一次函数综合题型归纳(20210224153951)

合集下载

一次函数综合题解法归纳

一次函数综合题解法归纳

一次函数综合题解法归纳
一次函数是一种线性函数,其数学表达式为y = ax + b,其中a和b为常数,a代表斜率,b代表y轴截距。

综合题是指结合多个概念或条件,进行综合运算和分析的题目。

下面将归纳一次函数在综合题中的解法:
1. 求解函数的斜率和截距:通过已知条件得到函数的斜率和截距。

斜率可以通过计算两个不同点的纵坐标差值除以横坐标差值得到,截距可以通过将已知的点的坐标代入函数表达式求解得到。

2. 求解函数与坐标轴的交点:对于与x轴的交点,令y = 0,将其代入函数表达式中求解x的值;对于与y轴的交点,令x = 0,将其代入函数表达式中求解y的值。

3. 求解函数的零点:零点即函数与x轴的交点,此时y = 0。

将函数表达式中的y替换为0,解方程得到x的值,即为零点。

4. 求解函数的最值:当给定函数的定义域时,可以通过计算函数的斜率确定最值。

当斜率为正时,函数呈上升趋势,其最小值为定义域的最小值;当斜率为负时,函数呈下降趋势,其最大值为定义域的最大值。

5. 图像特征分析:将函数绘制在坐标系上,分析图像的特征。

通过观察斜率与截距的正负、零点的位置、曲线的开口等特征,可以判断函数的增减性、奇偶性和性质。

6. 利用函数进行问题求解:根据问题的条件,建立一个一次函数模型,利用函数进行计算和求解。

通过理解问题中的关系和函数的性质,将问题转化为求解一次函数方程或利用函数图像进行解答。

综合题中一次函数的解法与使用范围非常广泛,了解和掌握一次函数的相关知识和技巧对于完成综合题目是非常重要的。

通过图像分析、方程运算和函数性质的运用,可以更好地理解和解决一次函数相关的综合题。

(完整word版)一次函数知识点总结和常见题型归类

(完整word版)一次函数知识点总结和常见题型归类

一次函数知识点总结与常见题型基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。

在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 P116 1 P87 23、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A.y B .yC .yD .y 函数y =x 的取值范围是___________.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<<y C .2523<≤y D .2523≤<y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.例题:P117 56、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

一次函数整体题型总结

一次函数整体题型总结

一次函数整体题型总结一次函数(或直线函数)是形如f(x) = ax + b的函数形式,其中a 和b是常数,且a ≠ 0。

一次函数的特点是其图像是一条直线,并且其斜率为常数a。

以下是一次函数常见的题型总结:1. 求函数的表达式:已知一次函数的图像上的两个点(x1, y1)和(x2, y2),求一次函数的表达式。

解题步骤:- 计算斜率a:a = (y2 - y1) / (x2 - x1)- 计算常数b:b = y1 - ax1- 得到一次函数的表达式:f(x) = ax + b2. 求函数的性质:已知一次函数的表达式f(x) = ax + b,求该函数的斜率和截距。

- 斜率:斜率a就是函数表达式中的a。

- 截距:截距b就是函数表达式中的b。

3. 求函数图像在x轴和y轴上的截距:已知一次函数的表达式f(x) = ax + b,求该函数图像与x轴和y轴的交点坐标。

- 求x轴截距:令f(x) = 0,解方程ax + b = 0,得x = -b / a,即x 轴截距为(-b / a, 0)。

- 求y轴截距:令x = 0,得到y = b,即y轴截距为(0, b)。

4. 求函数图像的斜率:已知一次函数的表达式f(x) = ax + b,求该函数图像在某个点(x1, y1)处的斜率。

- 斜率公式:斜率a就是函数表达式中的a。

5. 求函数图像的增减性:已知一次函数的表达式f(x) = ax + b,判断该函数在整个定义域上的增减性。

- 当a > 0时,函数递增;- 当a < 0时,函数递减。

6. 求函数图像与坐标轴的交点:已知一次函数的表达式f(x) = ax + b,求该函数与x轴和y轴的交点坐标。

- 求与x轴交点:令f(x) = 0,解方程ax + b = 0,得x = -b / a,即与x轴交点为(-b / a, 0)。

- 求与y轴交点:令x = 0,得到y = b,即与y轴交点为(0, b)。

一次函数易错题压轴题题型归纳及方法

一次函数易错题压轴题题型归纳及方法

一次函数易错题压轴题题型归纳及方法一次函数易错题压轴题题型归纳及方法一、基础概念梳理1.1 一次函数的定义和性质一次函数是指函数 f(x) = ax + b,其中 a 不等于 0。

