必修2点到直线的距离_练习
人教A版高中数学必修二3.3.3 点到直线的距离

人教A版高中数学必修二3.3.3点到直线的距离选择题点到直线的距离为()A.B.C.D.【答案】A【解析】试题分析:由题已知:点,直线方程为:。
则:选择题已知点(3,m)到直线x+y-4=0的距离等于1,则m等于()A. B. -C. -D. 或-【答案】D【解析】根据点到直线的距离公式得:,解得m=或-,故选D.选择题已知两点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则实数m的值为()A. -6或B. -或1C. -或D. 0或【答案】A【解析】试题分析:∵两点和到直线距离相等,∴,解得,或.故选B.选择题到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是()A. 3x-4y+4=0B. 3x-4y+4=0或3x-4y-2=0C. 3x-4y+16=0D. 3x-4y+16=0或3x-4y-14=0【答案】D【解析】在直线3x-4y+1=0上取点(1,1).设与直线3x-4y+1=0平行的直线方程为3x-4y+m=0,则,解得m=16或m=-14,即所求直线方程为3x-4y+16=0或3x-4y-14=0.选D选择题过点P(0,1)且和A(3,3),B(5,-1)距离相等的直线的方程是()A. y=1B. 2x+y-1=0C. y=1或2x+y-1=0D. 2x+y-1=0或2x+y+1=0【答案】C【解析】∵kAB=,过P与AB平行的直线方程为y-1=-2(x-0),即:2x+y-1=0;又AB的中点C(4,1),∴PC的方程为y=1.选C.选择题若实数x,y满足x+y-4=0,则x2+y2的最小值是()A. 10B. 8C. 6D. 4【答案】B【解析】表示直线上一点到原点的距离的平方,实际上就是求原点到直线x+y-4=0的距离的平方,,选B填空题直线5x+12y+3=0与直线10x+24y+5=0的距离是________.【答案】【解析】由于两直线平行,所以由平行线间的距离公式可得.填空题.已知点P为x轴上一点,且点P到直线3x-4y+6=0的距离为6,则点P的坐标为________.【答案】(-12,0)或(8,0)【解析】设P(a,0),根据点到直线距离公式得:,解得a=-12或8,∴点P的坐标为(-12,0)或(8,0).填空题与直线7x+24y=5平行且距离等于3的直线方程为__________________,【答案】7x+24y+70=0或7x+24y-80=0【解析】试题分析:设出平行直线系方程,根据两平行线间的距离等于3解出待定系数,从而得到所求的直线的方程.解:设所求的直线方程为7x+24y+c=0,d==3,c=70,或?80,故所求的直线的方程为7x+24y+70=0,或7x+24y?80=0,故答案为7x+24y+70=0,或7x+24y?80=0.填空题平行于直线3x+4y-2=0,且与它的距离是1的直线方程为______________________.【答案】3x+4y+3=0或3x+4y-7=0【解析】设所求直线方程为3x+4y+c=0(c≠-2),则d=,∴c=3或c=-7,即所求直线方程为3x+4y+3=0或3x+4y-7=0.解答题已知直线经过点,且斜率为.(1)求直线的方程;(2)若直线与平行,且点到直线的距离为3,求直线的方程.【答案】(1)(2)或【解析】试题分析:(1)本问考查直线方程的点斜式,所以过点,且斜率为的直线方程为,整理成一般式即可;(2)与平行的直线方程可设为,然后根据点到直线距离公式,列方程可以求出的值,即得到直线的方程.试题解析:(1)由点斜式方程得,,∴.(2)设的方程为,则由平等线间的距离公式得,,解得:或.∴或解答题已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为,求直线l1的方程.【答案】见解析【解析】试题分析:当两条直线的斜率存在时,两条直线平行只需斜率相等截距不等,当两条直线的斜率均不存在时,两条直线平行,当一条直线斜率不存在而另一条直线斜率存在,两条直线不平行;两条平行线间的距离可用两条平行线间的距离公式去求,但使用公式时要化为一般式,且x, y的系数一致.试题解析:∵l1∥l2,∴,∴或,(1)当m=4时,直线l1的方程为4x+8y+n=0,把l2的方程写成4x+8y-2=0,∴,解得n=-22或n=18.故所求直线的方程为2x+4y-11=0或2x+4y+9=0.(2)当m=-4时,直线l1的方程为4x-8y-n=0,l2的方程为2x-4y-1=0,∴,解得n=-18或n=22.故所求直线的方程为2x-4y+9=0或2x-4y-11=0.解答题已知△ABC中,A(2,-1),B(4,3),C(3,-2).(1)求BC边上的高所在直线的一般式方程;(2)求△ABC的面积.【答案】(1)x+5y+3=0;(2)S△ABC=3【解析】试题分析:求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程,已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积.试题解析:(1)由斜率公式,得kBC=5,所以BC边上的高所在直线方程为y+1=-(x-2),即x+5y +3=0.(2)由两点间的距离公式,得|BC|=,BC边所在的直线方程为y+2=5(x-3),即5x-y-17=0,所以点A到直线BC的距离d=,故S△ABC=.