初二下期末几何压轴题精彩试题
八年级数学期末几何压轴题

26.(本题满分10分)已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分)(2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示);(5分)D(第26题图1)FD CA BE (第26题图2)FH G26.解:(1)如图①,过点G 作GM BC ⊥于M . …………………………………………(1分)在正方形EFGH 中,90,HEF EH EF ∠==. …………………………………………………………(1分)90.90,.AEH BEF AEH AHE AHE BEF ∴∠+∠=∠+∠=∴∠=∠又∵90A B ∠=∠=,∴⊿AH E ≌⊿BEF …………………………………………………………(1分)同理可证:⊿MFG ≌⊿BEF . …………………………………………………………(1分) ∴GM=BF=AE =2.∴FC=BC-BF =10. …………………………………………………………(1分) (2)如图②,过点G作GM BC ⊥于M .连接HF . …………………………………………(1分)//,.//,.AD BC AHF MFH EH FG EHF GFH ∴∠=∠∴∠=∠.AHE MFG ∴∠=∠ …………………………………………………(1分)又90,,A GMF EH GF ∠=∠==∴⊿AHE ≌⊿MFG . ………………………………………………………(1分)∴GM=AE =2. ……………………………………………………………(1分)11(12)12.22GFCSFC GM a a ∴=⋅=-=- …………………………………………(1分)3(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O ﹣C ﹣A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒)0( t .①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是QA=QP 的等腰三角形?若存在,求t 的值;若不存在,请说明理由.3∴y =-x +7,0=x +7,∴x =7,∴B 点坐标为:(7,0),----------------------------1分 ∵y =-x +7=x 34,解得x =3,∴y =4,∴A 点坐标为:(3,4);-------------------1分 (2)①当0<t <4时,PO =t ,PC =4-t ,BR =t ,OR =7-t ,--------------1分 过点A 作AM ⊥x 轴于点M∵当以A 、P 、R 为顶点的三角形的面积为8,∴S 梯形ACOB -S △ACP -S △POR -S △ARB =8, ∴21(AC +BO )×CO -21AC ×CP -21PO ×RO -21AM ×BR =8, ∴(AC +BO )×CO -AC ×CP -PO ×RO -AM ×BR =16,∴(3+7)×4-3×(4-t )-t ×(7-t )-4t =16,∴t 2-8t +12=0. -----------------1分 解得t 1=2,t 2=6(舍去). --------------------------------------------------------------------1分 当4≤t ≤7时,S △APR =21AP ×OC =2(7-t )=8,t=3(舍去);--------------1分 ∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8; ②存在.当0<t ≤4时,直线l 与AB 相交于Q ,∵一次函数y =-x +7与x 轴交于B (7,0)点,与y 轴交于N (0,7)点,∴NO =OB ,∴∠OBN =∠ONB =45°.∵直线l ∥y 轴,∴RQ =RB=t ,AM=BM=4∴QB=t 2,AQ=t 224-----------------1分 ∵RB =OP =QR =t ,∴PQ//OR,PQ=OR=7-t --------------------------------------1分 ∵以A 、P 、Q 为顶点的三角形是等腰三角形,且QP =QA ,∴7-t=t 224-,t=1-32(舍去)--------------------------------------------1分 当4<t ≤7时,直线l 与O A 相交于Q ,若QP =QA ,则t -4+2(t -4)=3,解得t =5;---------------------------------------1分 ∴当t =5,存在以A 、P 、Q 为顶点的三角形是PQ =AQ 的等腰三角形.已知边长为1的正方形ABCD 中, P 是对角线AC 上的一个动点(与点A 、C 不重合), 过点P 作 PE ⊥PB ,PE 交射线DC 于点E ,过点E 作EF ⊥AC ,垂足为点F . (1)当点E 落在线段CD 上时(如图10),① 求证:PB=PE ;② 在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值, 若变化,试说明理由;(2)当点E 落在线段DC 的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);(3)在点P 的运动过程中,⊿PEC 能否为等腰三角形?如果能,试求出AP 的长,如果不能,试说明理由.D CAE P 。
期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。
初二几何压轴题专项练习题

初二几何压轴题专项练习题【初二几何压轴题专项练习题】题目一:线段比例定理已知线段AB上一点C,AC∶BC=3∶2,若AB=35cm,求AC和BC的长度。
解析:根据线段比例定理,可以得到:AC/BC = 3/2AB = AC + BC首先,我们可以设AC的长度为3x,BC的长度为2x。
根据AB的长度为35cm得到:3x + 2x = 35化简方程,得到:5x = 35x = 7代入x值,求得AC和BC的长度:AC = 3x = 3 * 7 = 21cmBC = 2x = 2 * 7 = 14cm因此,AC的长度为21cm,BC的长度为14cm。
题目二:相似三角形已知三角形ABC和三角形DEF相似,AB=10cm,BC=8cm,EF=12cm,求DF的长度。
解析:由于三角形ABC和三角形DEF相似,可以得到:AB/DE = BC/EF代入已知的数值,得到:10/DE = 8/12化简方程,得到:10 * 12 = 8 * DEDE = 120/8DE = 15因此,DF的长度为15cm。
题目三:直角三角形已知直角三角形ABC,∠B=90°,BC=7cm,AC=24cm,求AB的长度。
解析:根据勾股定理,可以得到:AB² + BC² = AC²代入已知的数值,得到:AB² + 7² = 24²化简方程,得到:AB² + 49 = 576AB² = 527AB ≈ 22.98因此,AB的长度约为22.98cm。
题目四:平行线与角平分线已知直线l₁和l₂平行,以及∠A和∠B被直线l₁切分,∠A和∠B 互为相对角,若∠A的度数为60°,求∠B的度数。
解析:由于直线l₁和l₂平行,∠A和∠B互为相对角,∠A的度数为60°,则可得到:∠A = ∠B因此,∠B的度数也为60°。
题目五:垂直平分线已知直线l与线段AB垂直且平分线段AB,若AB的长度为16cm,求直线l与AB的交点C的坐标。
最新成都八年级下期末数学B卷几何压轴题汇编三(含答案)

最新成都八年级下期末数学B卷几何压轴题汇编三40.如图,已知平面直角坐标系中,A(1,0)、C(0,2),现将线段CA绕A点顺时针旋转90°得到点B,连接AB(1)求出直线BC的解析式;(2)若动点M从点C出发,沿线段CB以每分钟个单位的速度运动,过M作MN∥AB交y轴于N,连接AN设运动时间为t分钟,当四边形ABMN为平行四边形时,求t的值.(3)P为直线BC上一点,在坐标平面内是否存在一点Q使得以O、B、P、Q为顶点的四边形为菱形?若存在,求出此时Q的坐标;若不存在请说明理由.41.已知直线y=﹣x+6与x轴,y轴分别相交于点A,B,将∠OBA对折,使点O的对应点E落在直线AB上,折痕交x轴于点C.(1)求点C的坐标;(2)若已知第四象限内的点D(,﹣),在直线BC上是否存在点P,使得四边形OP AD为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设经过点D(,﹣)且与x轴垂直的直线与直线BC的交点为F,Q为线段BF上一点,求|QA﹣QO|的取值范围.42.如图1,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=2AE=4.将正方形AEFG绕点A 按逆时针方向旋转α(0°≤α≤60°).(1)如图2,当α>0°时,求证:△DAG≌△BAE;(2)在旋转的过程中,设BE的延长线交直线DG于点P.①如果存在某时刻使得BF=BC,请求出此时DP的长;②若正方形AEFG绕点A按逆时针方向旋转了60°,求旋转过程中点P运动的路线长.43.如图,四边形ABCD是正方形,E是边AB上一点,连接DE,将直线DE绕点D逆时针旋转90°,交BC的延长线于点F(1)如图1,求证:DE=DF;(2)如图2,连接EF,若D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交AB于点P,求证:E是AP的中点;(3)如图3,在(2)的条件下,连接AC交EF于点G,连接BG、BH,若BG=2,AB=6,求线段PH的长.44.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D 的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.45.如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B.点C坐标是(0,1),连接AC,过点C作CE⊥AB于点E.(1)求CE的长度.(2)如图2,点D为线段EA上一动点(不与E、A重合),连接CD并延长至点F,使DC=DF,作点F关于AB的对称点G,连接DG,CG,FG,线段FG交AB于点H,AC交DG于点M.①求证:;②当∠CAB=2∠F时,求线段AD的长度.46.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG、CG.(1)如图1,若点E在CB边的延长线上时,延长线段EG,CD相交于点M,求证:GE=GM,CE=CM.(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置时,延长EG到M,使GE=GM,连接MD,MC.①求证:∠EBC=∠MDC;②判断EG与CG的关系并证明.47.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积48.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.49.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′.使点B的对应点B′落在AC上,B'C'交AD于点E,在B′C′上取点F,使B′F=AB.(1)求证:AE=C'E;(2)求∠BFB'的度数;(3)若AB=2,求BF的长.50.如图1.在边长为10的正方形ABCD中,点M在边AD上移动(点M不与点A,D重合),MB的垂直平分线分别交AB,CD于点E,F,将正方形ABCD沿EF所在直线折叠.