其图像为一条直线,斜率为 a,截距为 b。

在直角坐标系中,表现为直线过原点或不过原点。

一次函数的性质包括斜率和截距等。

1.2 一次函数的图像和特征一次函数的图像呈线性关系,表现为直线。

斜率决定了直线的斜率和方向,截距决定了直线和 y 轴的交点。

掌握一次函数的图像和特征是解题的关键。

二、易错题分析2.1 斜率与线性关系易错点:部分学生对斜率的计算和理解存在困难,无法准确求解斜率或理解斜率的意义。

解决方法:要重点训练学生如何计算斜率,以及斜率对线性关系的影响。

可以通过练习题和实例来加深理解。

2.2 截距的求解易错点:学生在求解截距时常常出错,或者无法正确理解截距的含义。

解决方法:通过大量的实例练习,加深学生对截距的理解和运用能力。

可以设计一些生活中的例子来帮助学生理解截距的含义。

2.3 点斜式方程易错点:学生在转化为一般式方程时,容易出错或混淆概念。

解决方法:通过举例和练习,让学生掌握点斜式方程和一般式方程之间的转化,加深对一次函数的理解和掌握能力。

三、高级拓展题3.1 一次函数的应用在生活中,一次函数的应用非常广泛,包括经济学、物理学和工程学等领域。

这些应用题往往涉及到实际问题的建模和解决,需要学生有较强的数学建模和解题能力。

3.2 特殊题型及解法除了基本的一次函数题,还有一些特殊的题型需要引起重视,包括两条直线的关系、两个一次函数的综合运用等。

这些题型需要学生拓展思维,掌握各种解题方法。

四、总结回顾在学习一次函数这一题型时,学生需要注重基本概念的理解和掌握,加强实例练习,培养解题思维,拓展应用能力。

重点关注易错点,并采取有效的方法加以解决,提高学生对一次函数的理解和应用能力。

个人观点及理解对于一次函数的学习和掌握,我认为重在理解和应用。

一次函数常见题型归纳

一次函数常见题型归纳

一次函数主要常识: 【1 】(一)数的概念:罕有题型一:断定一个表达式是否为函数,断定一个图像是否为函数图像1.下列解析式中,不是函数关系式的是( ) A .y= x (x ≥0) B .y=-x (x ≥0) C . y=±x (x ≥0) D. y= -x (x ≤0)2.下列各曲线中不克不及暗示y 是x 的函数的是…………………………( )A .B .C .D .罕有题型二:函数自变量的取值规模1..函数y=x -2自变量x 的取值规模是_______2.下列函数中,自变量x 的取值规模是x ≥2的是( )A ..C .D .3.函数y =x -2+3-x 中自变量x 的取值规模是( )(A )x ≥2 (B )x ≤3 (C )2≤x ≤3 (D )x ≥3或x ≤2罕有题型三:函数在现实生涯中的图像表达李先生骑自行车上班,最初以某一速度匀速行进,•半途因为自行车产生故障,停下修车耽搁了几分钟,为了按时到校,李先生加速了速度,仍保持匀速行进,假如准时到校.在教室上,李先生请学生画出他行进的旅程y•(千米)与行进时光t (小时)的函数图象的示意图,同窗们画出的图象如图所示,你以为准确的是()(二)正比例函数的界说及性质:罕有题型一:与正比例函数界说有关的字母题1.已知函数y=(m-1)x+m2-1是正比例函数,则m=_____________.2. 若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12 B.m=12 C.m<12 D.m=-123.若函数2)1)2(--=k xky(是正比例函数,则k=罕有题型二:正比例函数性质的应用1.已知正比例函数y=(m-1)25mx-的图象在第二.四象限,则m的值为_________,函数的解析式为__________2.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,则下列断定准确的是( ) A.y1>y2B.y1<y2 C.当x1<x2时,y1>y2 D.当x1<x2时,y1<y2(三)一次函数的界说:罕有题型一:一次函数和正比例函数的接洽与差别2.下列函数关系式中,哪些是一次函数,哪些又是正比例函数?(1)y=-x-4 (2)256y x =+ (3)8y x =- (4) y=-8x3.下列说法不准确的是( )(A)一次函数不必定是正比例函数 (B)不是一次函数就必定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数(四)一次函数的性质①平移:直线y =kx +b 可以看作由直线y =kx 平移_____个单位而得到,当b >0时,向_____平移,当b <0时,向_____平移.即k 值雷同时,直线必定平行.2.若把直线y=2x -3向上平移3个单位长度,得到直线( )A .y=2x B.y=2x -6 C. y=5x -3 D.y=-x -33、若直线平行与直线125)3(+=+-=x y x m y ,则=m②增减性:当k >0时,y 随x 的增大而_____,这时函数的图象从左到右_____;当k <0时,y 随x 的增大而_____,这时函数的图象从左到右_____.1. 下列函数中,y 随x 的增大而减小的有()A. 1个B. 2个C. 3个D. 4个 ③所经象限:xy )21(-=31x y +-=xy -=612+-=x y1.已知直线y=kx+b不经由第三象限则下列结论准确的是()A.k>0, b>0;B.k<0, b>0;C.k<0, b<0; D.k<0, b≥0;2.已知一次函数y=kx+b,y跟着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )(A) (B) (C)A. B. C. D.④图像与坐标轴的交点:直线),轴的交点坐标为(与bybkxy0+=3.一次函数y=kx+4的图象经由点(-3,-2).(1)求这个函数表达式;(2)画出该函数的图象.(3)断定(-5,3)是否在此函数的图象上; (五)待定系数法求一次函数的表达式x O。