解答题已知点P(2,-1).(1)求过P点且与原点距离为2的直线l的方程;(2)求过P点且与原点距离最大的直线l的方程,最大距离是多少?【答案】(1)x=2或3x-4y-10=0;(2)【解析】试题分析:第一步首先考虑直线的斜率不存在的情况,然后可设直线方程的点斜式,根据原点到直线的距离为2,列方程求出斜率,得出直线方程;第二步过P点且与原点距离最大的直线就是过P点与OP垂直的直线,P点与原点距离就是原点到直线距离的最大值,OP长即为所求.试题解析:(1)①当l的斜率k不存在时显然满足要求,∴l的方程为x=2;②当l的斜率k存在时,设l的方程为y+1=k(x-2),即kx-y-2k-1=0.由点到直线距离公式得,∴k=,∴l的方程为3x-4y-10=0.故所求l的方程为x=2或3x-4y-10=0.(2)易知过P点与原点O距离最大的直线是过P点且与PO垂直的直线,由l⊥OP得klkOP=-1,所以=-=2.由直线方程的点斜式得y+1=2(x-2),即2x-y-5=0.即直线2x-y-5=0是过P点且与原点O距离最大的直线,最大距离为.。
高中数学必修二同步练习题库:直线的交点坐标与距离公式(选择题:容易)

⾼中数学必修⼆同步练习题库:直线的交点坐标与距离公式(选择题:容易)直线的交点坐标与距离公式(选择题:容易)1、已知直线,若,则的值为()A. B. C. D.或2、直线与直线平⾏,则它们的距离为A. B. C. D.3、平⾏线和的距离是( )A. B.C. D.4、直线与直线的距离为,则的值为A. B. C.10 D.5、平⾏线和的距离是()A. B.2 C. D.6、点P(m-n,-m)到直线的距离等于( )A. B. C. D.7、点到的距离相等,则的值为().A. B. 1 C. D.28、点P(2,3)到直线:的距离为最⼤时,与的值依次为()A.3,-3 B.5,1 C.5,2 D.7,19、直线上的点与原点的距离的最⼩值是A. B. C. D.10、点(0,1)到直线2x—y+2=0的距离为()A. B. C. D.11、已知点A(2,1),B(5,-1),则=( )A.3 B. C. D.12、两条平⾏直线与之间的距离为()A. B. C.7 D.13、点P(-5,7)到直线的距离是A.2 B. C. D.14、.已知点A(-3,-4),B(6,3)到直线的距离相等,则a的值()A. B. C.或 D.或115、平⾯内到点A的距离是1且到点B的距离是2的点个数为()D.117、平⾏线与之间的距离等于().A. B. C. D.18、点关于原点的对称点为,则为().A. B. C. D.19、点到直线的距离为().A. B. C. D.20、设点,,直线过点且与线段相交,则直线的斜率的取值范围是().A.或 B. C. D.或21、光线从点A(﹣3,5)射到x轴上,经反射以后经过点B(2,10),则光线从A到B的距离为()A. B. C. D.22、双曲线的离⼼率为,焦点到渐近线的距离为,则的焦距等于()A. B. C. D.23、两条平⾏直线和之间的距离是()A. B. C. D.24、两条平⾏直线和的距离是()A. B.2 C. D.25、直线与直线平⾏,则它们的距离为A. B. C. D.26、已知直线与平⾏,则的值是().A.或 B.或 C.或 D.或27、双曲线的离⼼率为,焦点到渐近线的距离为,则的焦距等于()A. B. C. D.28、设分别为直线和圆上的点,则的最⼩值为()A. B.C. D.29、已知直线与直线垂直,则的值为()A. B.0 C. D.30、直线与两直线分别交于,两点,线段的中点是则点的坐标为()A. B. C. D.31、若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最⼩值为() A.3 B.2 C.3 D.432、以A(1,3),B(-5,1)为端点的线段的垂直平分线⽅程是()33、直线和的位置关系是()A.平⾏ B.垂直 C.相交但不垂直 D.不能确定34、已知直线与直线,若,则的值为()A.1 B.2 C.6 D.1或235、已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平⾏,则a的值为().A.-10 B.17 C.5 D.236、过点P(-1,3),且垂直于直线x-2y+3=0的直线⽅程为( )A.2x+y-1=0 B.2x+y-5=0C.x+2y-5=0 D.x-2y+7=037、“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件38、垂直于直线且与圆相切于第⼀象限的直线⽅程是()A. B.C. D.39、若点P(2,-1)为圆的弦AB的中点,则直线AB的⽅程为()A. B.C. D.40、已知两直线与平⾏,则的值为()A.1 B.-1 C.1或-1 D.241、将直线绕原点逆时针旋转,再向右平移1个单位,所得到的直线为()A. B. C. D.42、定义:曲线上的点到直线的距离的最⼩值称为曲线到直线的距离,已知曲线到直线的距离为,则实数的值为()A.或 B.或 C. D.43、已知两直线与平⾏,则的值为( )A. B.C.或 D.44、已知直线l1: y=x·sinα和直线l2: y="2x+c," 则直线l1与l2 ()A.通过平移可以重合 B.不可能垂直C.可能与x轴围成等腰直⾓三⾓形 D.