遗传算法实验一
TSP问题求解实验报告

TSP问题求解(一)实验目的熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
(二)实验原理巡回旅行商问题给定一组n个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。
TSP问题也称为货郎担问题,是一个古老的问题。
最早可以追溯到1759年Euler提出的骑士旅行的问题。
1948年,由美国兰德公司推动,TSP成为近代组合优化领域的典型难题。
TSP是一个具有广泛的应用背景和重要理论价值的组合优化问题。
近年来,有很多解决该问题的较为有效的算法不断被推出,例如Hopfield神经网络方法,模拟退火方法以及遗传算法方法等。
TSP搜索空间随着城市数n的增加而增大,所有的旅程路线组合数为(n-1)!/2。
在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。
借助遗传算法的搜索能力解决TSP问题,是很自然的想法。
基本遗传算法可定义为一个8元组:(SGA)=(C,E,P0,M,Φ,Г,Ψ,Τ)C ——个体的编码方法,SGA使用固定长度二进制符号串编码方法;E ——个体的适应度评价函数;P0——初始群体;M ——群体大小,一般取20—100;Ф——选择算子,SGA使用比例算子;Г——交叉算子,SGA使用单点交叉算子;Ψ——变异算子,SGA使用基本位变异算子;Т——算法终止条件,一般终止进化代数为100—500;问题的表示对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。
用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。
路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。
它在编码,解码,存储过程中相对容易理解和实现。
例如:旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(5 1 7 8 9 4 6 2 3)(三)实验内容N>=8。
实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。
遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。
本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。
2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。
其基本原理可以概括为:选择、交叉和变异。
(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。
(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。
交叉算子的选择及实现方式会对算法效果产生很大的影响。
(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。
通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。
3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。
(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。
(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。
(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。
b. 计算适应度:根据适应度函数,计算每个个体的适应度值。
c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。
d. 交叉操作:对父代进行交叉操作,生成新的个体。
e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。
遗传算法求函数最大值实验报告

遗传算法求函数最大值实验报告遗传算法是一种模拟自然界进化过程的优化算法,它通过模拟生物进化过程中的遗传、交叉和变异等机制,逐步优化解空间中的个体,以找到问题的最优解。
在本次实验中,我们利用遗传算法来求解一个函数的最大值。
下面我们将详细介绍实验的过程和结果。
首先,我们选择了一个简单的函数作为实验对象,即f(x) = x^2,在x的范围为[-10, 10]。
我们的目标是找到使函数值最大的x。
首先,我们需要定义遗传算法中的基本元素,包括编码方式、适应度函数、选择策略、交叉和变异操作等。
在本实验中,我们选择二进制编码方式,将x的范围[-10, 10]离散化为10位的二进制编码。
适应度函数即为f(x) = x^2,它表示个体的适应度。
选择策略采用轮盘赌选择算法,交叉操作采用单点交叉,变异操作采用随机位变异。
接下来,我们需要初始化种群,并迭代进行交叉和变异操作,直到满足终止条件。
在每一代中,我们根据适应度函数对种群中的个体进行评估,并根据选择策略选择父代个体进行交叉和变异操作。
通过交叉和变异操作,产生新的子代个体,并替代原有种群中的个体。
在本次实验中,我们设置了100个个体的种群,并进行了100代的迭代。
实验结果显示,经过多次迭代,算法逐渐优化到了最优解。
最终找到了使函数值最大的x,即x=10,对应的函数值为100。
总结起来,本次实验利用遗传算法求解函数的最大值,展示了遗传算法在优化问题中的应用。
通过适当选择编码方式、适应度函数和操作策略,我们可以有效地找到问题的最优解。
在后续的研究中,我们可以进一步探索遗传算法在更复杂问题上的应用,并通过改进算法的参数和操作策略来提高算法的性能。
遗传算法实验报告

遗传算法实验报告遗传算法实验报告引言:遗传算法是一种模拟生物进化过程的优化算法,通过模拟自然选择、遗传变异和交叉等操作,逐步优化问题的解。
本实验旨在探究遗传算法在解决优化问题中的应用,并通过实验验证其效果。
一、实验背景遗传算法最早由美国科学家约翰·霍兰德于20世纪60年代提出,其灵感来源于达尔文的进化论。
遗传算法通过基因编码、适应度评估、选择、交叉和变异等操作,模拟了进化过程中的遗传和变异,从而找到问题的最优解。
二、实验目的本实验旨在通过遗传算法解决一个经典的优化问题,验证其在解决实际问题中的有效性。
同时,对遗传算法的参数设置和操作过程进行调整和优化,以提高算法的性能。
三、实验步骤1. 问题定义:选择一个经典的优化问题,例如旅行商问题(TSP)或背包问题。
2. 解空间建模:将问题的解表示为染色体,设计基因编码方式。
3. 适应度函数定义:根据问题的特点,设计一个能够评估染色体解的适应度函数。
4. 初始化种群:随机生成一组初始染色体,作为种群。
5. 选择操作:根据适应度函数,选择一部分较优秀的染色体作为父代。
6. 交叉操作:通过交叉操作,生成新的子代染色体。
7. 变异操作:对子代染色体进行变异操作,引入新的基因变异。
8. 适应度评估:计算新的子代染色体的适应度。
9. 父代替换:根据适应度函数,选择一部分较优秀的子代染色体替换掉父代染色体。
10. 终止条件判断:判断是否满足终止条件,若满足则结束算法,否则返回步骤5。
11. 输出结果:输出最优解及其适应度值。
四、实验结果与分析通过实验,我们得到了一组优化问题的最优解,并计算出其适应度值。
通过观察实验结果,我们可以发现遗传算法在解决优化问题中的有效性。
同时,我们还可以通过调整遗传算法的参数和操作过程,进一步提高算法的性能。
五、实验总结通过本次实验,我们深入了解了遗传算法的原理和应用。
遗传算法作为一种优化算法,具有较强的适应性和鲁棒性,在解决实际问题中具有广泛的应用前景。
实验五:遗传算法求解函数最值问题实验

