复数的四则运算

合集下载

苏教版高二数学复数的四则运算

苏教版高二数学复数的四则运算
n m n
m
n
mn n n z1 z 2
(z1 z2 )
共轭复数
1.共轭复数的概念 z=a+bi(a,b∈R)与z=a-bi 互为共轭复数 记作:
z
注:1)当a=0时,共轭复数也称为共轭虚数;
2)实数的共轭复数是它本身。
共轭复数
2.共轭复数的相关运算性质
Z1 Z 2 Z1 Z 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
;长沙桑拿2018 长沙2018夜网 / 长沙桑拿2018 长沙2018夜网;
更久?"七彩神尼听完都皱了皱眉.陈三六说"也不用久太多,估计二到三个月应该可以完成,现在距离他们开启传送阵の时间,怎么着也还有大半年,咱们还有时间.""二,三个月.""那你先修改吧."七彩神尼道,"咱们倒是有时间,这段时间大家也别出去了,在这里呆着行.""这里の环境还不错嘛."白狼 马咧嘴笑道,"很适合带孩子呀.""你还想带孩子?你哪来の孩子?"陈三六白了他壹眼,笑道"还是赶紧过来帮忙修改传送阵吧,这两三个月你别想休息了.""不会吧?咱还要陪小红呢,她正安胎呢."白狼马壹脸の郁闷,哼道"你不会找老屠吗?还有嫂子们呢,她们也能帮忙の.""你最顺手."陈三六笑了笑, 直接拉过了白狼马,过去帮忙了.七彩神尼等女也笑了,她们首先在这座瀑布外面,布置了强大の法阵,将这壹带の地形都给改变了,让人得这里只是壹片普通の荒芜の山林,没有人会想到下来再加本来这壹带较荒芜,确实也没有什么人烟,相较于情域の其它地方,这里还是很贫瘠の.

复数的四则运算(1)

复数的四则运算(1)

=(ac-bd)+(bc+ad)i 显然任意两个复数的积仍是一个复数.
复数的乘法运算法则:对于任意z1,z2,z3 ∈ C,有
z1∙z2= z2∙z1 , z1∙z2 ∙z3= z1∙(z2 ∙z3) , z1∙(z2 +z3)= z1∙z2 +z1∙z3 .
交换率 结合率 分配率
共轭复数
对于任意复数z=a+bi ,有 (a+bi)(a-bi)=a2+b2
Z- Z = 2bi
2.共轭复数的性质
(1) z1 z2 z1 z2
(2) z1 z2 z1 z2
(3) z1 z2 z1 z2
(4)
z1 z2
z1 z2
(5)z z R, z z R; (6)z z; (7)zn (z)n(n 2).
证明: Z 1+Z2 = Z1+Z2 ,Z1-Z=2 Z-1 Z2
33 22
ii
)
(
3 i)2 2
12(231i
1 4
3
i2)3(i 143
3 i) ( 1)2 (
3 i)2
0; 2 2
22
22
1 3 1
44
在复数集中, 方程x3 1的三个解为:1, , .
练习: 计算
(1) ( 1 3 i)6;
(1)1;
22
(2) ( 1 3 i)11. 22
(2) 1 3 i. 22
(3) 若x 1 1,求1 x x2 x2012的值. x
(3)0
(1) 2 ; (3) 1 2 0;
(2) 1(1 0) (4) 3 1
例题选讲
例1 计算 (1-2i) (3+4i) (-2+i) 解:(1-2i) (3+4i) (-2+i)