则点B的对应点为点M,点C 落在点N处,MN与CD交于点P,(1)若AM=4,求BE的长;(2)随着点M在边AD上位置的变化,∠MBP的度数是否发生变化?若变化,请说明理由;若不变,请求出∠MBP的度数;(3)随着点M在边AD上位置的变化,点P在边CD上位置也发生变化,若点P恰好为CD的中点(如图2),求CF的长.51.在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.52.如图,已知直线y=kx+4(k≠0)经过点(﹣1,3),交x轴于点A,y轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.(1)当0<t<4时,求证:FC=FD;(2)连接CD,若△FDC的面积为S,求出S与t的函数关系式;(3)在运动过程中,直线CF交x轴的负半轴于点G,+是否为定值?若是,请求出这个定值;若不是,请说明理由.53.如图,△ABC与△ADE都为等腰直角三角形,∠ABC=∠ADE=90°,连接BD,EC,且F为EC的中点.(1)如图1,若D、A、C三点在同一直线上时,请判断DF与BF的关系,并说明理由;(2)如图2,将图1中的△ADE绕点A逆时针旋转m°(0<m<90),请判断(1)中的结论是否仍然成立?并证明你的判断;(3)在(2)下,若△DEF与△BCF的面积之和于△DBF的面积,请直接写出m的值.54.已知菱形ABCD的边长为5,其顶点都在坐标轴上,且点A坐标为(0,﹣3).(1)求点B的坐标及菱形ABCD的面积;(2)点P是菱形边上一动点,沿A→B→C→D运动(到达D点时停止)①如图1,当点P关于x轴对称的点Q恰好落在直线y=x﹣3上时,求点P的坐标.②探究:如图2,当P运动到BC,CD边时,作△ABP关于直线AP的对称图形为△AB′P,是否存在这样的P点,使点B′正好在直线y=x﹣3上?若存在,求出满足条件的点P坐标;若不存在,请说明理由.55.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连接DN,求∠NDC的度数.56.如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30°,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.57.在正方形ABCD中,点P是射线BC上任意一点(不与点B、C重合),连接AP,过点P作AP的垂线交正方形的外角∠DCF的平分线于点E.(1)如图1,当点P在BC边上时,判断线段AP、PE的大小关系,并说明理由;(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立,若成立,请证明;若不成立,请说明理由;(3)如图3,在(2)的条件下,连接AE交CD的延长线于点G,连接GP,请写出三条线段GP、BP、GD的数量关系并证明.58.已知如图,直线y=kx+b与x轴、y轴分别交于点A、B,与直线y=3x交于点C,且|OA﹣6|+=0,将直线y=kx+b沿直线y=3x折叠,与x轴交于点D,与y轴交于点E.(1)求直线y=kx+b的解析式及点C的坐标;(2)求△BCE的面积;(3)若点P是直线y=3x上的一个动点,在平面内是否存在一点Q,使以点A、C、P、Q为顶点的四边形是矩形?若存在,请直接写出点P、点Q的坐标;若不存在,请说明理由.59.在平面直角坐标系中,过点C(1,3)、D(3,1)分别作x轴的垂线,垂足分别为A、B.(1)求直线CD和直线OD的解析式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为t,△AOC与△OBD重叠部分的面积记为s,试求s与t的函数关系式.60.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.参考答案41.已知直线y=﹣x+6与x轴,y轴分别相交于点A,B,将∠OBA对折,使点O的对应点E落在直线AB上,折痕交x轴于点C.(1)求点C的坐标;(2)若已知第四象限内的点D(,﹣),在直线BC上是否存在点P,使得四边形OP AD为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设经过点D(,﹣)且与x轴垂直的直线与直线BC的交点为F,Q为线段BF上一点,求|QA﹣QO|的取值范围.【解答】解:(1)连接CE,则CE⊥AB,y=﹣x+6与x轴,y轴分别相交于点A,B,则点A、B的坐标分别为:(8,0)、(0,6),则AB=10,设:OC=a,则CE=a,BE=OB=6,AE=10﹣6=4,CA=8﹣a,由勾股定理得:CA2=CE2+AE2,即(8﹣a)2=a2+42,解得a=3,故点C(3,0);(2)不存在,理由:将点B、C的坐标代入一次函数表达式y=kx+b并解得:直线BC的表达式为:y=﹣2x+6,设点P(m,n),当四边形OP AD为平行四边形时,OA的中点即为PD的中点,即:m+=8,n﹣=0,解得:m=,n=,当x=时,y=﹣2x+6=1,故点P不在直线BC上,即在直线BC上不存在点P,使得四边形OP AD为平行四边形;(3)当x=时,y=﹣2x+6=﹣5,故点F(,﹣5),当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA﹣QO|=0,当点Q在点B处时,|QA﹣QO|有最大值,此时:点A(8,0)、点O(0,0)、点Q(0,6),则AQ=10,QO=6,|QA﹣QO|=4,故|QA﹣QO|的取值范围为:0≤|QA﹣QO|≤4.42.如图1,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=2AE=4.将正方形AEFG绕点A 按逆时针方向旋转α(0°≤α≤60°).(1)如图2,当α>0°时,求证:△DAG≌△BAE;(2)在旋转的过程中,设BE的延长线交直线DG于点P.①如果存在某时刻使得BF=BC,请求出此时DP的长;②若正方形AEFG绕点A按逆时针方向旋转了60°,求旋转过程中点P运动的路线长.【解答】(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=4,∴AE=2,由勾股定理得,AF=AE=2,∵BF=BC=4,∴AB=BF=4,∴△ABF是等边三角形,∵AE=EF,∴直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,如图3所示:则OE=OA===,∴OB===,∵cos∠ABO==,cos∠ABH==,∴=,∴BH=,AH===,∴DH=AD﹣AH=4﹣,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴=,即:=,∴DP=﹣;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴点P的运动轨迹为以BD为直径的,BD=AB=4,∵正方形AEFG绕点A按逆时针方向旋转了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三点共线,同理D、F、G三点共线,∴P与F重合,∴∠ABP=30°,∴所对的圆心角为60°,∴旋转过程中点P运动的路线长为:=.43.如图,四边形ABCD是正方形,E是边AB上一点,连接DE,将直线DE绕点D逆时针旋转90°,交BC的延长线于点F(1)如图1,求证:DE=DF;(2)如图2,连接EF,若D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交AB于点P,求证:E是AP的中点;(3)如图3,在(2)的条件下,连接AC交EF于点G,连接BG、BH,若BG=2,AB=6,求线段PH的长.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD=CD,∠A=∠ADC=90°=∠BCD,∵将直线DE绕点D逆时针旋转90°,∴∠EDF=90°,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且AD=CD,∠A=∠DCF=90°,∴△ADE≌△CDF(SAS),∴DE=DF,(2)如图2,连接EH,FH,∵点D关于直线EF的对称点为H,∴EH=DE,FH=DF,且DE=DF,∴EH=DE=FH=DF,∵DE=EH,DF=HF,EF=EF,∴△DEF≌△HEF(SSS)∴∠EHF=∠EDF=90°,且PH⊥CH,∴∠PHE=∠FHC,∵∠B=∠PHC=90°,∠BGP=∠CGH,∴∠BPG=∠HCG,∴∠EPH=∠HCF,且EH=HF,∠EHP=∠CHF,∴△EHP≌△FHC(AAS)∴EP=CF,∵△ADE≌△CDF,∴AE=CF,∴AE=EP,∴点E是AP中点,(3)如图3,连接PC,EH,FH,过点E作EK∥BC,交AC于K,∵EK∥BC,∴∠AKE=∠ACB=45°=∠EAK,∠AEK=∠ABC=90°,∠EKG=∠GCF,∴AE=EK,∵AE=CF,∴EK=CF,且∠EKG=∠GCF,∠EGK=∠CGF,∴△EKG≌△FCG(AAS)∴EG=FG,∵BG=2,∴EG=FG=BG=2,∴EF=4,∵EF2=BE2+BF2,∴80=(6﹣AE)2+(6+AE)2,∴AE=2∴BP=AB﹣AE﹣EP=2∴PC===2由(2)可知△EHP≌△FHC,∴PH=CH,且PH⊥CH∴PC=PH∴PH=244.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D 的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).45.如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B.点C坐标是(0,1),连接AC,过点C作CE⊥AB于点E.(1)求CE的长度.(2)如图2,点D为线段EA上一动点(不与E、A重合),连接CD并延长至点F,使DC=DF,作点F关于AB的对称点G,连接DG,CG,FG,线段FG交AB于点H,AC交DG于点M.①求证:;②当∠CAB=2∠F时,求线段AD的长度.【解答】解:(1)∵直线交x轴于点A,交y轴于点B ∴A(﹣3,0),B(0,4)∴OA=3,OB=4,AB=5∵C(0,1)∴BC=3∵S△ABC==∴CE==(2)①∵F点与G点关于直线AB成轴对称∴直线AB是线段FG的垂直平分线,HF=HG∴DF=DG又∵DF=DC∴DF=DG=DC∴∠FGC=90°又∵∠HEC=∠EHG=∠HGC=90°∴四边形ECGH是矩形.∴EH=CG又∵DF=DC,HF=HG据中位线定理得DH=CG=HG=DE即DE=CG(也可以证△FDH≌△CDE得DH=DE)②∵直线AB是线段FG的垂直平分线,DF=DG∴∠FDH=∠GDH=∠EDC,且∠CDG=∠F+∠FGD=2∠F又∵∠CAB=2∠F∴∠CAB=∠CDG∴180°﹣∠ADG﹣∠CAB=180°﹣∠ADG﹣∠CDG∴∠AMD=∠BDC=∠ADG∴AD=AM∵矩形ECGH中CG∥AB易得∠CGM=∠ADM=∠AMD=∠CMG∴CM=CG设AD=AM=a,则CM=CG=﹣a∴DE=CG=∴AE=AD+DE=a+=∵Rt△AEC中,∠AEC=90°,∴AE2+CE2=AC2即()2+()2=()2解得:AD=a=.46.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG、CG.(1)如图1,若点E在CB边的延长线上时,延长线段EG,CD相交于点M,求证:GE=GM,CE=CM.