通过绕l1上某点旋转可以重合45、两直线与平⾏,则它们之间的距离为()A. B. C. D.46、与直线l : y=2x+3平⾏,且与圆x2+y2-2x-4y+4=0相切的直线⽅程是( ).A.x-y±=0 B.2x-y+=0 C.2x-y-=0 D.2x-y±=047、已知两条直线y=x-2和y=(+2)x+1互相垂直,则等于 ()A.2 B.1 C.0 D.-148、若直线和互相垂直,则()A. B. C. D.49、空间中,垂直于同⼀条直线的两条直线的位置关系是()50、“a=-1”是“直线与直线互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件51、图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3 B.k3<k1<k2 C.k3<k2<k1 D.k1<k3<k252、直线:, :, 若∥,则()A. B. C. D.53、设点,,直线过点且与线段相交,则的斜率的取值范围是()A.或 B. C. D.或54、“”是“直线与直线平⾏”的()A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件55、如果直线x+2y-1=0和y=kx互相平⾏,则实数k的值为( ).A.2 B. C.-2 D.-56、三⾓形的三个顶点、、,则的中线的长为().A.49 B.9 C.7 D.357、直线,直线,若,则实数的值是()A.1或-2 B.1 C.-2 D.58、直线与直线的垂直,则A.1 B. C.4 D.59、过点且与直线垂直的直线⽅程为A. B. C. D.60、已知直线和夹⾓的平分线为,若的⽅程是,则的⽅程是()。
高一数学必修二《点到直线的距离》经典例题

3.3.3点到直线的距离3.3.4两条平行直线间的距离一、基础达标1.(2014·济宁高一检测)两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()A.75 B.715C.415 D.23答案 C解析l1的方程可化为9x+12y-6=0,由平行线间的距离公式得d=|-6+10|92+122=415.2.到直线3x-4y-11=0的距离为2的直线方程为() A.3x-4y-1=0B.3x-4y-1=0或3x-4y-21=0C.3x-4y+1=0D.3x-4y-21=0答案 B解析设所求的直线方程为3x-4y+c=0.由题意|c-(-11)|32+(-4)2=2,解得c=-1或c=-21.故选B.3.点P(a,0)到直线3x+4y-6=0的距离大于3,则实数a的取值范围为() A.a>7 B.a<-3C.a>7或a<-3 D.a>7或-3<a<7答案 C解析根据题意,得|3a-6|32+42>3,解得a>7或a<-3.4.已知两点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则m=()A.0或12 B.12或-6C.-12或12D.0或-12答案 B解析由题意知直线mx+y+3=0与AB平行或过线段AB的中点,则有-m=4-2-1-3或m×3-12+2+42+3=0,所以m=12或m=-6.5.倾斜角为60°,且与原点的距离是5的直线方程为________.答案3x-y+10=0或3x-y-10=0解析因为直线斜率为tan 60°=3,可设直线方程为y=3x+b,化为一般式得3x-y+b=0.由直线与原点距离为5,得|0-0+b|(3)2+(-1)2=5⇒|b|=10.所以b=±10.所以直线方程为3x-y+10=0或3x-y-10=0.6.若点P在直线x+y-4=0上,O为原点,则|OP|的最小值是________.答案2 2解析|OP|的最小值,即为点O到直线x+y-4=0的距离.d=|0+0-4|1+1=2 2.7.直线l过原点,且点(2,1)到l的距离为1,求l的方程.解由题意可知,直线l的斜率一定存在.又直线l过原点,设其方程为y=kx,即kx-y=0.由点(2,1)到l的距离为1,得|2k-1|k2+1=1.解得k=0或k=4 3.∴直线l的方程为y=0或4x-3y=0.二、能力提升8.直线2x+3y-6=0关于点(1,-1)对称的直线方程是() A.3x-2y-6=0 B.2x+3y+7=0C.3x-2y-12=0 D.2x+3y+8=0答案 D解析 法一 设所求直线的方程为2x +3y +C =0, 由题意可知|2-3-6|22+32=|2-3+C |22+32. ∴C =-6(舍)或C =8.故所求直线的方程为2x +3y +8=0.法二 令(x 0,y 0)为所求直线上任意一点,则点(x 0,y 0)关于(1,-1)的对称点为(2-x 0,-2-y 0),此点在直线2x +3y -6=0上,代入可得所求直线方程为2x +3y +8=0.9.两平行线分别经过点A (5,0),B (0,12),它们之间的距离d 满足的条件是( ) A .0<d ≤5 B .0<d ≤13 C .0<d <12 D .5≤d ≤12答案 B解析 当两平行线与AB 垂直时,两平行线间的距离最大,为|AB |=13,所以0<d ≤13.10.两平行线l 1:3x +4y -2=0与l 2:2x +my -1=0的距离为________. 答案 110解析 由l 1∥l 2知m =83,将直线l 2:2x +83y -1=0变形为3x +4y -32=0, 由两平行线间的距离公式得d =⎪⎪⎪⎪⎪⎪-2-⎝ ⎛⎭⎪⎫-3232+42=110.11.