复数的四则运算修改后

复数的四则运算修改后
2. 加法的运算律
1. z1 z2 z2 z1 (交换率 ); 2. ( z1 z2 ) z3 z1 ( z2 z3 )(结合率 )
一.复数的加法与减法
2、复数减法的运算法则 复数减法规定是加法的逆运算 (a+bi )-(c+di) = x+yi , ∴(c+di )+(x+yi) = a+bi , 由复数相等定义,有 c+x=a , d+y=b 由此,x=a-c , y=b-d ∴ (a+bi )-(c+di) = (a-c) + (b-d)i (a+bi )±(c+di) = (a±c) + (b±d)i
求证:
(1) 2 ; (3)1 2 0;
3
( 2) 1(1 0) ( 4) 3 1
在复数集中 , 方程x 1的三个解为: 1, , .
复数的除法
复数的除法是乘法运算的逆运算,即把满足
(c+di)(x+yi)=a+bi (c+di≠0)
2
t 1, tan 1, 45 .
o
x1 1,x2 2 i.
例题选讲
1. 若复数z满足方程 zi i 1 ,则z ?
2. 求8+6i的平方根 .
3、在复平面内,若复数 z 满足 z 1 z 1 4
,则 z 在复平面内对应点的轨迹方程为
.
交换率 结合率
分配率
三.正整数指数幂的复数运算律
z 、 z1、 z2 ∈C,m、n ∈N*有
实数集R中正整数指数幂的运算律在复数 集C中仍成立,即

3.2复数的四则运算加减乘法

3.2复数的四则运算加减乘法
(3 )(2 3 i) (3 2 i) (2 3 i)
(4) 若z1=3-2i,z2=1+3i,则z1+z2=_____ Z1-2z2=_____
3.复数的乘法
我们规定,复数的乘法法则如下:
设z1=a+bi, z2=c+di 是任意两个复数,那么它们的积
a + bic + di = ac + bci + adi + bdi2
提示
本例可以用复数的乘法法则计算,也可以用乘法公式计算.
实数系中的乘法公式在复数系 中也是成立的.
解:(1) (3 + 4i)(3 - 4i)
我 来们 进用 行乘 计法 算公

= 32 - (4i)2
= 9 - (-16)
= 25.
(平方差公式)
(2)(1 + i)2
= 1 + 2i + i2
.
= 1 + 2i - 1
2.复数的减法
复数的减法就是加法的逆运算. (a+bi)-(c+di)=(a-c)+(b-d)i.
复数的减法法则: 实部与实部,虚部与虚部分别相减. 由此可见,两个复数的差是一个确定的复数.
例题1
计算
动动手
(5 - 6i) + (-2 - i) - (3 + 4i)
解: (5 - 6 i) + (-2 - i) - (3 + 4 i)
共轭复数.虚部不等于0的两个共轭
复数也叫做共轭虚数.
共轭复数:实部相等而虚部互为相反数的两个数. 复数z的共轭复数用 表示.
z 若z=a+bi,则 =a-bi (a,b∈R)

复数的四则运算

复数的四则运算
2 2 2 2
先把除式写成分式的形式,再把分子与分母 都乘以分母的共轭复数,化简后写成代数形式 (分母实数化).
例4.计算
1 2 i 解: (1 2i ) (3 4i ) 3 4i (1 2i)(3 4i) (3 4i )(3 4i ) 3 8 6 i 4 i 5 10 i 2 2 3 4 25 1 2 i 5 5
1.对虚数单位i 的规定
① i 2= -1; ②i 可以与实数一起进行四则运算,并且加、 乘法运算律不变.
2. 我们把形如a+b i(其中 a、b R )的数 称为 复数,
记作: z=a+bi, 其中a叫做复数 z的 虚部 实部 b叫做复数 的 . z 全体复数集记 C 为 .

2 3. 由于i2= (-i) = -1,知 i为-1的一个 平方根 、-1的另一个 平方根为-i
→ 练习.在复平面内,点 A 对应的复数为 2+3i,向量OB对 → 应的复数为-1+2i,则向量BA对应的复数为( A.1+5i C.-3-i B.3+i D.1+i )
→ → → 【解析】 ∵BA=OA-OB,
→ 对应的复数为(2+3i) -( -1+2i) =(2+1) +(3-2)i ∴BA =3+i.故选 B.
;
一般地,a(a>0)的平方根为 a 、 - a (a>0)的平方根为 a i
小数 实数 (b=0) 有理数 分数 正分数 零
负分数
无理数 不循环小数
4. 复数z=a+bi
(a、bR) 虚数 (b0)
特别的当 a=0 时 纯虚数
a=0是z=a+bi(a、bR)为纯虚数的 必要但不充分 条件.

