得:a=-1.
4. B解:∵=
,∴,解得,
则a+b=1.
5. B解:=
.
6. C解:由,得,即|z|=
.
7. D解:∵z(2-i)=2+i,∴z(2-i)(2+i)=(2+i)(2+i),∴z=(3+4i),
则=-i在复平面内对应的点(,-)所在象限为第四象限.
8. D解:因为i+i2+i3+i4=0,所以
a=i+i2+…+i2013=i.==
=-=-=-1-i.
9. C解:==
,
∵复数的实部与虚部是互为相反数,∴
,即a=3.
10. B解:由(z+2i)i=1+i,得
,∴z=1-3i.11. D解:∵复数z的实部为a(a<0),虚部为1,则复数z=a+i.又模长为2,∴,解得a=.
∴z=,.则=
=
.
12. A解:设z=x+yi,则(x+yi)2=3-4i,即
x2-y2+2xyi=3-4i,∴,解得:或.
∴复数3-4i的平方根为2-i或-2+i.
13. A解:∵()2=-2i,∴()2014=(-2i)1007=(-2)1007•i1007=21007i.
14. 解:设复数z2=a+bi(a,b∈R),z1z2=
,∵|z2|=3,z1z2是正实数,
∴,解得:.则复数z2=.故答案为:z2=.
15. 解:∵z==(1+i),∴z2=
(1+2i+i2)=i,z3=z2•z=i•(1+i)=(-1+i),z4=(z2)2=-1,
z5=z4•z=-(1+i),z6=z4•z2=-i,z7=z3•z4=(1-i),z8=z2•z6=1,z9=z•z8=(1+i),∴z t=z8k+t (k、t∈N*),
∵2015=251×8+7,∴z2015=z7=(1-i),故答案为:(1-i).
感谢下载!
欢迎您的下载,资料仅供参考。