求与两平行线l 1:3x +4y -10=0和l 2:3x +4y -12=0距离相等的直线l 的方程.解 设P (x ,y )是所求直线上任一点,则|3x +4y -10|32+42=|3x +4y -12|32+42,化简得3x +4y -11=0,即为所求直线的方程. 三、探究与创新12.已知点P (a ,b )在线段AB 上运动,其中A (1,0),B (0,1).试求(a +2)2+(b +2)2的取值范围.解 由(a +2)2+(b +2)2联想两点间距离公式,设Q (-2,-2),又P (a ,b )则|PQ|=(a+2)2+(b+2)2,于是问题转化为|PQ|的最大、最小值.如图所示:当P与A或B重合时,|PQ|取得最大值:(-2-1)2+(-2-0)2=13.当PQ⊥AB时,|PQ|取得最小值,此时|PQ|为Q点到直线AB的距离,由A、B两点坐标可得直线AB的方程为x+y-1=0.则Q点到直线AB的距离d=|-2+(-2)-1|12+12=52=522,∴252≤(a+2)2+(b+2)2≤13.13.直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2,且l1与l2的距离为5,求l1,l2的方程.解(1)若直线l1,l2的斜率存在,设直线的斜率为k,由斜截式得l1的方程y =kx+1,即kx-y+1=0,由点斜式可得l2的方程为y=k(x-5),即kx-y-5k=0,因为直线l1过点A(0,1),则点A到直线l2的距离d=|-1-5k|(-1)2+k2=5,∴25k2+10k+1=25k2+25,∴k=12 5,∴l1的方程为12x-5y+5=0,l2的方程为12x-5y-60=0.(2)若l1、l2的斜率不存在,则l1的方程为x=0,l2的方程为x=5,它们之间的距离为5,同样满足条件.综上所述,满足条件的直线方程有两组:l1:12x-5y+5=0,l2:12x-5y-60=0;或l1:x=0,l2:x=5.。
【数学】2.1《点到直线的距离》测试(苏教版必修2)

第二章 解析几何初步
§1 直线与直线的方程
第九课时 点到直线的距离
一、选择题
1.若点(2,k )到直线06125=+-y x 的距离是4,则k 的值是( )
A .1
B .-3
C .1或35
D .-3或317
2、已知点P (y x ,)在直线l :01043=-+y x 上,O 为原点,则当OP 最
小时,点P 的坐标是( )
A 、⎪⎭⎫ ⎝⎛58,56
B 、)4,2(
C 、⎪⎭⎫ ⎝⎛-45,5
D 、⎪⎭
⎫ ⎝⎛-53,51 3、若点(2,k )到直线06125=+-y x 的距离是4,则k 的值是( )
A 、-3或
317 B 、-3 C 、1或35
D 、1 二、填空题
4.点P 在直线04=-+y x 上,O 是坐标原点,则||OP 的最小值是_________.
5.求过点A (-3,1)的所有直线中,与原点距离最远的直线方程是_________.
三、解答题
6、已知正方形的中心直线01=+-y x 和022=++y x 的交点,正方形一边所在直线方程为053=-+y x ,求其他三边所在的直线方程。
7、求点P (3,-2)到下列直线的距离:
(1)01|43=+-y x ;
(2)6=y ;
(3)y 轴。
8.直线l 在两坐标轴上的截距相等,且P (4,3)到直线l 的距离为23,
求直线l的方程.
§1直线与直线的方程
第九课时点到直线的距离。
2024_2025学年新教材高考数学点到直线的距离两平行线间的距离2练习含解析选择性必修第一册

点到直线的距离、两平行线间的距离层级一 学业水平达标1.点P (1,-1)到直线l :3y =2的距离是( ) A .3B.53C .1D.22解析:选B 点P (1,-1)到直线l 的距离d =|3×-1-2|02+32=53,选B. 2.已知点M (1,4)到直线l :mx +y -1=0的距离为3,则实数m =( ) A .0 B.34 C .3D .0或34解析:选D 点M 到直线l 的距离d =|m +4-1|m 2+1=|m +3|m 2+1,所以|m +3|m 2+1=3,解得m =0或m =34,选D.3.已知点A (1,3),B (3,1),C (-1,0),则△ABC 的面积等于( ) A .3 B .4 C .5D .6解析:选C 设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=3-12+1-32=22,AB 边上的高h 就是点C 到直线AB 的距离.AB 边所在的直线方程为y -31-3=x -13-1,即x+y -4=0.点C 到直线x +y -4=0的距离为|-1+0-4|2=52,因此,S △ABC =12×22×52=5.4.已知点P (1+t,1+3t )到直线l :y =2x -1的距离为55,则点P 的坐标为( ) A .(0,-2) B .(2,4) C .(0,-2)或(2,4)D .(1,1)解析:选C 直线l :y =2x -1可化为2x -y -1=0,依题意得|21+t -1+3t -1|22+-12=55,整理得|t |=1,所以t =1或-1.当t =1时,点P 的坐标为(2,4);当t =-1时,点P 的坐标为(0,-2),故选C.