一次函数的知识点与题型总结.docx

一次函数的知识点与题型总结.docx

在一个变化过程中只能取同一数值的量。

一次函数的章节的知识整理与题型总结第一节函数一、知识归纳1、变量:在一个变化过程屮可以取不同数值的量。

3、函数的概念:一般地,在某个变化过程中,冇两个变量x 和y,如呆给定 一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是 自变量,y 是因变量。

*判断Y 是否为X 的函数,只要看X 取值确定的吋候,Y 是否有唯一确定 的值与之对应4、 定义域:一个函数的自变量允许取值的范围,叫做这个函数的定义域。

5、 要使函数的解析式有意义(即确定函数定义域的方法)。

(1) 函数的解析式是整式时,自变量可取全体实数; (2) 函数的解析式是分式吋,自变量的取值应使分母壬0; (3) 函数的解析式是二次根式时,自变量的取值应使被开方数N0。

(4) 函数的解析式是三次根式时,自变量的取值应是一切实数。

(5) 对于反映实际问题的函数关系,应使实际问题有意义。

6、 函数的表示方法列表法:一口 了然,使用起来方便,但列出的对应值是有限的,不易 看出口变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数Z 间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

7、 函数的图像:一•般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形, 就是这个函数的图象.2、(2)1660 1400(3)3050例2•函数是研究A.常量Z间的对应关系的C.变量与常量之间对应关系的()B.常量与变量Z间的对应关系的D.变量之间的对应关系的8、描点法画函数图形的一般步骤第一步:列表(表中给出一些口变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数二、经典题型题型考点一求简单的函数关系式,识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

一次函数题型总结

一次函数题型总结

一次函数题型总结一、函数的定义类问题1.定义(1)在变化过程中有两个变量;(2)一个变量的数值随着另一个变量的数值的变化而发生变化;(3)自变量的每一个确定值,函数有且只有一个值与之对应,即单值对应。

2.自变量的取值范围(1)整式时,自变量取全体实数; (2)分式时,自变量使分母不为零;(3)有偶次根式时,自变量必须使被开方数是非负数 (4)实际问题中,要使实际问题有意义;(5)在有些函数关系式中,自变量的取值范围应是其公共解。

一次函数(——正比例函数)1.定义(1)函数为一次函数⇔其解析式可化为y kx b =+(,k b 为常数,0k ≠)的形式。

(2)一次函数y kx b =+结构特征:0k ≠;自变量x 次数为1;常数b 可为任意实数。

(3)一般情况下,一次函数中自变量的取值范围是全体实数。

(4)若0k =,则y b =(b 为常数),这样的函数叫做常函数,它不是一次函数; 若0b =,则y=k x (k 为常数),这样的函数叫做正比例函数。

2.图像一次函数的图像是一条直线,确定两点,便能确定其图像。

例题1. 求出下列函数中自变量x 的取值范围(1)112y x =+ (2)y = (3)y = (4)521y x -=-2. 有下列函数①3x y -= ②xy 8-= ③)81(82x x x y -+= ④6+=x y ⑤x y 43-= ⑥532-=x y其中正比例函数的有是一次函数的有 (用代号填写在横线上)3. 下列函数①x y π= ②12-=x y ③xy 1=④12-=x y 其中是一次函数的有4. 下列函数①x y 21-= ②12+=x y ③xy 1= ④)1(2--=x x x y⑤12+=x y ⑥xx y 1--=其中一次函数有5. 已知23(2)3my m x -=-+,当m = ()为何值时,y 是x 的一次函。

6. 函数n m x m y n +--=+12)2(,当..........,..........==n m 时为正比例函数;当..........,..........==n m 时为一次函数。

初中数学八年级上册一次函数题型总结(完美排版,可编辑)

初中数学八年级上册一次函数题型总结(完美排版,可编辑)

