高中数学 第一章 立体几何初步 6.2 垂直关系的性质学
高三数学立体几何复习:空间中的垂直关系 知识精讲 人教实验版(B)

高三数学立体几何复习:空间中的垂直关系知识精讲人教实验版(B)【本讲教育信息】一. 教学内容:立体几何复习:空间中的垂直关系二. 教学目的掌握空间中的垂直关系及其应用三. 知识分析【知识梳理】【空间中的垂直关系】1、空间任意直线互相垂直的一般定义如果两条直线相交于一点或经过平移后相交于一点,并且交角为90°,则称这两条直线互相垂直.2、直线与平面垂直(1)空间直线与平面垂直的定义:如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过交点(O)⊥,直线AB叫做的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作ABα平面的垂线,平面α叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离.(2)直线与平面垂直的判定定理:定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于这个平面.(3)直线与平面垂直的性质定理:定理:如果两条直线垂直于同一个平面,那么这两条直线平行.另外,一条直线垂直于一个平面,那么它就和平面内的所有直线都垂直.3、平面与平面的垂直(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作αβ⊥.(2)平面与平面垂直的判定定理:定理:如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.(3)平面与平面垂直的性质定理定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.★★几点说明★★1、直线和平面垂直、平面和平面垂直是直线与平面、平面与平面相交的特殊情况,对这种特殊位置关系的认识,既可以从直线和平面、平面和平面的交角为90°的角度讨论,又可以从已有的线线垂直、线面垂直关系出发进行推理和论证,还可以利用向量把几何推理和论证过程转化为代数运算过程.2、无论是线面垂直还是面面垂直,都源自于线与线的垂直,这种转化为“低维”垂直的思想方法,在解题时非常重要,在处理实际问题的过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的垂直关系,从而架起已知与未知之间的“桥梁”。
高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系知识结构图】第 3 课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行” 、“线面平行”和“面面平行”进行转化。
基础练习】1.若a、b为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线l1, l2与同一平面所成的角相等, 则l1,l2互相平行.④若直线l1, l2是异面直线,则与l1,l2都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a,在平面a内必有直线m,使m与l 垂直。
4. 已知a、b、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a∥c,b∥c a∥b;②a∥r,b∥r a∥b;③α∥c,β∥c α∥β;④α∥r,β∥r α∥β;⑤a∥c,α∥c a∥α;⑥a∥r ,α∥r a∥α.其中正确的命题是①④范例导析】例1.如图,在四面体ABCD中,截面EFGH是平行四边形.求证:AB∥平面EFG.证明:∵面EFGH是截面.∴点E,F,G,H分别在BC,BD,DA,AC上.∴ EH 面ABC,GF 面ABD,由已知,EH∥GF.∴ EH∥面ABD.又∵ EH 面BAC,面ABC∩面ABD=AB∴EH∥AB.∴ AB∥面EFG.例2.如图,在正方体ABCD—A1B1C1D1 中,点N在BD上,点M在B1C上,并且CM=DN.求证 :MN ∥平面 AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