(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置时,延长EG到M,使GE=GM,连接MD,MC.①求证:∠EBC=∠MDC;②判断EG与CG的关系并证明.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∵∠CEF=90°,∴∠CEF+∠ECM=180°,∴EF∥CD,∴∠FEG=∠M,又∵G为DF中点,∴DG=FG∵∠FGE=∠DGM,∴△FGE≌△DGM(AAS),∴EG=GM,EF=DM,∵EF=BE,∴EF=DM=BE,∵CB=CD,∴BE+BC=CD+DM,∴CE=CM.(2)延长MD,BE交于点N,连接EC,①∵EG=MG,DG=FG,∠EGF=∠MGD,∴△EFG≌△MDG(SAS),∴∠EFG=∠MDG,∴EF∥DM,∴∠END=∠BEF=90°=∠BCD,∴∠CBN+∠NDC=∠CDM+∠NDC=180°,∴∠CBE=∠CDM.②结论:CG=EG,CG⊥EG.理由:∵△EFG≌△MDG,∴EF=DM=EB,又∵BC=DC,∠CBE=∠CDM,∴△CBE≌△CDM(SAS),∴EC=MC,且∠BCE=∠DCM,∴∠ECM=∠BCD=90°,∵G为EM中点,∴CG=EG,CG⊥EG.47.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积【解答】(1)①证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DCA=∠BAC,由旋转的性质得:∠F AE=∠BAC,∴∠DCA=∠F AE,∴MA=MC;②解:设MA=MC=x,则DM=8﹣x,在Rt△ADM中,62+(8﹣x)2=x2,解得:x=,在Rt△AEF中,AF===10,∴MF=AF﹣AM=,∵∠AEF=∠CEN=90°,∴∠MCA+∠CNE=∠MAC+∠AEF=90°,又∵∠MCA=∠MAC,∴∠AFE=∠CNE=∠MNF,∴MN=MF=;(2)解:分情况讨论:①如图2所示:过点B作BH⊥AE于H,则∠GAP=∠BHP=90°,在△HBP和△AGP中,,∴△HBP≌△AGP(AAS),∴AP=HP,BH=AG=6,在Rt△ABH中,AH===2,∴AP=AH=,∴PE=AE﹣AP=8﹣,∴△BEG的面积=2△GPE的面积=2××6×(8﹣)=48﹣6;②如图3所示:同①得:AH=2,AP=,∴PE=8+,∴△BEG的面积=2△GPE的面积=2××6×(8+)=48+6;综上所述,△BEG的面积为48﹣6或48+6.48.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵S△ABC=•AC•OB=10,∴AC=5,∴OC=3,∴C(3,0),设直线BC的解析式为y=kx+b,则有,∴.∴直线BC的解析式为y=﹣x+4.(2)∵F A=FB,A(﹣2,0),B(0,4),∴F(﹣1,2),设G(0,n),①当n>2时,如图2﹣1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP是正方形,易证△FMG≌△GNQ,∴MG=NQ=1,FM=GN=n﹣2,∴Q(n﹣2,n﹣1),∵点Q在直线y=﹣x+4上,∴n﹣1=﹣(n﹣2)+4,∴n=,∴G(0,).②当n<2时,如图2﹣2中,同法可得Q(2﹣n,n+1),∵点Q在直线y=﹣x+4上,∴n+1=﹣(2﹣n)+4,∴n=﹣1,∴G(0,﹣1).综上所述,满足条件的点G坐标为(0,)或(0,﹣1).(3)如图3中,设M(m,﹣m+4),∵S△AMB=S△AOB,∴S△ABC﹣S△AMC=S△AOB,∴×5×4﹣×5×(﹣m+4)=×2×4,∴m=,∴M(,),∴直线AM的解析式为y=x+,作BE∥OC交直线AM于E,此时E(,4),当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(,0),D1(﹣,0),当点E在第三象限,根据BC=DE,可得D2(﹣,0)也符合条件,综上所述,满足条件的点D的坐标为(,0)或(﹣,0)或(﹣,0).49.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′.使点B的对应点B′落在AC上,B'C'交AD于点E,在B′C′上取点F,使B′F=AB.(1)求证:AE=C'E;(2)求∠BFB'的度数;(3)若AB=2,求BF的长.【解答】(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,∵BB'=B'F,∴∠FBB′=∠B'FB=15°;(3)解:连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,∴∠AFB′=45°,∠BB′F=150°,∵BB′=B′F,∴∠B′FB=∠B′BF=15°,∴∠AFM=30°,∠ABF=45°,在Rt△AMF中,AM=BM=AB•cos∠ABM=2×=2,在Rt△AMF中,MF=AM=2,则BF=2+2.50.如图1.在边长为10的正方形ABCD中,点M在边AD上移动(点M不与点A,D重合),MB的垂直平分线分别交AB,CD于点E,F,将正方形ABCD沿EF所在直线折叠.则点B的对应点为点M,点C 落在点N处,MN与CD交于点P,(1)若AM=4,求BE的长;(2)随着点M在边AD上位置的变化,∠MBP的度数是否发生变化?若变化,请说明理由;若不变,请求出∠MBP的度数;(3)随着点M在边AD上位置的变化,点P在边CD上位置也发生变化,若点P恰好为CD的中点(如图2),求CF的长.【解答】解:(1)如图1中,∵四边形ABCD是正方形,∴∠A=90°,AB=AD=10,由翻折可知:EB=EM,设EB=EM=x,在Rt△AEM中,∵EM2=AM2+AE2,∴x2=42+(10﹣x)2,∴x=.∴BE=.(2)如图1﹣1中,作BH⊥MN于H.∵EB=EM,∴∠EBM=∠EMB,∵∠EMN=∠EBC=90°,∴∠NMB=∠MBC,∵AD∥BC,∴∠AMB=∠MBC,∴∠AMB=∠BMN,∵BA⊥MA,BH⊥MN,∴BA=BH,∵∠A=∠BHM=90°,BM=BM,BA=BH,∴Rt△BAM≌△BHM(HL),∴∠ABM=∠MBH,同法可证:∠CBP=∠HBP,∵∠ABC=90°,∴∠MBP=∠MBH+∠PBH=∠ABH+∠CBH=∠ABC=45°.(3)如图2中,作FG⊥AB于G.则四边形BCFG是矩形,FG=BC,CF=BG.设AM=x,∵PC=PD=5,∴PM=x+5,DM=10﹣x,在Rt△PDM中,(x+5)2=(10﹣x)2+25,∴x=,∴AM=,设EB=EM=m,在Rt△AEM中,则有m2=(10﹣m)2+()2,∴m=,∴AE=10﹣=,∵AM⊥EF,∴∠ABM+∠GEF=90°,∠GEF+∠EFG=90°,∴∠ABM=∠EFG,∵FG=BC=AB,∠A=∠FGE=90°,∴△BAM≌△FGE(AAS),∴EG=AM=,∴CF=BG=AB﹣AE﹣EG=10﹣﹣=.51.在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.【解答】证明:(1)∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC,∠A=∠B=90°∵将△PBC沿直线PC折叠,∴PB=PG,∠B=∠G=90°∵∠AOP=∠GOE,OP=OE,∠A=∠G=90°∴△AOP≌△GOE(AAS)∴AO=GO∴AO+OE=GO+OP∴AE=GP,∴AE=PB,(2)①∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF∴BP=BF=PG=GF∴四边形BFGP是菱形;②∵AE=9,CD=AB=12,AD=BC=GC=25,∴DE=AD﹣AE=16,BE==15,在Rt△DEC中,EC==20∵BE∥PG∴△CEF∽△CGP∴∴==∴设EF=4x,PG=5x,∴BF=BP=GF=5x,∵BF+EF=BE=15∴9x=15∴x=∴BF=BP=5x=,在Rt△BPC中,PC==∴==52.如图,已知直线y=kx+4(k≠0)经过点(﹣1,3),交x轴于点A,y轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.(1)当0<t<4时,求证:FC=FD;(2)连接CD,若△FDC的面积为S,求出S与t的函数关系式;(3)在运动过程中,直线CF交x轴的负半轴于点G,+是否为定值?若是,请求出这个定值;若不是,请说明理由.【解答】(1)证明:连接OF,如图1所示:∵直线y=kx+4(k≠0)经过点(﹣1,3),∴﹣k+4=3,解得:k=1,∴直线y=x+4,当y=0时,x=﹣4;当x=0时,y=4;∴A(﹣4,0),B(0,4),∴OA=OB=4,∵∠AOB=90°,∴△AOB是等腰直角三角形,∴∠CBF=45°,∵F为线段AB的中点,∴OF=AB=BF,OF⊥AB,∠DOF=∠AOB=45°=∠CBF,∴∠OFB=90°,∵DF⊥CF,∴∠DFC=90°,∴∠OFD=∠BFC,在△BCF和△ODF中,,∴△BCF≌△ODF(ASA),∴FC=FD;(2)解:①当0<t<4时,连接OF,如图2所示:由题意得:OC=t,BC=4﹣t,由(1)得:△BCF≌△ODF,∴BC=OD=4﹣t,∴CD2=OD2+OC2=(4﹣t)2+t2=2t2﹣8t+16,∵FC=FD,∠DFC=90°,∴△FDC是等腰直角三角形,∴FC2=CD2,∴△FDC的面积S=FC2=×CD2=(2t2﹣8t+16)=t2﹣2t+4;②当t≥4时,连接OF,如图3所示:由题意得:OC=t,BC=t﹣4,由(1)得:△BCF≌△ODF,∴BC=OD=t﹣4,∴CD2=OD2+OC2=(t﹣4)2+t2=2t2﹣8t+16,∵FC=FD,∠DFC=90°,∴△FDC是等腰直角三角形,∴FC2=CD2,∴△FDC的面积S=FC2=×CD2=(2t2﹣8t+16)=t2﹣2t+4;综上所述,S与t的函数关系式为S=t2﹣2t+4;(3)解:+为定值;理由如下:①当0<t<4时,如图4所示:当设直线CF的解析式为y=ax+t,∵A(﹣4,0),B(0,4),F为线段AB的中点,∴F(﹣2,2),把点F(﹣2,2)代入y=ax+t得:﹣2a+t=2,解得:a=(t﹣2),∴直线CF的解析式为y═(t﹣2)x+t,当y=0时,x=,∴G(,0),∴OG=,∴+=+==;②当t≥4时,如图5所示:同①得:+=+==;综上所述,+为定值.53.如图,△ABC与△ADE都为等腰直角三角形,∠ABC=∠ADE=90°,连接BD,EC,且F为EC的中点.(1)如图1,若D、A、C三点在同一直线上时,请判断DF与BF的关系,并说明理由;(2)如图2,将图1中的△ADE绕点A逆时针旋转m°(0<m<90),请判断(1)中的结论是否仍然成立?并证明你的判断;(3)在(2)下,若△DEF与△BCF的面积之和于△DBF的面积,请直接写出m的值.【解答】解:(1)如图1中,结论:DF=BF,DF⊥BF.理由:在Rt△BEC中,∵∠EBC=90°,EF=FC,∴BF=EC,在Rt△DCE中,∵∠EDC=90°,EF=FC,∴DF=EC,∴DF=BF,∵∠FCB=∠FBC,∠FED=∠FDE,∴∠BFC+∠DFE=(180°﹣2∠FCB)+(180°﹣2∠FDE)=360°﹣2(∠FCB+∠FED)=360°﹣2(45°+∠BEC+∠FCB)=360°﹣270°=90°,∴∠DFB=90°,即DF⊥BF.(2)结论成立.理由:如图2中,如图作CM∥DE交DF的延长线于M,延长DA交MC的延长线于N,DN交BC于O.