复数四则运算

复数四则运算
一般地,当两个复数的实部相等,虚部互为相反数 时,这两个复数叫做互为共轭复数.虚部不为0的共 轭复数也叫共轭虚数. 思考:
若 z1, z2 是共轭复数,那么
(1)在复平面内,它们所对应的点有怎样的位置关系?
(2) z1 • z2 是一个怎样的数?
关于共轭复数的运算性质
z1 , z2 ∈C , 则
z z z z
得 a 1,b 3
z 1 3i
综上: Z=4,1+ 3i ,1– 3i .
例3 将下列复数表示为 x iy 的形式.
(1)
1 1
i i
7
;
(2) i 1 i . 1i i
解 (1) 1 i (1 i)2 (1 i)2 i, 1 i (1 i)(1 i) 2
(b
4b a2 b2
)i
z 4R
z
b(1
a2
4
b2
)
0
b 0或a2 b2 4 ①
| z 2 | 2得| a bi 2 | 2
(a 2)2 b2 2 ②
将 b=0代入②得 a=4 或 a=0 ∴ Z=4 或 Z=0 (舍)
将 a2 b2 4 代入② (a 2) Nhomakorabea 4 a2 4, 得 a 1
22
22
1
小结: 2 , ( )2 ,
3 1, ( )3 1.
例4:已知z (4 3i)(1 7i) ,求 z 2 i
解:z (4 3i)(1 7i) 2 i
| 4 3i || 1 7i | | 2 i|
5 8 10 6 .
3
3
例5 计算 (1 3i)3 (1 i)6
设 OZ1 及 OZ2 分别与复数 a bi 及复数 c di对应,则 OZ1, (a,b)