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1,l 2间的距离是( ) A.423B.823C .4 2D .2 2解析:选B ∵l 1∥l 2,∴⎩⎪⎨⎪⎧a a -2-3=0,2a -6a -2≠0,解得a =-1.∴l 1的方程为x -y +6=0,l 2的方程为-3x +3y -2=0,即x -y +23=0,∴l 1,l 2间的距离是⎪⎪⎪⎪⎪⎪6-2312+-12=823. 6.若点(2,k )到直线5x -12y +6=0的距离是4,则k 的值是________. 解析:∵|5×2-12k +6|52+122=4,∴|16-12k |=52, ∴k =-3,或k =173.答案:-3或1737.直线4x -3y +5=0与直线8x -6y +5=0的距离为________.解析:直线8x -6y +5=0化简为4x -3y +52=0,则由两平行线间的距离公式得⎪⎪⎪⎪⎪⎪5-5242+32=12. 答案:128.已知直线l 与直线l 1:2x -y +3=0和l 2:2x -y -1=0间的距离相等,则直线l 的方程是________.解析:由题意可设直线l 的方程为2x -y +c =0,于是有|c -3|22+-12=|c +1|22+-12,即|c -3|=|c +1|.∴c =1,∴直线l 的方程为2x -y +1=0.答案:2x -y +1=09.求过点P (0,2)且与点A (1,1),B (-3,1)等距离的直线l 的方程.解:法一:∵点A (1,1)与B (-3,1)到y 轴的距离不相等,∴直线l 的斜率存在,设为k .又直线l 在y 轴上的截距为2,则直线l 的方程为y =kx +2,即kx -y +2=0.由点A (1,1)与B (-3,1)到直线l 的距离相等, 得|k -1+2|k 2+1=|-3k -1+2|k 2+1,解得k =0或k =1. ∴直线l 的方程是y =2或x -y +2=0.法二:当直线l 过线段AB 的中点时,直线l 与点A ,B 的距离相等. ∵AB 的中点是(-1,1),又直线l 过点P (0,2), ∴直线l 的方程是x -y +2=0;当直线l ∥AB 时,直线l 与点A ,B 的距离相等. ∵直线AB 的斜率为0,∴直线l 的斜率为0,∴直线l 的方程为y =2.综上所述,满意条件的直线l 的方程是x -y +2=0或y =2. 10.如图,已知直线l 1:x +y -1=0,现将直线l 1向上平移到直线l 2的位置,若l 2,l 1和坐标轴围成的梯形的面积为4,求直线l 2的方程.解:设l 2的方程为y =-x +b (b >1),则A (1,0),D (0,1),B (b,0),C (0,b ).∴|AD |=2,|BC |=2b .梯形的高h 就是A 点到直线l 2的距离, 故h =|1+0-b |2=|b -1|2=b -12(b >1),由梯形的面积公式得2+2b 2×b -12=4, ∴b 2=9,b =±3.又b >1,∴b =3.从而得直线l 2的方程是x +y -3=0.层级二 应试实力达标1.已知直线3x +y -3=0和6x +my +1=0相互平行,则它们之间的距离是( ) A .4B.1020C.104D.71020解析:选D ∵3x +2y -3=0和6x +my +1=0相互平行,∴m =2.直线6x +2y +1=0可以化为3x +y +12=0,由两条平行直线间的距离公式,得d =⎪⎪⎪⎪⎪⎪12+332+12=71020,选D.2.两平行线分别经过点A (3,0),B (0,4),它们之间的距离d 满意的条件是( ) A .0<d ≤3 B .0<d ≤5 C .0<d <4D .3≤d ≤5解析:选B 当两平行线与AB 垂直时,两平行线间的距离最大为|AB |=5,所以0<d ≤5. 3.假如点P 到点A ⎝ ⎛⎭⎪⎫12,0,B ⎝ ⎛⎭⎪⎫12,3及直线x =-12的距离都相等,那么满意条件的点P有( )A .0个B .1个C .2个D .多数个解析:选B 因为点P 到点A ⎝ ⎛⎭⎪⎫12,0,B ⎝ ⎛⎭⎪⎫12,3的距离相等,所以点P 在线段AB 的垂直平分线y =32上.直线AB 与直线x =-12平行,且两平行线间的距离为1.又1<|AB |2=32,所以满意条件的点P 有1个.4.已知定点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y =2+5λ(λ∈R),则点P 到直线l 的距离的最大值为( )A .2 3 B.10 C.14D .215解析:选 B 将(1+3λ)x +(1+2λ)y =2+5λ变形,得(x +y -2)+λ(3x +2y -5)=0,所以l 是经过两直线x +y -2=0和3x +2y -5=0的交点的直线系.设两直线的交点为Q ,由⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,得交点Q (1,1),所以直线l 恒过定点Q (1,1),于是点P 到直线l 的距离d ≤|PQ |=10,即点P 到直线l 的距离的最大值为10.5.已知5x +12y =60,则 x 2+y 2的最小值是________.解析: x 2+y 2表示直线5x +12y =60上的点到原点的距离,在全部这些点到原点距离中,过原点且垂直于直线5x +12y =60的垂线段的长最小,故最小值为d =6052+122=6013. 答案:60136.