∵DE∥CM,∴∠FED=∠FCM,∵∠DFE=∠MFC,EF=CF,∴△DFE≌△MFC,∴DF=FM,DE=CM=AD,∵∠EDN+∠N=180°,∠EDN=90°,∴∠N=∠ABO=90°,∵∠AOB=∠CON,∴∠DAB=∠ACM,∵BA=BC,AD=CM,∴△BAD≌△BCM,∴BD=BM,∠DBA=∠CBM,∴∠DBM=∠ABC=90°,∴△DBM是等腰直角三角形,∵DF=FM,∴BF⊥DF,BF=DF=FM.(3)如图2中,由(2)可知:△DFE≌△MFC,△BDM是等腰直角三角形,DF=FM,∴S△DEF+S△BFC=S△FCM+S△BCF=S四边形BFMC,S△BDF=S△BFM,∴当B、C、M共线时,△DEF与△BCF的面积之和于△DBF的面积,此时旋转角为45°,∴m=45°.54.已知菱形ABCD的边长为5,其顶点都在坐标轴上,且点A坐标为(0,﹣3).(1)求点B的坐标及菱形ABCD的面积;(2)点P是菱形边上一动点,沿A→B→C→D运动(到达D点时停止)①如图1,当点P关于x轴对称的点Q恰好落在直线y=x﹣3上时,求点P的坐标.②探究:如图2,当P运动到BC,CD边时,作△ABP关于直线AP的对称图形为△AB′P,是否存在这样的P点,使点B′正好在直线y=x﹣3上?若存在,求出满足条件的点P坐标;若不存在,请说明理由.【解答】解:(1)如图1中,∵四边形ABCD菱形,∴AB=BC=CD=AD=5,OA=OC,OB=OD,∵A(0,﹣3),∴OA=3,在Rt△AOD中,OD==4,∴BD=8,AC=6,∴S菱形ABCD=×BD×AC=24.(2)①如图2中,由题意B(4,0),C(0,3),∴直线BC的解析式为y=﹣x+3,由解得,∴Q(,),∴当点P坐标为(,﹣)时,点P关于x轴对称的点Q恰好落在直线y=x﹣3上,当点P′与C重合时,点P′关于x轴对称的点Q′恰好落在直线y=x﹣3上,此时P′(0,3),综上所述,满足条件的点P坐标为(,﹣)或(0,3);②如图3中,当AP平分∠BAQ时,满足条件,由题意A(0,﹣3),B(4,0),Q(,),∴AQ=,BQ=,∵=(角平分线性质定理,可以用面积法证明),∴=,∴PB=×=,∴可得P(,).当AP′⊥AP时,B″在直线AQ上,此时直线AP′的解析式为y=﹣x﹣3,直线CD的解析式为y=x+3,由,解得,∴P′(﹣,),综上所述,满足条件的点P坐标为(,)或(﹣,).55.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连接DN,求∠NDC的度数.【解答】解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.56.如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30°,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【解答】解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(﹣6,0),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=﹣x+2,设直线BC的解析式为y=k′x+b′则有,解得,∴直线BC的解析式为y=x+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于K,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证DK=EH=1,DE=AC=4,∴KH=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C(﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).57.在正方形ABCD中,点P是射线BC上任意一点(不与点B、C重合),连接AP,过点P作AP的垂线交正方形的外角∠DCF的平分线于点E.(1)如图1,当点P在BC边上时,判断线段AP、PE的大小关系,并说明理由;(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立,若成立,请证明;若不成立,请说明理由;(3)如图3,在(2)的条件下,连接AE交CD的延长线于点G,连接GP,请写出三条线段GP、BP、GD的数量关系并证明.【解答】解:(1)如图1,在正方形的边AB上取一点H,使BH=BP,∵四边形ABCD是正方形,∴∠ABC=∠DCF=90°,AB=CB,∴AH=PC,∠BHP=45°,∴∠AHP=135°,∵CE是∠DCF的平分线,∴∠ECF=45°,∴∠PCE=135°,∴∠AHP=∠PCE,∵AP⊥PE,∴∠APB+∠EPC=90°,∵∠APB+∠BAP=90°,∴∠BAP=∠CPE,在△AHP和△PCE中,,∴△AHP≌△PCE(ASA),∴AP=PE;(2)AP=PE,理由:如图2,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,AB=AC,在BA的延长线上取一点H,使BH=BP,∴AH=CP,在△HBP中,BH=BP,∴∠BHP=45°,∵CE是∠DCF的平分线,∴∠PCE=45°,∴∠AHP=∠PCE=45°,∵AP⊥PE,∴∠EPF+∠APB=90°,。
北师大版八年级下册数学期末几何压轴题专练(含答案)

八下数学期末复习专题几何压轴题专练1.如图1,在△ABC中,AB=AC,点D是直线BC上一点(不与点BC重合),以AD 为一边在AD的右侧作△ADE,使AD=AE,△DAE=△BAC,连接CE.设△BAC=α,△DCE=β.(1)求证:△DAB△△EAC.(2)当点D在线段BC上运动时,①α=50°,则β=°.②猜想α与β之间的数量关系,并对你的结论进行证明.(3)如图2,当点D在线段BC的反向延长线上运动时,猜想α与β之间的数量关系,并对你的结论给出证明.2.如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.(1)如图1,当△DAG=30°时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长. 3.如图(1)如图1,在□ABCD中,AE平分△BAD交CD边于点E,已知AB=5cm,AD=3cm,则EC等于cm。
(2)如图2,在□ABCD中,若AE,BE分别是△DAB,△CBA的平分线,点E在DC边上,且AB=4,则▱ABCD的周长为。
(3)如图3,已知四边形ABCD是平行四边形,AD=BC,若AF,BE分别是△DAB,△CBA的平分线。
求证:DF=EC(4)在(3)的条件下,如果AD=3,AB=5,则EF的长为。
4.已知,在▱ABCD中, AB⊥BD, AB=BD, E为射线BC上一点,连接AE交BD 于点F.(1)如图1,若点E与点C重合,且AF=√5,求AB的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证: AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G, M为AG 的中点,点N在BC边上且BN=1,已知AB=5√2,请直接写出MN的最小值.5.如图,在△ABC中,△ACB=90°,AC=a,BC=b,a>b,点P是边AB上一点,连接CP,将△ACP沿CP翻折得到△QCP.(1)若PQ△AB,由折叠性质可得△BPC=°;(2)若a=8,b=6,且PQ△AB,求C到AB的距离及BP的长;(3)连接BQ,若四边形BCPQ是平行四边形,直接写出a与b之间的关系式.6.如图,在平行四边形ABCD中,AB△AC,对角线AC,BD相交于点O,将直线AC 绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,写出线段AF与EC的数量关系,并证明;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并说明理由;(3)若AB=1,BC=√5,求当α等于多少度时,BF=DF?7.在Rt△ABC中,∠ABC=90°,BA=BC=4,将△ABC绕点C顺时针旋转得到△A1B1C,其中点A,B的对应点分别为点A1,B1.连接AA1,BB1交于点D.(1)如图1,当点A1落在BC的延长线上时,求线段AB1的长;(2)如图2,当△ABC旋转到任意位置时,求证:点D为线段AA1中点;(3)若△A1B1C从图1的位置绕点C继续顺时针旋转α(0°<α≤90°),当直线AB与直线A1B1相交构成的4个角中最小角为30°时,求α的值.8.如图①,在平行四边形ABCD中,AD=BD=2,BD△AD,点E为对角线AC上一动点,连接DE,将DE绕点D逆时针旋转90°得到DF,连接BF.(1)求证BF=AE;(2)如图②,若F点恰好落在AC,求OF的长;(3)如图③,当点F落在△OBC的外部,构成四边形DEMF时,求四边形DEMF 的面积.9.如图(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,证明线段BC,DC,EC之间满足的等量关系;(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,探索线段AD,BD,CD之间满足的等量关系,并证明结论;(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°若BD=12,CD=4,求AD的长.10.把△ABC绕着点A逆时针旋转α,得到△ADE.(1)如图1,当点B恰好在ED的延长线上时,若α=60°,求△ABC的度数;(2)如图2,当点C恰好在ED的延长线上时,求证:CA平分△BCE;(3)如图3,连接CD,如果DE=DC,连接EC与AB的延长线交于点F,直接写出△F的度数(用含α的式子表示).11.如图1,在平面直角坐标系中.直线y=−12x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90∘得到CD,此时点D 恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC△ △CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.12.在等边三角形ABC中,AD⊥BC于D,AB=2.(1)如图①,点E为AD的中点,则点E到AB的距离为;(2)如图②,点M为AD上一动点,求12AM+MC的最小值.(3)(问题解决)如图③,A,B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,中转站M应修在使AM=(千米)处.13.已知Rt△ABC中,△BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE△AE,过点B作BD△AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求△EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG△FH,交FH的延长线于点G,若GH:FH=6:5,△FHM 的面积为30,△EHB=△BHG,求线段EH的长.14.阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求△APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′△△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出△APB =;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题:已知如图②,△ABC中,△CAB=90°,AB=AC,E、F为BC上的点且△EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,△C=90°,AC=1,△ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且△AOC=△COB=△BOA=120°,求OA+OB+OC的值.15.在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE.(1)如图1,如果点D在BC上,且BD=4,CD=3,求DE的长;(2)如图2,AD与BC相交于点N,点D在BC下方,连接BD,且AD⊥BD,连接CE并延长与BA的延长线交于点F,点M是CA延长线上一点,且CM=AF,求证:CF=AN+MN;(3)如图3,若AD=AB,△ADE绕着点A旋转,取DE中点M,连接BM,取BM中点N,连接AN,点F为BC中点,连接DN,若DN恰好经过点F,请直接写出DF:DN:AN的值.16.如图1,△ABC是直角三角形,△ACB=90°,点D在AC上,DE△AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.17.我们定义:如图1、图2、图3,在ΔABC中,把AB绕点A顺时针旋转α(0∘<α<180∘)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180∘时,我们称ΔAB′C′是ΔABC的“旋补三角形”,ΔAB′C′边B′C′上的中线AD叫做ΔABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的ΔAB′C′均是ΔABC的“旋补三角形”.(1)①如图2,当ΔABC为等边三角形时,“旋补中线” AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90∘,BC=8时,则“旋补中线” AD长为.(2)在图1中,当ΔABC为任意三角形时,猜想“旋补中线” AD与BC的数量关系,并给予证明.18.在平行四边形ABCD中,∠BAD的角平分线交直线BC于点E,交直线DC于点F.(1)在(图25-1)中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图25-2),求∠BDG的度数;(3)若∠ABC=120°,FG//CE,FG=CE,分别连接BD、DG(如图25--3),直接写出∠BDG的度数.19.在△ABCD中,对角线AC、BD交于点O,将过点A的直线l绕点A旋转,交射线CD于点E,BF△l于点F,DG△l于点G,连接OF,OG.(1)如图①当点E与点C重合时,请直接写出线段OF,OG的数量关系;(2)如图②,当点E在线段CD上时,OF与OG有什么数量关系?请证明你的结论;(3)如图③,当点E在线段CD的延长线上时,上述的结论是否仍成立?请说明理由.20.如图,在平行四边形ABCD中,AB△AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=√5,且BF=DF,求旋转角度α的大小.21.如图1,在Rt△ABC中,△A=90°,AB=AC,点D,E分别在边AB,AC上,AD =AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.22.如图,已知函数y=﹣12x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2.(1)求点A的坐标;(2)在x轴上有一动点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣12x+b和y=x的图象于点C、D.①若OB=2CD,求a的值;②是否存在这样的点P,使以B、O、C、D为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.答案与解析1.【答案】(1)证明:∵△DAE=△BAC,∴△CAD﹣△DAE=△CAD﹣△BAC,∴△CAE=△BAD,在△DAB和△EAC中,{AB=AC∠BAD=∠CAF AD=AE∴△DAB△△EAC(SAS)(2)解:①130;②α+β=180°,理由:由(1)知,△DAB△△EAC,∴△ABC=△ACE,在△ABC中,AB=AC,△BAC=α,∴△ABC=△ACB=12(180°﹣△BAC)=12(180°﹣α)=90°﹣12α,∴β=△ACB+△ACE=△ACB+△ABC=90°﹣12α+90°﹣12α=180°﹣α,∴α+β=180°(3)解:β=α;理由:∵△DAE=△BAC,∴△DAE﹣△BAE=△BAC﹣△BAE,∴△CAE=△BAD,在△DAB和△EAC中,{AB=AC∠BAD=∠CAB AD=AE∴△DAB△△EAC(SAS),∴△ABD=△ACE,在△ABC中,AB=AC,△BAC=α,∴△ABC=△ACB=12(180°﹣△BAC)=12(180°﹣α)=90°﹣12α,∴△ACE=△ABD=180°﹣△ABC=180°﹣(90°﹣12α)=90°+12α,∴β=△ACE﹣△ACB=90°+ 12α﹣(90°﹣12α)=α.2.【答案】(1)解:∵四边形ABCD是矩形,∴△BAD=90°,∵△DAG =30°,∴△BAG =60°由折叠知,△BAE =12△BAG =30°, 在Rt△BAE 中,△BAE =30°,AB =3,∴BE =√3(2)解:如图4,连接GE ,∵E 是BC 的中点,∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE =EF ,∴EF =EC ,∵在矩形ABCD 中,∴△C =90°,∴△EFG =90°,∵在Rt△GFE 和Rt△GCE 中,{EG =EG EF =EC∴Rt△GFE△Rt△GCE (HL ),∴GF =GC ;设GC =x ,则AG =3+x ,DG =3﹣x ,在Rt△ADG 中,42+(3﹣x )2=(3+x )2,解得x =43. (3)解:BE =323.【答案】(1)2(2)12(3)证明:∵在▱ABCD 中,CD△AB ,∴△DFA=△FAB.又∵AF是△DAB的平分线∴△DAF=△FAB,∴△DAF=△DFA,∴AD=DF,同理可得EC=BC.∵AD=BC,∴DF=EC(4)14.【答案】(1)解:如图1中,∵AB⊥BD,∴∠ABD=90°,∵AB=BD,∠BAD=45°,∴∠BDA=∠BAD=45°,∵四边形ABCD是平行四边形,∴E、C重合时BF=12BD=12AB,在RtΔABF中,∵AF2=AB2+BF2,∴(√5)2=(2BF)2+BF2,∴BF=1, AB=2,∴AB=2;(2)证明:如图2中,在AF上截取AK=HD,连接BK,∵AB⊥BD, DG⊥AE,∴∠ABF=∠FGD=90°,∵∠AFD=∠ABF+∠2=∠FGD+∠3, ∠ABF=∠FGD=90°,∴∠2=∠3,在ABK和ΔDBH中, {AB=BD ∠2=∠3 AK=HD,∴ΔABK≅ΔDBH,∴BK=BH, ∠6=∠1,∵四边形ABCD是平行四边形,∴AD//BC,∴∠4=∠1,由(1)知∠4=45°,∴∠l=∠6=45°,∴∠5=∠ABD−∠6=45°,∠5=∠1,在ΔFBK和ΔFBH中, {BF=BF ∠5=∠1 BK=BH,∴ΔFBK≅ΔFBH,∴KF=FH,∵AF=AK+KF,∴AF=DH+FH;(3)解:MN的最小值为√149−52.5.【答案】(1)45(2)解:如图,作CH△AB于H由翻折的性质可知:△APC=△QPC∵CH△AB,△BPC=45°∴CH=PH在Rt△ABC中,AB=√AC2+BC2=√82+62=10∵12⋅AB ⋅CH =12⋅AC ⋅BC ,即 5CH =24 ∴CH= 245; (3)解:如图:连接BQ由翻折的性质可得:PA=PQ ,△QPC=△APC∵四边形BCPQ 是平行四边形∴PQ=BC=PA=b ,PQ//BC ,∴△QPC+△PCB=180°∵△BPC+△APC=180°∴△PCB=△BPC∴PB=BC=b∴AP=PB=b ,AB=2b ,在Rt△ABC 中,则有(2b )2=a 2+b 2∴a 2=3b 2∵a>0.b>0,∴a= √3b .6.【答案】(1)解:AF=CE.理由如下:∵四边形ABCD 为平行四边形,∴AD // CB ,OA=OC.∴△FAO=△ECO.在 △AOF 和 △COE 中,∵{∠AOF =∠COE,OA =OC,∠FAO =∠ECO,∴△AOF ≌△COE(ASA) .∴AF=CE.(2)解:当旋转至90°时,四边形ABEF为平行四边形.理由如下:∵△AOF= 90°,△BAC= 90°,∴AB //EF.又∵四边形ABCD是平行四边形,∴AD//BC,即AF//BE.∴四边形ABEF为平行四边形(3)解:当α等于45度时,BF=DF.理由如下:∵AB=1,BC= √5,AB△AC,∴AC= √BC2−AB2=√(√5)2−12=2.∵四边形ABCD为平行四边形,∴OA=12AC=12×2=1,BO=DO.∴OA=AB=1.点O在线段BD的垂直平分线上.∴△ABO为等腰直角三角形.∴△AOB= 45°.当F在线段BD的垂直平分线上时,BF=DF,∴FO垂直平分BD.∴△BOF=90°.∴∠AOF=∠BOF−∠AOB=90°−45°=45°,即α=45°.∴当α等于45度时,BF=DF.7.【答案】(1)解:∵Rt△ABC中,∠ABC=90°,BA=BC=4,∴∠ACB=45°,AC=√AB2+BC2=√42+42=4√2.∵△ABC绕点C顺时针旋转得到△A1B1C,∴∠A1CB1=45°,B1C=BC=4.∴∠ACB1=180°−∠ACB−∠A1CB1=90°.∴AB1=√AC2+B1C2=√(4√2)2+42=4√3(2)证明:过点A1作A1E//AB交BB1的延长线于点E,∴∠ABD=∠DEA1.∵B1C=BC,∴∠CBB1=∠CB1B.∵∠ABC=∠A1B1C=90°,∴∠ABD+∠CBB1=∠CB1B+∠A1B1E=90°.∴∠A1B1E=∠ABD=∠DEA1.∴A1B1=A1E.∵AB=A1B1,∴AB=A1E.∵∠ADB=∠A1DE,∴△ADB≅△A1DE.∴AD=∠A1D.∴点D为线段AA1中点(3)解:如图3,当直线AB与直线A1B1相交于点A上方,延长BC交A1B1于点E,∵∠ABC=90°,∠P=30°,∴∠PEB=60°.∵∠CA1B1=45°,∴∠A1CE=∠PEB−∠CA1E=15°.如图4,当直线AB与直线A1B1相交于点A下方,延长BC交A1B1的延长线于点E,∵∠ABC=90°,∠P=30°,∴∠PEB=60°.∵∠A1B1C=90°,∴∠B1CE=∠A1B1C−∠PEB=30°.∴∠A1CE=∠B1CE+∠A1CB=75°.∴当直线AB与直线A1B1相交构成的4个角中最小角为30°时,α的值为15°或75°.8.【答案】(1)证明:根据旋转的性质可得,DE=DF,△EDF=90°∵BD△AD∴△ADB=90°∴△ADE=△BDF∵AD=BD∴△ADE△△BDF∴BF=AE(2)过点D 作DG△AC 于点G ,∵DE=DF ,△EDF=90°∴△DEF=△DFE=45°,△DEA=135°根据(1)可得,△ADE△△BDF∴△BFD=△DEA=135°,AE=BF∴△BFO=90°∵四边形ABCD 为平行四边形∴OB=OD∴△DGO△△BFO∴DG=BF ,OF=OG∴DG=EG=AE=BF设DG=a (a >0),则AG=2a在直角三角形ADG 中,∵AG 2+DG 2=AD 2∴(2a )2+a 2=22解得a=2√55 ∴OF=OG=12×2√55=√55(3)过点D 作DN△AC 于点N ,将△DEN 绕点D 逆时针旋转90°得到△DFH ,∴DH=DN ,△DNE=△DH=90°,△DEN=△DFG∵△DEF=△FME=90°∴△DEM+△DFM=180°∴△DFH+△DFM=180°∴点H ,点F ,点M 三点共线∵△DHF=△DNM=△FMN=90°∴四边形DNMG 为矩形∵DN=DH∴四边形DNMH 为正方形∴S 四边形DEMF=S 四边形DNMH=(2√55)2=459.