过关卡——一次函数基础题型总结一、一次函数题型1.点在直线上/直线过点的直接结论:将该点坐标代入解析式,解析式等式成立。

即可将一次函数看作一个二元一次方程,点的横纵坐标就是该二元一次方程的一个解;2.已知解析式求点坐标①一次函数y=kx+b与坐标轴交点:与y轴交于点(0 ,b),与x轴交于点(−bk ,0);②求两条直线交点坐标:联立两个解析式构成二元一次方程组,该方程组的解就是交点的坐标。

如求y=2x+1,y=−2x−3的交点坐标,就是求解方程组:{y=2x+1y=−2x−33.求直线解析式求一次函数解析式,就是求k、b的值。

具体方法是:①设出解析式,②根据题中信息,建立两个以k、b为未知数的方程组,③解出k、b的值,④再代回原解析式中。

这就是待定系数法,待定系数法至少需要两个条件,常见求解析式的类型如下:①已知两点坐标;②与已知直线平行+一点坐标;③与已知直线垂直+一点坐标;④已知直线与坐标轴围成三角形面积+一点坐标(需要分类讨论);4.一次函数图象①根据图象确定k、b的符号;②根据k、b的符号确定图象的大致情况,即方向、与y轴交点、过哪些象限、不过哪些象限等等;5.一次函数求中的面积问题处理坐标系内面积问题的基本思路:①割补法(分割成特殊形状再求和,补全为特殊形状再作差);②等面积转换,如同底等高转换。

特别补充:平行线间距离处处相等;③面积之比转化为线段之比。

6.一次函数与不等式我们都知道,一次函数图象是一条直线,但若自变量x的取值被限定在某个范围内,如y=2x+1(0≤x≤3),此时函数图象就变成了一条线段。

那么y的取值也就有了限制,一般的,对于y=kx+b的函数值有如下两种情况:①若k>0,一次函数图象上坡,即y随着x的增大而增大,则当x取最小值时,y取最小值,当x取最大值时,y取最大值;②若k>0,一次函数图象下坡,即y随着x的增大而减小,则当x取最小值时,y取最大值,当x取最大值时,y取最小值;二、例题讲解例1.求下列函数解析式:①经过点(1,3)和(0,2);②经过点(3,1)和(2,2);③与直线y=2x+1相交于(1,m),且经过点(3,1);④与直线y=2x+1平行,且经过点(3,1);例2.若直线经过点(1,3)和(0,2),①求该函数与坐标轴的交点坐标;②求该函数与y=−2x−3的交点坐标;③求该函数与坐标轴围成的三角形面积;例3.如图,直线53y kx=+经过点A(-2,m),B(1,3).①求k,m的值;②求△AOB的面积.例4. 如图,直线y=kx-2与x 轴交于点B ,直线y=12x+1与y 轴交于点C ,这两条直线交于点A (2,a ),求四边形ABOC 的面积.例5. 如图,直线112y x =+经过点A (1,m ),B (4,n ), 点C (2,5),求△AB C 的面积.例6.如图,直线112y x =-+与x 轴、y 轴分别交于A ,B 两点, C (1,2),坐标轴上是否存在点P ,使S△ABP=S△ABC?若存在,求出点P 的坐标;若不存在,请说明理由.例7.如图,直线13y x =-+与x 轴、y轴分别交于点A ,B 两点,以AB 为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,点P 为直线x=1上的动点. (1)求Rt△ABC 的面积;(2)若S△ABP=S△ABC,求点P 的坐标.例8.如图,直线PA :y=x+2与x 轴、y 轴分别交于A ,Q 两点, 直线PB :y=-2x+8与x 轴交于点B . (1)求四边形PQOB 的面积;(2)直线PA 上是否存在点M ,使得△PBM 的面积等于四边形PQOB 的面积?若存在,求出点M 的坐标;若不存在,请说明理由.每日过关:周一① 已知y 是x 的一次函数,且当2x =-时,7y =;当3x =时,5y =-.求当0y =时,自变量x 的值.② 已知100y -与x 成正比例关系,且当10x =时,600y =.求y 关于x 的函数解析式.每日过关:周二① 已知y m +与x n -成正比例(其中m ,n 是常数).如果当15y =-时,1x =-;当7x =时,1y =.求y 关于x 的函数解析式.② 直线2y x b =+与坐标轴围成的三角形的面积为6,则这条直线的函数解析式为 .每日过关:周三① 在平面直角坐标系中,画出函数23y x =--的图像. (1)标出图像与坐标轴的交点,并求出交点坐标;(2)若直线23y x =--与x 、y 轴的交点分别为A 、B ,求直线与坐标轴围成的三角形ABO 的面积.② 直线66y x =-+与坐标轴围成的三角形的面积为 .每日过关:周四① 如图,直线26y x =+经过点A (-4,m ),B (12-,n ),点C (-2,10),求△AB C 的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档