本题可以采 用任何一种转化方式。
简证:法 1:把证“线面平行”转化为证“线线平行” 。
即在平面 ABB 1A 1内找一条直线与 MN 平行,如图所示作平行线即可 法 2 :把证“线面平行”转化为证“线线平行” 。
6.2直线与平面垂直的判定定理 一等奖创新教案

6.2直线与平面垂直的判定定理一等奖创新教案《直线与平面垂直的判定》教学设计【设计思想】《数学课程标准》指出:学生的数学活动不应只限于接受、记忆、模仿、练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。
本节课一方面将通过身边的生活实例引导学生感知直线与平面垂直的概念及判定定理;另一方面通过动手操作体验知识的发生发展过程;第三方面通过引导探究、合作交流、练习巩固等途径使学生深化理解本节课所涉及的知识与方法,体会隐含的数学思想,进而优化学生的思维品质,提升学生的数学核心素养。
【教材分析】必修二第三章内容是立体几何初步,本章内容是培养学生直观想象、逻辑推理等核心素养的重要载体。
教材在本节之前编写的是《平行关系》,本节是《垂直关系的判定》第一节,这两部分内容的研究方法是非常相似的,所以在本节课教学中可引导学生进行类比学习。
教材中本节内容之后是《平面与平面垂直的判定》、《垂直关系的性质》,这两部分内容又是对本节课学习内容的应用。
从这个角度来说,本节内容起到一个承上启下的作用。
空间点线面的位置关系在生活中随处可见,适宜于学生通过实验操作亲身体验。
【学情分析】学生开始接触立体几何,空间想象能力、逻辑推理能力还比较弱。
因此,在本节课教学中,应注重依托对实物的观察,对身边实例的的分析,以及利用简单教具的操作演示,促使学生通过亲身体验理解“直线与平面垂直的概念、直线与平面垂直的判定定理”,逐步发展学生的空间想象能力,逻辑推理能力。
定理的证明对学生而言难度较大可作为学生课外探究的素材,让一部分学有余力的学生得到提高。
【教学目标】1、通过实例分析初步感知直线与平面垂直的概念,通过类比推理,实验操作概括直线与平面垂直的判定定理;2、体会通过空间模型、实践操作、逻辑推理等方式研究立体几何的基本方法;3、发展学生“数学抽象、直观想象、逻辑推理”等数学核心素养,激发学生动手实践、自主探究的热情。
精品人教B版必修二第一章-立体几何初步-章末归纳提升精品ppt课件

RB ·数学 必修2
已知三棱锥 A-BCD 的表面积为 S,其内有半径 为 r 的内切球 O(球 O 与三棱锥 A-BCD 的每个面都相切,即 球心 O 到 A-BCD 每个面的距离都为 r),求三棱锥 A-BCD 的体积.
【思路点拨】 分析三棱锥 A-BCD 的体积与以 O 为顶 点,各个面为底面的 4 个小棱锥体积间的关系.
RB ·数学 必修2
已知正方体 ABCD-A1B1C1D1 中,E,F 分别是 AA1,CC1 的中点.求证:平面 EB1D1∥平面 FBD.
【证明】 如图,取 BB1 的中点 G,连接 EG,GC1.
∵AC1 是正方体, ∴四边形 EGC1D1 是平行四边形, ∴C1G∥ED1.
RB ·数学 必修2
RB ·数学 必修2
RB ·数学 必修2
空间几何体的三视图与直观图 三视图和直观图是空间几何体的不同表现形式,空间几 何体的三视图可以使我们很好地把握空间几何体的性质.由 空间几何体可以画出它的三视图,同样,由三视图可以想象 出空间几何体的形状,两者之间可以相互转化.
RB ·数学 必修2
若某几何体的三视图如图 1-1 所示,则这个几 何体的直观图可以是( )
图 1-4
RB ·数学 必修2
【思路点拨】 假设存在满足条件的点 F,由于平面 AFC ∥平面 PMD,且平面 AFPM 与平面 AFC、平面 PMD 分别交 于直线 AF、PM,则必有 AF∥PM,又 PB=2MA,则点 F 是 PB 的中点.
RB ·数学 必修2
【规范解答】 当点 F 是 PB 的中点时,平面 AFC∥平 面 PMD,证明如下:如图连接 AC 和 BD 交于点 O,连结 FO, 那么 PF=12PB.