【答案】(1)解:∵线段AD绕点A逆时针旋转90°得到AE∵Rt△ABC中AB=AC∴∠BAD=∠CAE∴△ABD≌△ACE(SAS)∴DB=EC∴BC=DC+DB=DC+EC(2)解:连结CE∵Rt△ABC与Rt△ADE中AB=AC,AD=AE∴∠B=∠ACE=45°,DE2=AD2+AE2=2AD2,∵由(1)同理可得△ABD≌△ACE∴DB=EC,∠ABD=∠ACE=45°∴∠ECD=90°∴Rt△ECD中,DE2=EC2+CD2=BD2+CD2∴2AD2=BD2+CD2(3)解:过点A作AE⊥AD,且AE=AD,连结DE,CE∵∠ABC=∠ACB=45°∴AB⊥AC,AB=AC∵AE⊥AD,AE=AD∴由(1)同理可得△ABD≌△ACE∴DB=EC=12∵∠ADC=45°∴∠EDC=∠ADC+∠ADE=90°∴DE=√CE2−CD2=√122−42=8√2∴等腰直角△ADE中AD=810.【答案】(1)解:∵α=60°,△ABC△△ADE,∴ AD=AB,△ABC=△ADE.∴ △ABD=△DAB=60°.∴ △ABC=△ADE=△DAB+△ABD=120°.(2)解:∵ AC=AE,△EAC= α,∴ △E=△ACE.∵ △ABC△△ADE,∴ △ACB=△E.∴ △ACB=△ACE.∴ CA平分△BCE.(3)解:△F= 90°−α.如下图:延长AD交EF于点G,则根据图形旋转的性质得,△GAF=α,∵△ABC△△ADE∴AC=AE,∴△AEC为等腰三角形,在△AED和△ACD中,{AE=AC DE=CD AD=AD,∴ △AED △ △ACD(SSS),∴ △DAE=△DAC,∴ AD平分△EAC,∵△AEC为等腰三角形,∴AG△EF,即△AGF=90°,∴∠EAF=3∠CAF=32α,∴∠F=180°−∠GAF−∠AGF=90°−α.11.【答案】(1)证明:∵∠BOC=∠BCD=∠CED=90∘,∴∠OCB+∠DCE=90∘,∠DCE+∠CDE=90∘,∴∠BCO=∠CDE,∵BC=CD,∴△BOC△ △CED.(2)解:∵△BOC△ △CED,∴OC=DE=m,BO=CE=3,∴D(m+3,m),把D(m+3,m)代入y=−12x+3得到,m=−12(m+3)+3,∴2m=−m−3+6,∴m=1,∴D(4,1),∵B(0,3),C(1,0),∴直线BC的解析式为y=−3x+3,设直线B′C′的解析式为y=−3x+b,把D(4,1)代入得到b=13,∴直线B′C′的解析式为y=−3x+13,∴C′(133,0),∴CC′=103,∴△BCD平移的距离是103个单位.(3)点Q的坐标为(3,32)或(5,12)或(−3,92).12.【答案】(1)√34(2)解:如图,作CN⊥AB,垂足为N,此时12AM+MC最小,最小值等于CN,∵在正三角形ABC中,AB=BC=AC=2,∠ANC=90°,∴AN=1,由勾股定理得,CN=√3由(1)知,MN=12AM∴MN+CM=12AM+MC=CN=√3,即12AM+MC的最小值为√3(3)( 480−120√3 )13.【答案】(1)证明:∵CE△AE,BD△AE,∴△AEC=△ADB=90°,∵△BAC=90°,∴△ACE+CAE=△CAE+△BAD=90°,∴△ACE=△BAD,在△CAE与△ABD中{∠ACE=∠BAD ∠AEC=∠ADB AC=AB∴△CAE△△ABD(AAS),∴AE=BD;(2)解:连接AH∵AB=AC,BH=CH,∴△BAH=12∠BAC=12×90°=45°,△AHB=90°,∴△ABH=△BAH=45°,∴AH=BH,∵△EAH=△BAH﹣△BAD=45°﹣△BAD,△DBH=180°﹣△ADB﹣△BAD﹣△ABH=45°﹣△BAD,∴△EAH=△DBH,在△AEH与△BDH中{AE=BD∠EAH=∠DBH AH=BH∴△AEH△△BDH(SAS),∴EH=DH,△AHE=△BHD,∴△AHE+△EHB=△BHD+△EHB=90°即△EHD=90°,∴△EDH =△DEH = 180°−90°2=45° ;(3)解:过点M 作MS△FH 于点S ,过点E 作ER△FH ,交HF 的延长线于点R ,过点E 作ET△BC ,交HR 的延长线于点T .∵DG△FH ,ER△FH ,∴△DGH =△ERH =90°,∴△HDG+△DHG =90°∵△DHE =90°,∴△EHR+△DHG =90°,∴△HDG =△HER在△DHG 与△HER 中{∠HDG =∠HER ∠DGH =∠ERH DH =EH∴△DHG△△HER (AAS ),∴HG =ER ,∵ET△BC ,∴△ETF =△BHG ,△EHB =△HET ,△ETF =△FHM ,∵△EHB =△BHG ,∴△HET =△ETF ,∴HE =HT ,在△EFT 与△MFH 中{∠ETF =∠FHM ∠EFT =∠MFH EF =FM,∴△EFT△△MFH (AAS ),∴HF =FT ,∴HF·MS 2=FT·ER 2, ∴ER =MS ,∴HG=ER=MS,设GH=6k,FH=5k,则HG=ER=MS=6k,HF·MS 2=5k·6k2=30,k=√2,∴FH=5 √2,∴HE=HT=2HF=10 √2.14.【答案】(1)150°(2)解:如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,△CAE′=△BAE,△ACE′=△B,△EAE′=90°,∵△EAF=45°,∴△E′AF=△EAE′-△EAF=45°,∴△EAF=△E′AF,在△EAF和△E′AF中,{AE=AE′∠EAF=∠E′AFAF=AF∴△EAF△△E′AF(SAS),∴E′F=EF,∵△CAB=90°,AB=AC,∴△B=△ACB=45°,∴△E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)解:如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,△ACB=90°,AC=1,△ABC=30°,∴AB=2,∴BC=√AB2−AC2=√3,∵△AOB绕点B顺时针方向旋转60°,△ABC=30°,∴△A′BC=△ABC+60°=30°+60°=90°,∵△C=90°,AC=1,△ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,△BOO′=△BO′O=60°,∵△AOC=△COB=△BOA=120°,∴△COB+△BOO′=△BO′A′+△BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=√BC2+A′B2=√(√3)2+22=√7,∴OA+OB+OC=A′O′+OO′+OC=A′C=√7.15.【答案】(1)解:连接EC,又AB=AC,AD=AE,∴BD=CE=4,∠ACE=∠ABC,∵∠ABC+∠ACB=90°∴∠ACE+∠ACB=90°∴△ACE是直角三角形,∴DE=√CD2+CE2=√32+42=5;(2)解:∵∠BAD+∠DAC=90°,∠EAC+∠DAC=90°∴∠BAD=∠EAC∵{AB=AC∠BAD=∠EACAD=AE∴△BAD≅△CAE(SAS)∴∠ABD=∠ACE∵AD⊥BD∴∠BAD=90°−∠ABD∵∠BAC=90°∴∠DAC=90°−∠BAD∴∠DAC=∠ABD∴∠ACF=∠DAC∴AD//CF过点A作AP//BC交FC于点P,∴四边形ANCP是平行四边形∴AN=CP,NC=AP∵AP//BC∴∠FAP=∠ABC=45°{PA=NC∠PAF=∠NCM AF=CN∴△PAF≅△NCM(SAS)∴MN=PF∴AN+MN=CP+FP=CF;(3)DF:DN:AN=1:2:216.【答案】(1)EF=CF(2)EF=CF(3)解:猜想,EF=CF,理由:如图3中,取AB的中点M,AD的中点N,连接MC,MF,EN,FN.∵BM=MA,BF=FD,∴MF△AD,MF=12AD,∵AN=ND,∴MF=AN,MF△AN,∴四边形MFNA是平行四边形,∴NF=AM,△FMA=△ANF,在Rt△ADE中,∵AN=ND,△AED=90°,∴EN=12AD=AN=ND,同理CM=12AB=AM=MB,在△AEN和△ACM中,△AEN=△EAN,△MCA=△MAC,∵△MAC=△EAN,∴△AMC=△ANE,又∵△FMA=△ANF,∴△ENF=△FMC,∵AM=FN,AM=CM,∴CM=NF,在△MFC和△NEF中,{MF=EN∠FMC=∠ENFMC=NF,∴△MFC△△NEF(SAS),∴FE=FC.17.【答案】(1)12;4(2)解:结论:AD=12BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M,∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180∘,∠B′AC′+∠AB′M=180∘,∴∠BAC=∠MB′A,∵AB=AB′,∴ΔBAC≅ΔAB′M,∴BC=AM,∴AD=12BC.18.【答案】(1)证明:在平行四边形ABCD中,AB△CD,AD△BC∴△BAF=△F,△DAF=△CEF又∵AE平分△BAD∴△BAF=△DAF∴△F=△CEF∴CE=CF(2)如图,连接CG、BG.∵ABCD是平行四边形,△ABC=90°∴平行四边形ABCD是矩形∴AB=DC,AB△DC,AD△BC,△BAD=△ADC=△BCD=△ECF=90° ∴△F=△BAE,△DBC=△ADB∵△BAD=90° ,△BAE=12△BAD=45°∴AB=BE,△F=△BAE=45°∴CE=CF∴BC=BE+EC=AB+CF=CD+CF=DF又∵G 是EF 的中点,△ECF =90° ,CE=CF∴CG=FG=12EF,△ECG=12△ECF=45° ∴△ECG=△F∴△DFG△△BCG∴△FDG =△CBG ,DG=BG∴△DBG=△BDG∵△DBC=△ADB,△FDG =△CBG∴△DBC+△CBG=△ADB+△FDG即△DBG=△ADB+△FDG∴△BDG=△ADB+△FDG又∵△BDG+(△ADB+△FDG )=90°∴△BDG=12△ADC=45° (3)如图,连接GB 、GE 、GC 。
精选八年级数学一次函数与几何综合压轴题练习汇总