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有________条.解析:由题可知所求直线明显不与y 轴平行, ∴可设直线为y =kx +b ,即kx -y +b =0.∴d 1=|k -2+b |k 2+1=1,d 2=|3k -1+b |k 2+1=2,两式联立,解得b 1=3,b 2=53,∴k 1=0,k 2=-43.故所求直线共有两条.答案:27.已知直线l 在两坐标轴上的截距相等,且点P (4,3)到直线l 的距离为32,求直线l 的方程.解:由题意知,若截距为0, 可设直线l 的方程为y =kx .由题意知|4k -3|k 2+1=32,解得k =-12±3142.若截距不为0,设所求直线l 的方程为x +y -a =0. 由题意知|4+3-a |2=32,解得a =1或a =13.故所求直线l 的方程为y =-12+3142x ,y =-12-3142x ,x +y -1=0或x +y -13 =0.8.已知点P (a ,b )在线段AB 上运动,其中A (1,0),B (0,1).试求(a +2)2+(b +2)2的取值范围.解:由(a +2)2+(b +2)2联想两点间的距离公式,设Q (-2,-2),又P (a ,b ),则|PQ |=a +22+b +22,于是问题转化为求|PQ |2的最大值、最小值.如图所示,当P 与A 或B 重合时,|PQ |取得最大值,即-2-12+-2-02=13.当PQ ⊥AB 时,|PQ |取得最小值,此时|PQ |为Q 点到直线AB 的距离,由A ,B 两点坐标可得直线AB 的方程为x +y -1=0.则Q 点到直线AB 的距离d =|-2-2-1|12+12=52=522, ∴252≤(a +2)2+(b +2)2≤13.。
人教A版高中数学必修二3.3.3 点到直线的距离3.3.4 两条平行直线间的距离

人教A版高中数学必修二3.3.3点到直线的距离3.3.4两条平行直线间的距离选择题(2016·青岛高一检测)已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()A. 4B.C.D.【答案】D【解析】因为3x+2y-3=0和6x+my+1=0互相平行,所以3∶2=6∶m,所以m=4.直线6x+4y+1=0可以转化为3x+2y+=0,由两条平行直线间的距离公式可得:d===.点晴:本题考查的是两条平行直线间的距离。
用两条平行直线间的距离公式时,要注意两条直线要化成直线方程的一般式,并且两条直线方程中的系数要,这时才可以有两条平行直线间的距离为。
选择题点P(a,0)到直线3x+4y-6=0的距离大于3,则实数a的取值范围为()A. a>7B. a7或a7或-3>3,解得a>7或a=5,故0【答案】直线l2的方程是x+y-3=0.【解析】试题分析:由l1∥l2设出l2的方程y=-x+b(b>1),梯形的高h就是两平行直线l1与l2的距离,然后由梯形的面积求解试题解析:设l2的方程为y=-x+b(b>1),则图中A(1,0),D(0,1),B(b,0),C(0,b).所以AD=,BC= b.梯形的高h就是两平行直线l1与l2的距离,故h==(b>1),由梯形面积公式得×=4,所以b2=9,b=±3.但b>1,所以b=3.从而得到直线l2的方程是x+y-3=0.选择题点P为x轴上一点,点P到直线3x-4y+6=0的距离为6,则点P 的坐标为()A. (8,0)B. (-12,0)C. (8,0)或(-12,0)D. (0,0)【答案】C【解析】设P(x0,0),因为d==6,所以|3x0+6|=30,故x0=8或x0=-12.故选C选择题已知点(a,1)到直线x-y+1=0的距离为1,则a的值为()A. 1B. -1C.D. ±【答案】D【解析】.由题意,得=1,即|a|=,所以a=±.解答题在△ABC中,A(3,2),B(-1,5),点C在直线3x-y+3=0上,若△ABC的面积为10,求点C的坐标.【答案】点C的坐标为(-1,0)或.【解析】试题分析:根据三角形的面积公式,所以只需求AB两点间距离,然后设C点坐标,利用点到直线的距离公式,即可求出C 点坐标试题解析:由题知|AB|==5,因为S△ABC=|AB|·h=10,所以h=4.设点C的坐标为(x0,y0),而AB的方程为y-2=-(x-3),即3x+4y-17=0.所以解得或所以点C的坐标为(-1,0)或.选择题过点P(1,2)引直线,使A(2,3),B(4,-5)到它的距离相等,则这条直线的方程为()A. 4x+y-6=0B. x+4y-6=0C. 2x+3y-7=0或x+4y-6=0D. 3x+2y-7=0或4x+y-6=0【答案】D【解析】显然直线斜率存在,设直线方程为:y-2=k(x-1),即kx-y+2-k=0,A,B到直线距离相等,则=,解得k=-4或k=-,代入方程得4x+y-6=0或3x+2y-7=0.点晴:本题考查的是过一点到另外两点距离相等的直线方程。
高中必修2-3.4点到点、点到直线、直线与直线间的距离
高中必修2-3.4点到点、点到直线、直线与直线间的距离一、两点间的距离思考:已知平面上两点P 1(x 1,y 1), P 2(x 2,y 2),如何求P 1,P 2的距离 P 1P 2 ?在直角△P 1QP 2中,特别地,原点O (0,0)与任意一点P(x,y)的距离为22y x OP +=例1、已知点A (-1,2),B (2,7),在x 轴上求一点P ,使PB PA =,并求PA 的值。