高中数学必修《简单几何体》ppt课件

棱柱用表示两底面多边形的顶点的字母表
示2024棱/1/9 柱;如:棱柱ABCDEA1B1C1D1E1
33
二 观察下列几何体;有什么相同点
2024/1/9
34
1 棱锥的概念
有一个面是多边形;其余各面是有一个公共 顶点的三角形; 由这些面所围成的几何体叫做 棱锥
这个多边形面叫做棱锥的底面
有公共顶点的各个三角形叫做棱锥 的侧面
3 棱台的表示法:棱台用表示上 下底面各顶
点的字母来表示;如图棱台ABCDA1B1C1D1
A1 D1
C B1 1
2024/1/9
41
❖ 思考题:1 用平行于圆柱;圆锥;圆台的底面的平
面去截它们;那么所得的截面是什么图形 性质1:平行于圆柱;圆锥;圆台底面的截面都是 圆 2 过圆柱;圆锥;圆台的旋转轴的截面是什么图形 性质2:过轴的截面轴截面分别是全等的矩形;等
2024/1/9
22
2 圆台的表示: 用表示它的轴的字母表示;如圆台OO′
O'
2024/1/9
O
底面
轴 侧面
母线 23
底面
总结:由于球体 圆柱 圆锥 圆台分别由平面图 形半圆 矩形 直角三角形 直角梯形通过绕着一 条轴旋转而生成的;所以把它们都叫旋转体
2024/1/9
24
§1 2:简单的多面体
❖ 大家知道:平静的桌面 黑板面 湖面都给我们一种平面的 局部感觉
❖ 请大家想一想;在空间中;平面给大家的感觉会是怎样的呢
❖ 在空间中;平面和直线一样;都是无限延展的;因此;我们不 能把一个无限延展的平面在一张纸上或书本上表示出来; 我们通常用平面的一部分表示整个平面
❖ 例如:
2024/1/9
《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
北师大版必修2高中数学第1章《立体几何初步》垂直关系的判定导学案

1高中数学 第1章《立体几何初步》垂直关系的判定导学案北师大版必修2你的 疑惑3.(1)半平面:一个平面内的一条直线,把这个平面分成 _________,其中的________都叫作半平面.(2)二面角:从一条直线出发的___________所组成的图形叫作二面角,___________叫做二面角的棱,______________叫作二面角的面.(3)二面角的记法:以直线AB 为棱,半平面α、β为面的二面角,记作________________.(如下图(1))(4)二面角的平面角:以二面角的棱上_________为端点,在两个半平面内分别作___________的两条射线,这两条射线所组成的角叫作二面角的平面角. 如下图(2)中的AOB ∠. ______________的二面角叫作直二面角.(5)两个平面相交,如果所成的二面角是__________,就说这两个平面互相垂直.4. 将一支铅笔垂直于桌面,再用一本书紧贴着铅笔转动,你能观察到书本和桌面的关系吗?再观察下图(1)(2)中的长方体,可以发现:平面α内的直线a 与平面β________,这时,α____β.抽象概括平面和平面垂直的判定定理:如果一个平面经过另一个平面的一条_______,那么这两个平面互相垂直.图形语言: 符号语言:若直线AB ____平面β,AB ______平面α,策略与反思 纠错与归纳【学习目标】 1. 理解直线和平面、平面和平面垂直的判定定理,并能进行简单应用. 2. 通过垂直关系判定定理的探究和应用过程,进一步提高空间想象能力和逻辑思维能力. 3. 通过垂直关系判定定理的探究和应用过程,体会数学和生活的紧密联系. 【重点难点】 重点:直线和平面、平面和平面垂直的判定定理及应用. 难点:对直线和平面、平面和平面垂直判定定理的理解. 【使用说明】 1. 认真阅读课本第35—37页的内容,独立完成自主学习内容. 2. 在自主学习的基础上,通过小组讨论,完成合作探究内容. 【自主学习】 1. 如右图,拿一块教学用的直角三角板,放在墙角,使三角板的 直角顶点C 与墙角重合,直角边AC 所在直线与墙角所在直线重合,将三角板绕AC 转动,在转动过程中,直角边CB 与地面紧贴,这就表示,AC 与地面垂直.抽象概括 直线和平面垂直的定义:如果一条直线和一个平面内的___________直线都_________,那么称这条直线和这个平面垂直. 2. 观察上图(1)的长方体,c b ,是平面α内的两条_______直线,直线a __b ,a __c ,这时,a __α. 观察上图(2)的长方体,平面α内的两条直线c b ,不相交,虽然直线a 与c b ,都______,但是a 与α_________. 抽象概括 直线和平面垂直的判定定理:如果一条直线和一个平面内的_______________都垂直,那么该直线与此平面垂直. 图形语言: 符号语言:若直线a ____平面α,直线b _____平面α, 直线l ____a , 直线l ____b ,a ____A b =, 则α⊥l .天才在于积累 聪明在于勤奋。
2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质

第四节直线、平面垂直的判定及其性质【知识点15】直线与平面垂直的判定1.直线与平面垂直的定义画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直2.直线和平面垂直的判定定理典型例题:【例1】(概念的理解)下列命题中,正确的序号是________.①若直线l与平面α内的无数条直线垂直,则l⊥α;②若直线l与平面α内的一条直线垂直,则l⊥α;③若直线l不垂直于平面α,则α内没有与l垂直的直线;④若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;⑤过一点和已知平面垂直的直线有且只有一条.【反思】(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.【变式1】(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)【变式2】已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂αB.m∥n,且n⊥β C.m⊥n,且n⊂βD.m⊥n,且n∥β【变式3】下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个例2(线面垂直的判定)如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.【反思】(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.【变式1】如图,正方体ABCD-A1B1C1D1的棱长为2.