精选八年级数学一次函数与几何综合压轴题44题1.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x 轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.2.如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C 和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON ⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.3.如图①,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)求C点坐标;(2)如图②过C点作CD⊥X轴于D,连接AD,求∠ADC的度数;(3)如图③在(1)中,点A在Y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交Y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请直接写出它们的比值(不需要解答过程或说明理由).4.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.5.如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.6.如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+|a﹣2b+2|=0.(1)求证:∠OAB=∠OBA;(2)如图1,若BE⊥AE,求∠AEO的度数;(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.7.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足|a+b|+(a﹣5)2=0(1)点A的坐标为,点B的坐标为;(2)如图,若点C的坐标为(﹣3,﹣2),且BE⊥AC于点E,OD⊥OC交BE 延长线于D,试求点D的坐标;(3)如图,M、N分别为OA、OB边上的点,OM=ON,OP⊥AN交AB于点P,过点P作PG⊥BM交AN的延长线于点G,请写出线段AG、OP与PG之间的数列关系并证明你的结论.8.如图,在平面直角坐标系中,A(0,a)、B(b,0)、C(c,0),且+|b﹣2|+(c+2)2=0.(1)直接写出A、B、C各点的坐标:A、B、C;(2)过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线MN于点H,证明:PA=PH;(3)在(1)的条件下,若在点A处有一个等腰Rt△APQ绕点A旋转,且AP=PQ,∠APQ=90°,连接BQ,点G为BQ的中点,试猜想线段OG与线段PG的数量关系与位置关系,并证明你的结论.9.如图,平面直角坐标系中,已知点A(a﹣1,a+b),B(a,0),且+(a﹣2b)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)求证:AO=AB;(2)求证:OC=BD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?10.等腰Rt△ABC中,AC=AB,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点.(1)如图1,若A(0,2),B(1,0),求C点的坐标;(2)如图2,当等腰Rt△ABC运动,直角边AC交x轴于点D,斜边BC交y 轴于点E,且点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图3,在等腰Rt△ABC不断运动的过程中,直角边AC交x轴于点D,斜边BC交y轴于点E,若BD始终是∠ABC平分线,试探究:线段BD与OA+OD 之间存在的数量关系,并说明理由.11.在△ABC中,∠BAC=90°,AB=AC.(1)如图1,若A、B两点的坐标分别是A(0,4),B(﹣2,0),求C点的坐标;(2)如图2,作∠ABC的角平分线BD,交AC于点D,过C点作CE⊥BD于点E,求证:CE=BD;(3)如图3,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q为∠FPC与∠PFC的角平分线的交点,当点P运动时,点Q 是否恒在射线BD上?若在,请证明;若不在,请说明理由.12.已知点A与点C为x轴上关于y轴对称的两点,点B为y轴负半轴上一点.(1)如图1,点E在BA延长线,连接EC交y轴于点D,若BE=8,EC=6,CB=4,求△ADE的周长;(2)如图2,点G为第四象限内一点,BG=BA,连接GC并延长交y轴于F,试探究∠ABG与∠FCA之间有和数量关系?并证明你的结论;(3)如图3,A(﹣3,0),B(0,﹣4),点E(﹣6,4)在射线BA上,以BC 为边向下构成等边△BCM,以EC为边向上构造等腰△CNE,其中CN=EN,∠CNE=120°,连接AN,MN,求证:.13.已知A(0,a)和B(b,0),且a、b满足(a﹣4)2+|b﹣4|=0(1)试通过计算判断△AOB的形状.(2)如图1,若D为OB的中点,过O作AD的垂线交AB于E,连DE,求证:AD=OE+DE.(3)如图2,M、N同时从D点出发,以相同的速度向x轴正方向和负方向运动到如图所示的位置,过O作AM的垂线交AB于E,连NE,求证:∠AMB=∠ONE.14.如图1,在平面直角坐标系中,点B与点C关于x轴对称,点D为x轴上一点,点A为射线CE上一动点,且∠BAC=2∠BDO,过D作DM⊥AB于M.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠BAE;(3)当A点运动时(如图2),的值是否发生变化?若不变化,请求出其值;若变化,请说明理由.15.如图1,在平面直角坐标系中,∠BAC=90°,AB=AC,已知点A点的坐标是(m,n),且m,n满足等式+|m﹣n+1|=0.(1)求点A的坐标;(2)若B点的坐标为(6,0),求点C的坐标;(3)如图2,在(2)的条件下,连接OA,作AD⊥AO,且AD=AO,连接CD,已知点E(3,0),线段AE与CD有何数量关系与位置关系?写出你的结论并加以证明.16.已知,如图,在平面直角坐标系中,点A、B、C分别在坐标轴上,且OA=OB=OC,S△ABC=25.点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点.(1)求D点的坐标;(2)设点P运动的时间为t秒,求当t为何值时,DP与DB垂直相等;(3)若PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判断△APQ的形状,并说明理由.17.在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(0,﹣1),AB=.(1)如图1,以点A为圆心,线段AB的长为半径画弧,与x轴的负半轴交于点C,过点A作AH⊥BC于H交y轴于D,求点D的坐标;(2)如图2,在线段OA上有一点E满足S△OEB:S△EAB=1:,直线AN平分△OAB的外角交BE于N.求∠BNA的度数;(3)如图3,动点Q为A右侧x轴上一点,另有在第四象限的动点P,动点P、Q,总满足∠PAB=∠PBA和∠PQA=∠PAQ.①请画出满足题意的图形;②若点B在y轴上运动,其他条件不变,∠ABO=α,请直接用含α的式子表示∠BPQ 的值(不需证明).18.如图所示,在平面直角坐标系中,A点坐标为(﹣2,2).(1)如图(1),在△ABO为等腰直角三角形,求B点坐标.(2)如图(1),在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.(3)如图(2),过点A作AM⊥y轴于点M,点E为x轴正半轴上一点,K为ME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点A作AN⊥x轴交MJ于点N,连结EN.则①的值不变;②的值不变,其中有且只有一个结论正确,请判断出正确的结论,并加以证明和求出其值.19.如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y 轴于P,若点B的坐标为(3,1),求点M的坐标.20.如图1,在平面直角坐标系中,已知A(﹣5,0),C(0,﹣4),点B在y 轴正半轴上,满足S△ABC=20,点P(m,0),(﹣4<m<0),线段PB绕点P顺时针旋转90°至PD.(1)求证:OB=OC;(2)求点D的坐标;(用含m的式子表示)(3)如图2,连接CD并延长交x轴于点E,求证:∠PDC=45°+∠PBO.21.如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?22.已知:如图1:点A(5,0)B(0,2),AB=AC,∠BAC=90°.(1)求点C的坐标.(2)以AB为斜边作等腰直角△ABD,请直接写出点D的坐标;(3)如图2,若E、F分别在BC、AB上,∠AEC=75°,FE⊥BC.求证:BF=AE.23.在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c满足++(2﹣d)2=0,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求点A、B、D的坐标;(2)求点E、F的坐标;(3)如图,过P(0,﹣1)作x轴的平行线,在该平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求的值.24.如图1,A、B分别为x、y轴上的点,O为坐标原点,设OA=a,OB=b,AB=c,(1)若正数a、b、c满足a2+b2+c2﹣6a﹣8b﹣10c+50=0,且OP⊥AB于P,求OP的长;(2)如图2,若P为线段AB的中点,试探究线段OP与AB间的数量关系,并说明理由.(3)如图3,若P是线段AB上一动点(不与A、B点重合),在射线OP上取一点E,使AE=a,此时∠AOE=∠AEO.在第一象限内,过E作AE的垂线,并截取ED=b,连AD、BD,BD交射线OP于F点.当P点运动时,的值不变,请说明理由,并求这个不变的值.25.如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足.点D为线段OA上一动点,连接CD.(1)判断△ABC的形状并说明理由;(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:;(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y 轴于点F,交CA于M.求的值.26.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.27.已知,在平面直角坐标系中,A(a,0)、B(0,b),a、b满足.C 为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求∠OAB的度数;(2)设AB=6,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值;(3)设AB=6,若∠OPD=45°,求点D的坐标.28.在平面直角坐标系中,A(a,b)在第一象限内,且a、b满足条件:b﹣a=,AB⊥y轴于B,AC⊥x轴于C.(1)求△AOC的面积;(2)如图,E为线段OB上一点,连AE,过A作AF⊥AE交x轴于F,连EF,ED平分∠OEF交OA于D,过D作DG⊥EF于G,求的值;(3)如图,D为x轴上一点,AC=CD,E为线段OB上一动点,连DA、CE,F 是线段CE的中点,若BF⊥FK交AD于K,请问∠KBF的大小是否变化?若不改变,请求其值;若改变,求出变化的范围.29.如图1,在直角坐标系中,A点的坐标为(a,0),B点的坐标为(0,b),且a、b满足.(1)求证:∠OAB=∠OBA.(2)如图2,△OAB沿直线AB翻折得到△ABM,将OA绕点A旋转到AF处,连接OF,作AN平分∠MAF交OF于N点,连接BN,求∠ANB的度数.(3)如图3,若D(0,4),EB⊥OB于B,且满足∠EAD=45°,试求线段EB 的长度.30.已知:在直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点。
初二下学期压轴题(数学)

(压轴题)初中物理八年级下册期末测试卷(包含答案解析)