第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算一、考点梳理考点1 复数的加减法、乘法运算设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .几个常用结论(1)()i i 212=+,(2)()i i 212-=-,(3)()()22b a bi a bi a +=-+例1.(1)设i 是虚数单位,复数z 1=1+2i ,z 2=1﹣3i ,那么z 1+z 2=( )A .2﹣iB .2+iC .﹣2﹣iD .﹣2+i【分析】利用复数的加法运算即可求解.【解答】解:∵复数z 1=1+2i ,z 2=1﹣3i ,∴z 1+z 2=2﹣i ,故选:A .(2)复数(2+i )2=( )A .4﹣3iB .3﹣4iC .4+3iD .3+4i【分析】直接利用复数代数形式的乘除运算化简即可.【解答】解:因为(2+i )2=3+4i ,故选:D .(3)设z =i 3+1(i 是虚数单位),是z 的共轭复数,则﹣z 2=( )A .3﹣iB .1+3iC .﹣1﹣iD .1﹣2i【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:z =i 3+1=﹣i +1,∴=1+i,∴﹣z2=1+i﹣(1﹣i)2=1+i﹣1+2i﹣i2=1+3i,故选:B.(4)已知复数z1=2+i,z2=﹣1+2i,则z1•z2虚部为()A.﹣4B.4C.3D.3i【分析】利用复数的四则运算求出z1•z2,然后由复数的定义即可得到答案.【解答】解:因为复数z1=2+i,z2=﹣1+2i,所以z1•z2=(2+i)(﹣1+2i)=﹣2+4i﹣i+2i2=﹣2+3i﹣2=﹣4+3i,由复数的定义可知,z1•z2虚部为3.故选:C.(5)已知2+i是关于x的方程x2+ax+5=0的根,则实数a=()A.2﹣i B.﹣4C.2D.4【分析】由题意利用实系数一元二次方程虚根成对定理,韦达定理,求得实数a.【解答】解:∵已知z=2+i是关于x的方程x2+ax+5=0的根,∴2﹣i是关于x的方程x2+ax+5=0的根,∴2+i+(2﹣i)=﹣a,解得a=﹣4,故选:B.【变式训练1】.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【变式训练2】.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i【分析】根据复数代数形式的运算法则,计算即可.【解答】解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.【变式训练3】.若Z=1+i,则|Z2﹣Z|=()A.0B.1C.D.2【分析】由Z=1+i,得到Z2﹣Z=(1+i)2﹣(1+i)=﹣1+i,再求出|Z2﹣Z|.【解答】解:∵Z=1+i,∴Z2﹣Z=(1+i)2﹣(1+i)=1+2i+i2﹣1﹣i=i2+i=﹣1+i,∴|Z2﹣Z|==.故选:C.【变式训练4】.若复数z=m(m﹣1)+(m﹣1)i是纯虚数,实数m=()A.1B.0C.0或1D.1或﹣1【分析】利用纯虚数的定义即可得出.【解答】解:∵复数z=m(m﹣1)+(m﹣1)i是纯虚数,∴m(m﹣1)=0,m﹣1≠0,∴m=0,故选:B.【变式训练5】.若2﹣i是关于x的实系数方程x2+ax+b=0的一根,则a+b=()A.1B.﹣1C.9D.﹣9【分析】题目给出的是实系数一元二次方程,2﹣i是该方程的一个虚根,则方程的另一个根为2+i,则根据韦达定理即可求出.【解答】解:因为2﹣i是关于x的实系数方程x2+ax+b=0的一根,根据实系数方程虚根成对原理知,方程x 2+ax +b =0的另一根为2+i ,根据韦达定理得2﹣i +2+i =﹣a ,(2+i )(2﹣i )=b ,∴a =﹣4,b =5,∴a +b =1,故选:A .考点2 复数的除法运算复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 几个常用结论(1)i i -=1, (2) i ii =-+11 , (3) i i i -=+-11 例2.(1)复数=( )A .﹣2﹣9iB .C .﹣D . 【分析】利用复数除法的运算法则,分子分母同乘以分母的共轭复数,即可求出所求.【解答】解:=, 故选:C .(2)复数(i 为虚数单位)的共轭复数是( ) A .i B .﹣i C .1+iD .1﹣i 【分析】利用复数的运算法则求出复数=i ,由此能求出复数(i 为虚数单位)的共轭复数. 【解答】解:复数====i ,∴复数(i 为虚数单位)的共轭复数为﹣i . 故选:B .(3)设z =+i ,则|z |=( ) A . B . C . D .2【分析】先求z ,再利用求模的公式求出|z |.【解答】解:z=+i=+i=.故|z|==.故选:B.(4)=()A.B.C.D.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:D.【变式训练1】.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【变式训练2】.已知z=,则=()A.﹣1+2i B.﹣1﹣2i C.﹣1+3i D.﹣1﹣3i【分析】先根据复数除法的运算法则进行化简,然后根据复数的共轭复数的定义进行求解即可.【解答】解:z==,所以=﹣1﹣3i,故选:D.【变式训练3】.