例2、证明平行四边形四条边的平方和等于两条对角线的平方和。
二、点到直线距离公式.已知点P 0(x 0,y 0),直线l :Ax +By +C =0,则点P 0到直线l 的距离是_______________.2221221QP Q P P P +=1221212211y y N N QP x x M M Q P -==-==()()21221221y y x xP P -+-=结论:点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离为:例1 求点P(-1,2)到直线①2x+y -10=0; ②3x=2的距离。
解: ①根据点到直线的距离公式,得()521210211222=+-⨯+-⨯=d②如图,直线3x=2平行于y 轴,35)1(32=--=∴d小结:1.点到直线距离公式 注意: 化为一般式.2.特殊情况三、两平行线间距离公式.2.两条平行线Ax+By+C 1=0与Ax+By+C 2=0的距离是取直线Ax+By+C 1=0上一点P 0(x 0,y 0),当x= x 0时,y 0=-0B ,即点P 0坐标为: P 0(x 0,-AX 0+CB), P 0到直线Ax+By+C 2=0的距离是例2 求平行线2x -7y+8=0与2x -7y-6=0的距离。
分析:直线到直线的距离转化为点到直线的距离课后高频考点练习直线的交点坐标与距离公式高频考点练习题(人教A版)一、单选题(共12道,每道8分)1.已知点A(2,m)与点B(m,1)之间的距离等于,则实数m的值为( )A.-1B.4C.-1或4D.-4或12.已知点A(-1,2),点B(2,),点P在x轴上,使,则点P坐标是( )A.(2,0)B.(-2,0)C.(1,0)D.(-1,0)3.过和的交点且与平行的直线是( )A. B. C. D.4.若直线经过直线和的交点,且垂直于直线,则直线的方程为( )A. B. C. D.5.已知点M(2,-3),N(-3,-2),直线与线段MN相交,则实数a的取值范围是( )A. B. C. D.6.无论m取何实数,直线恒过定点( )A.(2,3)B.(1,3)C.(2,4)D.(3,4)7.若M(2,3),N(4,-5),直线过P(1,2),且点M,N到直线的距离相等,则直线的方程为( )A. B. C.D.8.两平行直线与之间的距离为( )A. B. C.1 D.9.与直线的距离为的直线的方程是( )A. B. C. D.10.到两直线和的距离相等的点P(x,y)满足的方程是( )A. B. C. D.11.已知两条平行直线,,则到直线的距离与到直线的距离之比是3:2的直线方程是( )A. B.C. D.12.已知,,则S的最小值是( )A.0B.2C.4D.参考答案:1.解题思路:试题难度:三颗星知识点:两点间距离公式的应用2.解题思路:试题难度:三颗星知识点:两点间距离公式的应用3. 解题思路:试题难度:三颗星知识点:两条直线的交点坐标4.解题思路:试题难度:三颗星知识点:两条直线的交点坐标5.解题思路:试题难度:三颗星知识点:恒过定点的直线6.解题思路:试题难度:三颗星知识点:恒过定点的直线7.解题思路:试题难度:三颗星知识点:点到直线的距离公式8. 解题思路:试题难度:三颗星知识点:两条平行直线间的距离9. 解题思路:试题难度:三颗星知识点:两条平行直线间的距离10.解题思路:试题难度:三颗星知识点:两条平行直线间的距离11.解题思路:试题难度:三颗星知识点:两条平行直线间的距离12.解题思路:试题难度:三颗星知识点:两点间距离公式的应用。
2019_2020学年高中数学第二章解析几何初步1.5平面直角坐标系中的距离公式练习(含解析)北师大版必修2
1.5 平面直角坐标系中的距离公式填一填1.两点间的距离公式 (1)数轴上:一般地,数轴上两点A ,B 对应的实数分别是x A ,x B ,则|AB |=|x B -x A |. (2)平面直角坐标系中:一般地,若两点A ,B 对应的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=x 2-x 12+y 2-y 12. 2.点到直线的距离点P (x 0,y 0)到直线Ax +By +C =0的距离记为d ,则d =|Ax 0+By 0+C |A 2+B2. 3.两平行线间的距离两条平行直线的方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,两条直线间的距离记为d ,即d =|C 2-C 1|A 2+B2.判一判1.原点O 到点P (x ,y )的距离为|OP |=x 2+y 2.(√) 23.平面内任意两点间的距离均可使用两点间的距离公式.(√)4.直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0的距离是|C 1-C 2|.(×)5.原点到直线Ax +By +C =0的距离公式是|C |A 2+B2.(√)6.平行线间的距离是两平行线上两点间距离的最小值.(√) 7.连接两条平行直线上两点,即得两平行线间的距离.(×)8想一想1. 提示:点到直线的距离公式只适用直线方程的一般式.2.两条平行直线间的距离公式写成d =|C 1-C 2|A 2+B 2时对两条直线应有什么要求?提示:两条平行直线的方程都是一般式,并且x ,y 的系数分别对应相等. 3.两条平行直线间距离有哪几种求法? 提示:(1)直接利用两平行线间的距离公式.