求证:AC⊥B1D;【变式2】如图所示,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,C点到AB1的距离为CE,D为AB的中点.求证:(1)CD⊥AA1;(2)AB1⊥平面CED.【练习3】如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.知识点【能力提升思考】已知∠BAC在平面α内,P∠α,∠PAB=∠PAC.求证:点P在平面α内的射影在∠BAC的平分线上.【变式1】如图所示,在斜三棱柱ABC—A1B1C1中,∠BAC=90°,BC1⊥AC,C1H⊥AB,证明:点H是C1在平面ABC内的射影.【反思】(1)求直线和平面所成角的步骤①寻找过斜线上一点与平面垂直的直线;②连结垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.(2)在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.【知识点16】直线与平面所成的角典例讲解:【例1】(直线与平面所成的角)如图,在正方体ABCD-A1B1C1D1中,(1)求A1B与平面AA1D1D所成的角;(2)求A1B与平面BB1D1D所成的角.【反思】求直线与平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线.(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角.(3)把该角归结在某个三角形中,通过解三角形,求出该角.【变式1】如图所示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,且AB=BC=2,∠CBD=45°,求直线BD与平面ACD所成角的大小.【变式2】如图,已知∠BOC在平面α内,OA是平面α的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=1,BC=2,求OA与平面α所成的角的大小.【思考1】把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90° B.60° C.45° D.30°【变式1】如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【例4】(综合应用)如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.【方法小结】1.直线和平面垂直的判定方法:(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法:(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法:(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).【知识点17】距离问题典型例题:【例1】如图,已知AB是圆O的直径,C为圆上一点,AB=2,AC=1,P为∠O所在平面外一点,且PA垂直于圆O所在平面,PB与平面ABC所成的角为45°.(1)求证:BC∠平面PAC;(2)求点A到平面PBC的距离.【变式1】已知△ABC 的三条边长分别是5,12,13,点P 到A ,B ,C 三点的距离都等于7,则点P 到平面ABC 的距离为____【例2】如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.【反思】 求点到平面距离的方法总结:PA BCD E(1)过已知点作出平面的垂线段是关键. 作垂线段通常要借助于垂面,然后利用面面垂直性质定理作出平面的垂线.(2)作出垂线段后,通常利用等面积法求得距离.【变式1】如图,直四棱柱1111ABCD A B C D -中,//AB CD ,AD AB ⊥,2AB =,2AD =,1=3AA ,E 为CD 上一点,1DE =,3EC =.(1)证明:BE ⊥平面11BB C C ; (2)求点1B 到平面11EA C 的距离.【反思】 求点到平面距离的方法总结:(1)当直接作出垂线段比较困难时,可以考虑利用等体积法求距离. (2)用等体积法求距离,一般用三棱锥体积相等来求解.(3)可以用线面平行关系,转化到一个更容易求解的三棱锥去求距离;也可以利用比例关系,化为其他点到平面的距离来求解.【例题3】如图,在长方体1111ABCD A B C D -中,2AB =,1AD =,11A A =.ABCD EA 1B 1C 1D 1(1)证明:直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.【反思】 求直线到平面距离的方法总结:(1)求线面距离,根据直线上的点到平面距离相等,所以可以转化为点面距离来求解. (2)在转化为点面距的时候,选择合适的点会对解题有促进作用.【变式1】在直三棱柱111ABC -A B C 中,90 ABC =∠︒,11,2AB =BC =BB =,求: (1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面BC A 1的距离.【思考】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.求异面直线1CC 和AB 的距离;ABCD A 1B 1C 1D 1ACBA 1B 1C 1C1A1B1CA BD【感悟】求两条异面直线距离的方法总结:(1)利用图形关系作出两条异面直线的公垂线,是求两异面直线距离的基本方法,但难度较大.(2)过两条异面直线中的一条直线作另一条直线的平行线,构造线面平行,将异面直线距离化为线面距离,进而转化为点面距离,是求异面直线距离的常用方法.(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离,再化为点面距离.【知识点18】二面角的概念【例1】(概念的理解)有下列结论:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②【例2】如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.【反思】(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫做二面角的棱,②两个半平面叫做二面角的面.(3)画法:(4)记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.(5)二面角的平面角:若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l -β的平面角是∠AOB.