EJdoublefitness(constCh^crrcscrcRc)
{
doublek,y;
decode(cx# y);
retiurnf(x, y)+5;
2•交叉操作
首先是根据交叉概率probCross选择要交叉的个体进行交叉
//根据交叉槪率进行交叉
for(inti=pre = -1;i<N; i++)
//根据变异概率迸行变异
for (inti=0;i<N; i++)
if(randQm61() < probMutation)
mutate(group[i]);
变异时先随机生成变异的位置,然后把改位的01值翻转。
//变异操作
Hvoidmutate(ChrcfnosomeS c)
{
//随机选行翻转
inti-rand()%len; c-g[i] =
//骑越
boolflag-令;
for(inti = j=0; i<1.亡n;i++)
swap(d.g[l]Jc2.g[i]);
if(i== crosspcint[j])
//妇杲若干个交叉点重合”则效果叠加 "偃数个交叉点效果瑁当于没有交叉点while(j<
flag = [flag;
3.变异操作
首先是根据变异概率probMutation选择要变异的个体
经过一定的进化之后得到最终种群,从中选择最优的个体即可得
到最终的结果。
//获取种群最优你
-intgetOptimal(Ch^crescr:-oup[mxn]doubled—double&』doubled\)
遗传算法实验指导书

实验二:遗传算法一、实验目的1.学会使用遗传算法matlab示例程序辅助学习2.理解遗传算法的原理及机制二、实验原理遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
三、实验条件1.Matlab 7.0以上版本遗传算法演示程序2.IE6.0,能通过INTERNET查阅相关资料四、实验内容1.启动GA示例程序1)启动Matlab 7.02)单击help菜单,在弹出的下拉菜单中选择“demos”3)在“demos”窗口左边的树形选择栏选择“toolbox”中“Genetic Algorithm and Direct Search Demos”分支,“demos”窗口右边即为遗传算法示例程序列表。
TSP问题遗传算法求解实验报告

一、旅行商问题所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。
在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。
遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。
假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。
这就是旅行商问题。
旅行商的路线可以看作是对n 个城市所设计的一个环形, 或者是对一列n个城市的排列。
由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。
假设每个城市和其他任一城市之间都以欧氏距离直接相连。
也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。
二、遗传算法1 遗传算法介绍遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。
通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。
遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。
其假设常描述为二进制位串,位串的含义依赖于具体应用。
搜索合适的假设从若干初始假设的群体集合开始。
当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。
《遗传算法》实验指导书