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【分析】通分得出,利用i的性质运算即可.【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选:C.【变式训练4】.复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.考点3 解方程例3.(1)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.(2)已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:,∴=(1+i)(2+i)=1+3i.则复数z=1﹣3i.故选:A.(3)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.(4)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选:B.(5)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2B.3C.4D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【变式训练1】.若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.【变式训练2】.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【变式训练3】.若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【变式训练4】.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.【变式训练5】.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z 的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.二、课堂检测1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【分析】利用复数的运算法则、纯虚数的定义即可判断出结论.【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.4.=()A.i B.C.D.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.5.若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.6.(多选)设复数z满足=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为﹣iC.在复平面内,z对应的点位于第二象限D.|z|=【分析】利用复数的运算法则化简z,再利用有关知识即可判断出正误.【解答】解:复数z满足=i,∴z===﹣﹣i,则z不是纯虚数,虚部为﹣,在复平面内,z对应的点位于第三象限,|z|==.故说法错误的是ABC.故选:ABC.7.(多选)设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2【分析】利用复数的模的有关性质和运算,结合共轭复数的概念对各个选项逐一分析判断即可.【解答】解:由复数的形式可知,选项A错误;当z1z2=z1z3时,有z1z2﹣z1z3=z1(z2﹣z3)=0,又z1≠0,所以z2=z3,故选项B正确;当=z3时,则,所以=,故选项C正确;当z1z2=|z1|2时,则,可得,所以,故选项D错误.故选:BC.8.计算:(2+7i)﹣|﹣3+4i|+|5﹣12i|+3﹣8i=13﹣i.【分析】根据复数的基本运算法则和复数模长的定义进行化简即可.【解答】解:原式=2+7i﹣5+13+3﹣8i=13﹣i,故答案为:13﹣i.9.已知复数z满足1+2zi=i,其中i是虚数单位,则|z|=.【分析】先化简复数z,再直接求模即可.【解答】解:依题意,,故.故答案为:.10.设复数z满足=|1﹣i|+i(i为虚数单位),则复数z=﹣i.【分析】利用复数模的计算公式、共轭复数的定义即可得出结论.【解答】解:复数z满足=|1﹣i|+i=+i=+i,则复数z=﹣i,故答案为:﹣i.11.已知复数在z1=a+i,z2=1﹣i,a∈R.(Ⅰ)当a=1时,求z1•的值:(Ⅱ)若z1﹣z2是纯虚数,求a的值;(Ⅲ)若在复平面上对应的点在第二象限,求a的取值范围.【分析】(Ⅰ)把a=1代入,再由复数代数形式的乘除运算化简得答案;(Ⅱ)利用复数代数形式的减法运算化简,再由实部为0求解;(Ⅲ)利用复数代数形式的乘除运算化简,再由实部小于0且虚部大于0求解.【解答】解:(Ⅰ)当a=1时,z1•=(1+i)(1+i)=1+i+i﹣1=2i;(Ⅱ)由z1﹣z2=(a+i)﹣(1﹣i)=a﹣1+2i是纯虚数,得a﹣1=0,即a=1;(Ⅲ)由=在复平面上对应的点在第二象限,得,即﹣1<a<1.12.已知:复数z=(1+i)2+,其中i为虚数单位.(1)求z及|z|;(2)若z2+a,求实数a,b的值.【分析】(1)利用复数代数形式的乘除运算化简z,再由复数模的计算公式求解;(2)把z代入z2+a,整理后利用复数相等的条件列式求解.【解答】解:(1)∵,∴;(2)由z2+a,得:(﹣1+3i)2+a(﹣1﹣3i)+b=2+3i,即(﹣8﹣a+b)+(﹣6﹣3a)i=2+3i,∴,解得.。