【变式1】如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上的一点,且P A =AC ,求二面角P -BC -A 的大小.【变式2】在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( ) A.32 B.22C. 2D.3【思考1】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.(1)求异面直线1CC 和AB 的距离;(2)若11AB A C ⊥,求二面角11A CD B --的平面角的余弦值.C1A1B1CA BD【变式1】如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)求AE为何值时,二面角D1-EC-D的大小为45°?【方法小结】1.求二面角大小的步骤简称为“一作二证三求”.【知识点19】平面与平面垂直(1)平面与平面垂直①定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:③记作:α⊥β.(2)判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直图形语言符号语言l⊥α,l⊂β⇒α⊥β【例1】(概念理解)下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b【例2】已知直线m,n与平面α,β,给出下列三个结论:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β.其中正确结论的个数是()A.0 B.1 C.2 D.3【变式1】过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C .有且只有一个或无数个D .可能不存在【变式2】α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题_____.【例2】(证明面面垂直)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由. (2)证明:平面P AB ⊥平面PBD .【延申变式1】如图,在四棱锥P -ABCD 中,P A 垂直于矩形ABCD 所在的平面,试证明:平面PCD ⊥平面P AD .【延申变式2】如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,PB =BC ,M 是PC 中点,试证明:平面MBD ⊥平面PCD .【反思】证明面面垂直常用的方法(1)定义法:即说明两个半平面所成的二面角是直二面角.(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直.(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面. 【变式1】 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =12AA 1,D 是棱AA 1的中点.证明:平面BDC 1⊥平面BDC .【变式2】如图,四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AC ,BD 交于点E,F是PB的中点.求证:(1)EF∥平面PCD;(2)平面PBD⊥平面P AC.【思考3】如图所示,在正三棱柱ABC-A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.【方法小结】平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.【能力提升】垂直问题难点突破专题【例1】(空间位置关系相关定理)如图,PA⊥平面ABCD,AD//BC,AD=2BC,AB⊥BC,点E为PD中点.(1)求证:AB⊥PD;(2)求证:CE//平面PAB.【变式1】如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , AB =BC =2,∠ACB =30°AA 1=3, 11,BC A C E ⊥为AC 的中点.求证: 1A C ⊥平面1C EB ;求二面角1A AB C --的余弦值.【例2】(数量关系)如图,三棱锥P ABC -中,PB ⊥底面ABC ,2PB BC ==,1AC =,AB = E 为PC 的中点,点F 在PA 上,且2PF FA =.(1)求证:平面PAC ⊥平面BEF ;【变式2】已知多面体ABCDEF 中,四边形ABCD 为平行四边形, EF CE ⊥,且AC =, 1AE EC ==, 2BC EF =, //AD EF . (1)求证:平面ACE ⊥平面ADEF ;【例3】在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC 的中点,13,2,AC AB BC CC ===.(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.【变式3】.如图,直三棱柱(侧棱与底面垂直的棱柱)ABC ﹣A 1B 1C 1中,点G 是AC 的中点.(1)求证:B 1C ∥平面 A 1BG ;(2)若AB=BC , 1AC ,求证:AC 1⊥A 1B .【例4】(几何图形的特征).如图,在多面体ABCDFE中,四边形ADFE是正方形,在等腰梯形ABCD中,AD∥BC,AB=CD=AD=1,BC=2,G为BC中点,平面ADFE⊥平面ADCB.(1)证明:AC⊥BE;(2)求三棱锥A−GFC的体积.-中,PD⊥底面ABCD,底面ABCD为菱形,【变式4】已知四棱锥P ABCD=∠=,E为AB的中点.AD DAB2,60(1)证明:平面PAB⊥平面PED;(2)若PD=,求E到平面PBC的距离.-中,底面ABCD为矩形,PA⊥平面【例5】(存在性问题). 如图,四棱锥P ABCDABCD,PA=AD=1,AB=√3,点E为PD的中点,点F在棱DC上移动.(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;⊥.(2)求证:无论点F在DC的何处,都有PF AE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 6.2 垂直关系的性质 学习目标 1.掌握直线与平面垂直,平面与平面垂直的性质定理.2.能运用性质定理解决一些简单问题.3.了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系.