JC(b,as,c,N,p);
cout<<"交叉结果如下:"<<endl;
for(i=0;i<N;i++)
{
for(j=7;j>=0;j--)
cout<<b[i][j];
cout<<endl;
}
return 0;
}
实 验 六
辽宁鞍山科技大学理学院(系) 2010年 月 日
scanf("%d",&m);
sje(n,m);
printf("\n");
printf("请输入转换的二进制数长度:\n");
scanf("%d",&x);
printf("请输入转换的二进制数:\n");
for(i=x-1;i>=0;i--)
scanf("%d",&a[i]);
ejs(a,x);
}
实 验 三
{
b[i][j]=a[j];
a[j]=0;
}
}
cout<<endl<<"初始种群如下:"<<endl;
for(i=0;i<N;i++)
{
for(j=7;j>=0;j--)
cout<<b[i][j];
cout<<endl;
}
cout<<endl;
int *as=new int[N];
f(N,as);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
精品课件
建立区域描述器
>> FieldD=[8;-1;10;1;0;1;1] FieldD =
8 % 子串长度为8 -1 % 每个子串的下边界为-1 10 % 每个子串的上边界为10 1 % 用标准的二进制编码 0 % 每个子串使用算术刻度 1 % 每个变量的范围包含下边界 1 % 每个变量的范围包含上边界
5555888888
精品课件
精品课件
2、创建二进制初始种群——crtbp
调用格式: ①[chrom,lind,basev]=crtbp(nind,lind); ②[chrom,lind,basev]=crtbp(nind, basev); ③[chrom,lind,basev]=crtbp(nind,lind,basev); 功能: ①创建一个以二进制编码的种群,nind指定种群规模,lind
§4.1 遗传算法工具箱的安装
第一步:将文件夹gatbx拷 贝至Matlab的工具箱目录 下或硬盘任一目录中;
精品课件
精品课件
第二步:启动Matlab, 并设置路径
精品课件
单击Add Floder…按钮或 Add With Subfloder…按 钮弹出对话框
精品课件
找到遗传算法工具箱放置的位置,单击确 定铵钮。
精品课件
区域描述器FieldD中各参量的含义
code(i) 1表明子串i使用对数刻度; code(i) 0表明子串i使用算术刻度; lbin 和ubin是二进制行向量,表明由lb和ub所指定 的每个变量的范围中是否包含边界,取值为 0 表 明去掉边界;取值为 1 表明包含边界。
精品课件
二进制串到实值的转换函数——bs2rv
需要注意的是在利用chrom=crtrp(nind,FieldDR)
之前先定义变量的边界。
精品课件
例3:在命令窗口中输入
>> FieldDR=[-2 0 4 1 -3;3 4 5 6 7] FieldDR =
-2 0 4 1 -3 34567 再输入以下命令 >> chrom=crtrp(3,FieldDR) chrom = 0.2571 1.2507 4.6831 4.0620 -2.8365 -1.7805 0.0515 4.0928 4.0427 -1.0993 -1.8641 1.5359 4.0353 1.0788 2.精8品6课9件2
5555888888 再输入以下命令 >> [chrom,lind,basev]=crtbp(6,basev)
精品课件
[chrom,lind,basev]=crtbp(nind, basev);
chrom = 3410713003 2241446461 2433365075 3001443372 3402254267 3140316635
确定染色体的长度。 ②返回一个长度为lind的染色体结构,染色体的等位基因的
基本字符由基本向量basev确定。 ③用于产生一个数量为nind的种群,染色体的长度为lind,
染色体等位基因的基本字符由基本向量bas精e品v课确件定。
[chrom,lind,basev]=crtbp(nind,lind);
lind = 10
basev = 5555888888
精品课件
精品课件
3、创建实值初始种群——crtrp
调用格式
chrom=crtrp(nind,FieldDR)
功能 创建一个大小为nind×nvar的随机实值矩阵,
其中nind指定了种群的规模,nvar确定了每个个 体的变量个数,FieldDR是一个大小2×nvar的矩 阵,包含每个个体变量的边界,第一行为上界, 第二行为下界。
精品课件
§4.3 区域描述器
精品课件
区域描述器FieldD的结构如下:
len
lb
ub
FieldD
code
scale
lbin
ubin
精品课件
区域描述器FieldD中各参量的含义
len指明包含在矩阵 Chrom 的每个子串的长度; lb 和ub 为行向量,分别指明每个变量使用的下界和 上界; code 是二进制行向量,指明每个子串是怎样编码 的,code(i) 1表明子串i 按标准的二进制编码; code(i) 0表明子串i按灰度编码;scale是二进制行 向量,指明每个子串是否使用对数或算术刻度。
பைடு நூலகம்精品课件
精品课件
将二进制串转化为实值
>> Phen=bs2rv(chrom,FieldD) Phen =
6.5490 3.7882 7.5843 1.1569
精品课件
精品课件
重新建立区域描述器
>> FieldD=[8;1;10;1;1;0;0] FieldD =
8 % 子串长度为8 1 % 每个子串的下边界为1 10 % 每个子串的上边界为10 1 % 用标准的二进制编码 1 % 每个子串使用对数刻度 0 % 每个变量的范围不包含下边界 0 % 每个变量的范围不包含上边界
例2:在命令窗口中输入 >> [Chrom,lind,basev]=crtbp(3,5) Chrom =
01111 10110 00001 lind = 5 basev = 22222
精品课件
精品课件
[chrom,lind,basev]=crtbp(nind, basev);
例4:在命令窗口中输入 >> basev=crtbase([4 6],[5 8]) basev =
调用格式 Phen=bs2rv(Chrom,FieldD)
功能 根据区域描述器FieldD将二进制串矩阵 Chrom转换为实值矩阵,返回矩阵 Phen包含对应的种群表现型。
精品课件
例1:在命令窗口中输入
>> Chrom=crtbp(4,8) %创建一个初始种群,种群规模为4,编码长度为8 Chrom =
精品课件
单击Save按钮
精品课件
单击Close按钮
精品课件
§4.2 创建种群
1、创建基向量—— crtbase
精品课件
1、创建基向量——crtbase
调用格式 basev=crtbase(lind,base)
功能 利用基本字符集base产生由向量lind的元素确定
字符长度的串,以说明染色体中基因座的等位基因数量。 例1:在命令窗口中输入 >> basev=crtbase([4 6],[5 8]); basev =