一、选择题1.如图所示,斜面长3m,高0.6m,建筑工人用绳子在6s内将重500N的物体从其底端沿斜面向上匀速拉到顶端,拉力是150N.则下列说法正确的是A.拉力做的额外功是150JB.拉力的功率是50WC.拉力所做的总功是300JD.斜面的机械效率是80%2.有一根一端粗一端细的木棒,用绳子栓住木棒的O点,将它悬挂起来,恰好在水平位置平衡,如图所示,若把木棒从绳子悬挂处锯开,则被锯开的木棒()A.粗细两端一样重B.粗端较重C.细端较重D.无法判断3.如图所示甲、乙两套装置将相同木块G1和G2,匀速上提相同高度。
所用滑轮质量相等,竖直向上的拉力分别为F1和F2,两装置的机械效率分别为η1和η2(忽略绳重和摩擦)。
则下列选项正确的是()A.F1>F2 ,η1<η2B.F1>F2 ,η1=η2C.F1<F2 ,η1<η2D.F1<F2 ,η1>η24.如图所示,运动员在进行蹦床比赛。
不计空气阻力,运动员比赛过程中,下列说法正确的是()A.到达最高点时运动员的速度为零受力平衡B.运动员弹离蹦床以后,蹦床对运动员做了功C.在下落过程中,运动员所受到的重力做了功D.在下落过程中,运动员所受的重力做功先快后慢5.小明爸爸的质量为50kg,小明的质量为60kg,父子俩一起从一楼并肩走上三楼。
在此过程中,下列相关说法()①小明爸爸做功多②小明做功多③小明爸爸做功的功率大④小明做功的功率大A.只有①②正确B.只有③④正确C.只有①③正确D.只有②④正确6.如图所示是台球比赛中的情景,运动员手推球杆撞击静止在水平球台上的白球,白球运动后再撞击黑球。
以下说法中正确的是()A.白球撞击黑球后,白球的运动状态不变B.运动员手推动球杆前进时,手对球杆做了功C.白球撞击黑球后逐渐停下来,是因为白球受惯性作用D.白球撞击黑球时,它对黑球的作用力与黑球对它的作用力为一对平衡力7.我国沉船打捞人员在南海打捞宋朝的商船。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档文案大全初二下期末几何压轴试题1、以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是_____________;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.2、已知:如图,在□ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.证明:(1)3、已知:△ABC是一张等腰直角三角形纸板,∠B=90°,AB=BC=1.(1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在△ABC的边上.小林设计出了一种剪法,如图1所示.请你再设计出一种不同于图1的剪法,并在图2中画出来.(2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为1S,则1S=___________;在余下的2个三角形中还按照小林设计的剪法进行第二次裁剪(如图3),得到2个新的正方形,将此次所得2个正方形的面积的和.记为2S,则2S=___________;在余下的4个三角形中再按照小林设计的的剪法进行第三次裁剪(如图4),得到4个新的正方形,将此次所得4个正方形的面积的和.记为3S;按照同样的方法继续操作下去……,第n次裁剪得到_________个新的正方形,它们的面积的和.n S=______________..图1EFABCD图2ABC图3CBAFED图4ABCFED图14321EDCBAF.实用文档文案大全4、已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.(1)当OA=OD时,点D的坐标为______________,∠POA=__________°;(2)当OA<OD时,求证:OP平分∠DOA;(3)设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是________________..(3)答:在点A,D运动的过程中,d的取值范围是____________5、已知:如图,平面直角坐标系xOy中,矩形OABC的顶点A,C的坐标分别为(4,0),(0,3).将△OCA沿直线CA 翻折,得到△DCA,且DA交CB于点E.(1)求证:EC=EA;(2)求点E的坐标;(3)连接DB,请直接写出....四边形DCAB的周长和面积.6、已知:△ABC的两条高BD,CE交于点F,点M,N分别是AF,BC的中点,连接ED,MN.(1)在图1中证明MN垂直平分ED;(2)若∠EBD=∠DCE=45°(如图2),判断以M,E,N,D为顶点的四边形的形状,并证明你的结论.7、(6分)如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,联结BP、BH。
(1)求证:∠APB=∠BPH;(2)求证:AP+HC=PH;(3)当AP=1时,求PH的长。
8、(6分)如图,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=60°,联结GD,判断△AGD的形状并证明。
y NMABCDEFEBAD yx O.实用文档文案大全10、阅读下列材料:小明遇到一个问题:AD是△ABC的中线,点M为BC边上任意一点(不与点D重合),过点M作一直线,使其等分△ABC的面积.他的做法是:如图1,连结AM,过点D作DN//AM交AC于点N,作直线MN,直线MN即为所求直线.请你参考小明的做法,解决下列问题:(1)如图2,在四边形ABCD中,AE平分ABCD的面积,M为CD边上一点,过M作一直线MN,使其等分四边D图1 MB ANC实用文档文案大全形ABCD的面积(要求:在图2中画出直线MN,并保留作图痕迹);(2)如图3,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图3中画出直线AE,并保留作图痕迹).11、已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且AF=DE.(1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;(2)如图2,对角线AC与BD交于点O. BD,AC分别与AE,BF交于点G,点H.①求证:OG=OH;②连接OP,若AP=4,OP=2,求AB的长.12、已知:如图,梯形ABCD中,AD∥BC,∠B=90°,AD=a,BC=b,DC=ba?,且ab?,点M是AB边的中点.(1)求证:CM⊥DM;(2)求点M到CD边的距离.(用含a,b的式子表示)13、已知:如图1,平面直角坐标系xOy中,四边形OABC是矩形,点A,C的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线y=-12x+b交折线O-A-B于点E.(1)在点D运动的过程中,若△ODE的面积为S,求S与b的函数关系式,并写出自变量的取值范围;(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.探究四边形DMEN各边之间的数量关系,并对你的结论加以证明;(3)问题(2)中的四边形DMEN中,ME的长为____________..图3图2 MEDCBADCBAA B CD E F P图1A B C D OP E F 图2 GH 图1yxOABC图2EDCBA Oxy O'C'B'A'MN ABCDM.实用文档文案大全14、探究问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=k DF,则k的值为_____.图1CFMEBDA图2CEMFADB图3CEMFADB 拓展问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.推广问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不.....变.,试探究DE与DF之间的数量关系,并证明你的结论15、已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且AF=DE.(1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;(2)如图2,对角线AC与BD交于点O. BD,AC分别与AE,BF交于点G,点H.①求证:OG=OH;②连接OP,若AP=4,OP=2,求AB的长.16、(本小题7分)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F。
(1)求证:DE-BF=EF;(2)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明);(3)若AB=2a,点G为BC边中点时,试探究线段EF与GF之间的数量关系,并通过计算来验证你的结论。
A B CD E F P图1A B C D OP E F 图2 GH实用文档文案大全17、如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG并延长交DC于点M,作MN⊥AB,垂足为点N,MN交BD于点P,设正方形ABCD的边长为1。
(1)证明:四边形MPBG是平行四边形;(2)设BE=x,四边形MNBG的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)如果按题设作出的四边形BGMP是菱形,求BE的长。
18、将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.请完成下列问题:(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A 格点上,且△ABC折成的“叠加矩形”为正方形;(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是19、考考你的推理与论证(本题6分)如图,在ABC△中,D是BC边上的一点,E是AD的中点,过A 点作BC 的平行线交CE 的延长线于F ,且AFBD ?,连结BF .(1)求证:D 是BC 的中点;(2)如果ABAC ?,试判断四边形AFBD 的形状,并证明你的结论.20、拓广与探索(本题7分)如图(1),R t △ABC 中,∠ACB=90°,中线BE 、CD 相交于点O ,点F 、G 分别是OB 、OC 的中点. (1)求证:四边形DFGE 是平行四边形;(2)如果把Rt △ABC 变为任意△ABC ,如图(2),通过你的观察,第(1)问的结论是否仍然成立?(不用证明);(3)在图(2)中,试想:如果拖动点A ,通过你的观察和探究,在什么条件下?四边形DFGE 是矩形,并给出证明; AB DC E F实用文档文案大全(4)在第(3)问中,试想:如果拖动点A ,是否存在四边形DFGE是正方形或菱形?如果存在,画出相应的图形(不用证明).(图1)(图2)21、如图,点A(0,4),点B(3,0),点P为线段AB上的一个动点,作PMy?轴于点M,作PNx?轴于点N,连接MN,当点P运动到什么位置时,MN的值最小?最小值是多少?求出此时PN的长.BAFCDEABMPNxOy22、如图,在梯形ABCD中,AD∥BC,AB=AD=DC=4,60C°??,AEBD?于点E,F是CD的中点,连接EF.(1)求证:四边形AEFD是平行四边形;(2)点G是BC边上的一个动点,当点G在什么位置时,四边形DEGF是矩形?并求出这个矩形的周长;(3)在BC边上能否找到另外一点G?,使四边形DE G?F的周长与(2)中矩形DEGF 的周长相等?请简述你的理由.23、(9分)在梯形ABCD中,AB∥CD,o90??BCD,且1AB?,2BC?,2CDAB?。