知识点一 直线与平面垂直的性质定理 思考 在日常生活中常见到一排排和地面垂直的电线杆.一排电线杆中的每根电线杆都与地面垂直,这些电线杆之间的位置关系是什么? 答案 平行. 梳理 性质定理 文字语言 如果两条直线同垂直于一个平面,那么这两条直线平行
符号语言
a⊥α
b⊥α⇒a∥b
图形语言
知识点二 平面与平面垂直的性质 思考 黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直? 答案 容易发现墙壁与墙壁所在平面的交线与地面垂直,因此只要在黑板上画出一条与这条交线平行的直线,则所画直线必与地面垂直. 梳理 性质定理
文字语言 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面 符号语言 α⊥β,α∩β=l,aα,a⊥l⇒a⊥β
图形语言
1.若平面α⊥平面β,任取直线lα,则必有l⊥β.( × ) 2
2.已知两个平面垂直,过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.( × )
类型一 线面垂直的性质及应用 例1 如图所示,在正方体A1B1C1D1-ABCD中,EF与异面直线AC,A1D都垂直相交.求证:EF∥BD1.
考点 直线与平面垂直的性质 题点 应用线面垂直的性质定理判定线线平行 证明 如图,连接AB1,B1C,BD,B1D1.
∵DD1⊥平面ABCD,AC平面ABCD, ∴DD1⊥AC.又AC⊥BD,DD1∩BD=D, ∴AC⊥平面BDD1B1, 又BD1平面BDD1B1, ∴AC⊥BD1. 同理BD1⊥B1C,∴BD1⊥平面AB1C. ∵EF⊥A1D,且A1D∥B1C,∴EF⊥B1C. 又∵EF⊥AC,AC∩B1C=C, ∴EF⊥平面AB1C,∴EF∥BD1. 反思与感悟 证明线线平行的常用方法 (1)利用线线平行定义:证共面且无公共点. (2)利用三线平行公理:证两线同时平行于第三条直线. (3)利用线面平行的性质定理:把证线线平行转化为证线面平行. (4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直. (5)利用面面平行的性质定理:把证线线平行转化为证面面平行. 3
跟踪训练1 如图,α∩β=l,PA⊥α,PB⊥β,垂足分别为A,B,aα,a⊥AB.求证:a∥l. 考点 直线与平面垂直的性质 题点 应用线面垂直的性质定理判定线线平行 证明 ∵PA⊥α,lα,∴PA⊥l. 同理PB⊥l.∵PA∩PB=P,∴l⊥平面PAB. 又∵PA⊥α,aα,∴PA⊥a. ∵a⊥AB,PA∩AB=A,∴a⊥平面PAB.∴a∥l. 类型二 面面垂直的性质及应用 例2 如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.
求证:BC⊥AB. 考点 平面与平面垂直的性质 题点 应用面面垂直的性质定理判定线线垂直 证明 如图,在平面PAB内,
作AD⊥PB于点D. ∵平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB, AD平面PAB.
∴AD⊥平面PBC. 又BC平面PBC,∴AD⊥BC. 又∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC, 又∵PA∩AD=A,PA,AD平面PAB, ∴BC⊥平面PAB. 4
又AB平面PAB,∴BC⊥AB. 反思与感悟 证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线. 跟踪训练2 如图所示,P是四边形ABCD所在平面外的一点,ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,G为边AD的中点.