复数的四则运算

复数的四则运算

1 3i 3i 9i 1 9 10
2
例4.计算 (1 2i)(3 4i)(2 i) 解:
(1 2i )(3 4i )( 2 i ) (3 4i 6i 8i )( 2 i )
2
(3 2i 8)( 2 i ) (11 2i )( 2 i ) 22 11i 4i 2i 20 15i
1.对虚数单位i 的规定
① i 2= -1; ②i 可以与实数一起进行四则运算,并且加、 乘法运算律不变.
2. 我们把形如a+b i(其中 a、b R )的数 称为 复数,
z=a+bi , 其中a叫做复数 z 的 实部 记作: b叫做复数 z 的 虚部 . 全体复数集记 为 C .
有时把实部记成为Rez;虚部记成为Imz.
a bi c di a c b d i
即:两个复数相加(减)就是实部与实部,虚 部与虚部分别相加(减).
例1.计算下列各题
(1)(2 3i ) (8 2i ) ( 2)(5 3i ) (5 3i ) (3)(2 3i ) ( 5 i ) ( 4)(3 i ) ( 3 i )
2 2 2 2
先把除式写成分式的形式,再把分子与分母 都乘以分母的共轭复数,化简后写成代数形式 (分母实数化).
例6.计算
1 2 i 解: (1 2i ) (3 4i ) 3 4i (1 2i)(3 4i) (3 4i )(3 4i ) 3 8 6 i 4 i 5 10 i 2 2 3 4 25 1 2 i 5 5
2
3、复数的乘方:
m , n N z , z , z C 对任何 1 2 及 ,有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:以点(-1,0)为圆心,2为半径的圆
【练习】
1、在复数范围内解方程
(1) x2+4=0 (2) z2=2i
2、在复数范围内分解因式
(1) x2 + 4
(2) x4 - y4
作业:书本P112 T2, T4(1)(4) T5 (1)(4) 世纪金榜P78 T1,2,3
P79 T1—T6 P80 T1,2,3 P82
知识回顾 Knowledge Review
祝您成功!
3、 |z1|= |z2|,| z1+ z2|= | z1- z2| 平行四边形OABC是 正方形
三、复数的乘法
已知两个复数z1=a+bi,z2=c+di(a,b,c,d∈R),则 z1·z2=(ac-bd)+(bc+ad)i
复数的乘法满足交换律, 结合律以及 分配律,即有 :
z1z2 z2 z1 (z1z2 )z3 z1(z2z3 ) z1(z2 z3 ) z1z2 z1z3
ac
bd (bc c2 d 2
ad )i
ac c2
bd d2
bc c2
ad d2
i
(a bi) (c di)
a bi c di
ac bd c2 d 2
bc ad c2 d 2
i
例4、计算
(1) 1 i 1 i
(2) 13 9i (2 i)2
例3 :已知复数 z的共轭复数为 z
四、复数的除法
把满足(c+di)(x+yi) =a+bi (c+di≠0) 的复 数 x+yi 叫做复数 a+bi 除以复数c+di的商,
记做(a bi) (c di)或 a bi . c di
(a bi) (c di) a bi (a bi)(c di) c di (c di)(c di)
且 z • z 3i • z 10 ,求z . 1 3i
例5 若 z 2,则 z i 的最大值为 .
例6 若 z bi(b R,) 若使 z 2 i z 2 3i 的最
小,求b的值。
例7 复数z满足z·z +z+ z =3,则z对应点的轨迹
是____________.
解析:设z=x+yi(x、y∈R),则x2+y2+2x=3表示圆.
(1)|z-(1+2i)| 点A到点(1,2)的距离 (2)|z+(1+2i)| 点A到点(-1, -2)的距离 (3)|z-1| 点A到点(1,0)的距离
(4)|z+2i| 点A到点(0, -2)的距离 练习:已知复数m=2-3i,若复数z满足不等式 |z-m|=1,则z所对应的点的集合是什么图形?
y
1.复数加法运算的几何意义?
z1+ z2=OZ1 +OZ2 = OZ
Z2(c,d)
Z(a+c,b+d)
Z1(a,b)
2.复数减法运算的几何意义?
复数z2-z1
向量Z1Z2
|z1-z2|表示什么?
x o
Z2(c,d)
y
Z1(a,b
表示复平面上两点Z1 ,Z2的距离
o
x
例1:已知复数z对应点A,说明下列各式所表示的几何意义.
例1、 计算:
• (1) (2-3i)(4+2i) • (2) (1+2i)(3+4i)(-2+i)
例2 、 计算:(1+2i)2
练习: 1+i1+i2+i3+…+i 2004的值为( A ) (A) 1 (B) -1 (C) 0 (D) i
二、共轭复数:
定义: 实部相等而虚部互为相反数的两个复数,叫做 互为共轭复数,虚部不等于0的两个共轭复数也 叫做共轭虚数。
以点(2, -3)为圆心,1为半径的圆上
例2:平行四边形OABC中OA= z1,OB= z2,若有以 下条件,则平行四边形OABC又将是什么图形?
1、|z1|= |z2| 平行四边形OABC是 菱形
Cz2-z1
z2
z1+z2
2、| z1+ z2|= | z1- z2|
复 数Z的 共 轭 复 数 用Z来 表 示 即Z a bi时, Z a bi
思考:若z1 , z2是共轭复数,那么
(1)在复平面内,它们所对应的点有怎样的位置关系?
(2) z1 • z2 是一个怎样的数?
说明: zz | z |2 | z |2 特别地,当 | z | 1时, zz 1
例2、(1)若Z1 3 i, Z2 4i 1, Z1 Z Z2, 求Z (2)已知Z C,且2Z 3Z1 1 3i, 求复数Z.
复数的四则运算
一、复数的加、减法
1、加法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1+Z2=(a+bi)+(c+di)=(a+c)+(b+d)i
两个复数的和依然是一个复数,它的实部是原来的两个 复数实部的和,它的虚部是原来的两个复数虚部的和
交换律: 结合律:
Z1+Z2=Z2+Z1 (Z1+Z2)+Z3=Z1+(Z2+Z3)
2、减法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1-Z2=(a+bi)-(c+di)=(a-c)+(b-d)i
两个复数的差依然是一个复数,它的实部是原来的两个 复数实部的差,它的虚部是原来的两个复数虚部的差
例1、计算(1) (1+3i)+(-4+2i) (2) (5-6i)+(-2-I)-(3+4i) (3) 已知(3-ai)-(b+4i)=2a-bi, 求实数a、b的值。
相关文档
最新文档