求证:(1)BG⊥平面PAD; (2)AD⊥PB. 考点 平面与平面垂直的性质 题点 应用面面垂直的性质定理判定线面垂直 证明 (1)∵四边形ABCD是菱形且∠DAB=60°, ∴△ABD是正三角形,又G为AD的中点, ∴BG⊥AD. 又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BG平面ABCD, ∴BG⊥平面PAD. (2)由(1)可知BG⊥AD,由题意知△PAD为正三角形,G是AD的中点,∴PG⊥AD.又BG∩PG=G, ∴AD⊥平面PBG,又PB平面PBG, ∴AD⊥PB. 类型三 垂直关系的综合应用 命题角度1 线线、线面、面面垂直的转化 例3 如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:
(1)PA⊥底面ABCD; (2)BE∥平面PAD; 5
(3)平面BEF⊥平面PCD. 考点 垂直问题的综合应用 题点 线线、线面、面面垂直的相互转化 证明 (1)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD. (2)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD. 又AD平面PAD,BE⊈平面PAD,∴BE∥平面PAD. (3)在平行四边形ABED中, ∵AB⊥AD,∴四边形ABED为矩形, ∴BE⊥CD. ∵PA⊥平面ABCD,∴PA⊥AB, 又AB⊥AD,PA∩AD=A, ∴AB⊥平面PAD, ∴CD⊥平面PAD,∴CD⊥PD. 又E,F分别为CD和PC的中点, ∴EF∥PD,∴CD⊥EF. ∵EF∩BE=E,EF,BE平面BEF, ∴CD⊥平面BEF. 又∵CD平面PCD,∴平面BEF⊥平面PCD. 反思与感悟 在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题. 跟踪训练3 如图,在四面体ABCD中,平面ABC⊥平面BCD,AB⊥AC,DC⊥BC.求证:平面ABD⊥平面ACD.
考点 垂直问题的综合应用 题点 线线、线面、面面垂直的相互转化 证明 ∵平面ABC⊥平面BCD, 6
平面ABC∩平面BCD=BC,在平面ABC内,作AE⊥BC于点E, 如图,则AE⊥平面BCD.
又CD平面BCD, ∴AE⊥CD. 又BC⊥CD,AE∩BC=E, AE,BC平面ABC,
∴CD⊥平面ABC, 又AB平面ABC,∴AB⊥CD. 又AB⊥AC,AC∩CD=C, AC,CD平面ACD.
∴AB⊥平面ACD.又AB平面ABD, ∴平面ABD⊥平面ACD. 命题角度2 垂直中的探索性问题 例4 已知在三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,
F分别是AC,AD上的动点,且AEAC=AFAD=λ(0<λ<1).
(1)求证:不论λ为何值,总有平面BEF⊥平面ABC; (2)当λ为何值时,平面BEF⊥平面ACD? 考点 线、面平行、垂直的综合应用 题点 平行与垂直的计算与探索性问题 (1)证明 ∵∠BCD=90°,∴BC⊥CD. ∵AB⊥平面BCD,∴AB⊥CD. 又∵AB∩BC=B,∴CD⊥平面ABC.
∵AEAC=AFAD,∴EF∥CD,∴EF⊥平面ABC. 7
又∵EF平面BEF, ∴平面BEF⊥平面ABC. 故不论λ为何值,总有平面BEF⊥平面ABC. (2)解 由(1)得EF⊥平面ABC,BE平面ABC, ∴EF⊥BE. 要使平面BEF⊥平面ACD,只需BE⊥AC. ∵∠BCD=90°,BC=CD=1,∴BD=2. 又∵AB⊥平面BCD,∠ADB=60°, ∴AB=6,AC=7,
∴BE=AB·BCAC=427,∴AE=677, ∴λ=AEAC=67. 故当λ=67时,平面BEF⊥平面ACD. 反思与感悟 解决开放性问题一般先从结论入手,分析得到该结论所需的条件或与其等价的条件,此类型题考查空间想象能力、推理论证能力、分析问题和解决问题的能力. 跟踪训练4 如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求证:D1C⊥AC1; (2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由. 考点 线、面平行、垂直的综合应用 题点 平行与垂直的计算与探索性问题 (1)证明 在直四棱柱ABCD-A1B1C1D1中,连接C1D, ∵DC=DD1,∴四边形DCC1D1是正方形, ∴DC1⊥D1C. 又AD⊥DC,AD⊥DD1,DC∩DD1=D, ∴AD⊥平面DCC1D1,∴AD⊥D1C. ∵AD,DC1平面ADC1,且AD∩DC1=D, ∴D1C⊥平面ADC1.