(2)在一条直线上任意选取一点利用点到直线的距离公式求解(一般要选特殊的点,如直线与坐标轴的交点、坐标为整数的点).(3)当两直线都与x 轴(或y 轴)垂直时,可利用数形结合来解决. ①当两直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2,则d =|x 2-x 1|; ②当两直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2,则d =|y 2-y 1|. 4.距离公式综合应用的常见类型有哪些? 提示:(1)最值问题.①利用对称转化为两点之间的距离问题.②利用所求式子的几何意义转化为点到直线的距离.③利用距离公式将问题转化为一元二次函数的最值问题,通过配方求最值. (2)求参数问题.利用距离公式建立关于参数的方程或方程组,通过解方程或方程组求值. (3)求方程的问题.立足确定直线的几何要素——点和方向,利用直线方程的各种形式,结合直线的位置关系(平行直线系、垂直直线系及过交点的直线系),巧设直线方程,在此基础上借助三种距离公式求解.思考感悟:练一练1.已知A (3,7),B A .5 B. 5 C .3 D .29 答案:B2.已知直线上两点A (a ,b ),B (c ,d ),且a 2+b 2-c 2+d 2=0,则( ) A .原点一定是线段AB 的中点 B .A ,B 一定都与原点重合C .原点一定在线段AB 上,但不是线段AB 的中点D .原点一定在线段AB 的垂直平分线上 答案:D3.点(1,-1)到直线x -y +1=0的距离是( )A .3 2 B.22C .3 D.322答案:D4.点(5,-3)到直线x +2=0的距离等于( ) A .7 B .5 C .3 D .2 答案:A5.直线l 1:x +y =0与直线l 2:2x +2y +1=0间的距离是________.答案:24知识点一两点间距离公式的应用1.已知点A (2,m )与点B (m,1)间的距离是13,则实数m =( )A .-1B .4C .-1或4D .-4或1 解析:∵|AB |=m -22+1-m 2=13,∴m 2-3m -4=0,解得m =-1或m =4. 答案:C2.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 解析:BC 中点为(-1,2),所以BC 边上中线长为2+12+1-22=10. 答案:10知识点二 求点到直线的距离3.已知点(a,1)到直线x -y +1=0的距离为1,则a 的值为( ) A .1 B .-1 C. 2 D .± 2解析:由题意,得|a -1+1|12+-12=1,即|a |=2, 所以a =± 2.故选D. 答案:D4.点P (x ,y )在直线x +y -4=0上,O 是原点,则|OP |的最小值是( ) A.10 B .2 2 C. 6 D .2解析:由题意可知|OP |的最小值即原点(0,0)到直线x +y -4=0的距离d =|-4|2=2 2.知识点三 两条平行直线间的距离5.12b +c 等于( )A .-12B .48C .36D .-12或48解析:将l 1:3x +4y +5=0改写为6x +8y +10=0, 因为两条直线平行,所以b =8. 由|10-c |62+82=3,解得c =-20或c =40.所以b +c =-12或48.故选D. 答案:D6.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A .4 B.21313C.51326 D.71326解析:由两直线平行可知36=2m ≠-31,故m =4.又方程6x +4y +1=0可化简为3x +2y +12=0,∴平行线间的距离为|12--3|22+32=71326.故选D. 答案:D知识点四 对称问题7.直线y =3xA .y =3x -10B .y =3x -18C .y =3x +4D .y =4x +3解析:在直线上任取两点A (1,-1),B (0,-4),则其关于点P 的对称点A ′,B ′可由中点坐标公式求得为A ′(3,-1),B ′(4,2),由两点式可求得方程为y =3x -10.答案:A8.直线2x +3y -6=0关于点(1,-1)对称的直线的方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线的方程为2x +3y +C =0(C ≠-6).在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)对称的点为(-1,-2),则点(-1,-2)必在所求直线上,∴2×(-1)+3×(-2)+C =0,解得C =8. 故所求直线的方程为2x +3y +8=0. 答案:D综合知识 距离公式的综合应用9.已知△ABC 中,A (2,-1),B (4,3),C (3,-2). (1)求BC 边上的高所在直线方程的一般式; (2)求△ABC 的面积.解析:(1)因为k BC =3--24-3=5,所以BC 边上的高AD 所在直线斜率k =-15.所以AD 所在直线方程为y +1=-15(x -2).即x +5y +3=0.(2)BC 的直线方程为:y +2=5(x -3). 即5x -y -17=0,点A 到直线BC 的距离为|2×5--1-17|52+-12=626. 又因为|BC |=3-42+-2-32=26,所以△ABC 的面积S =12×626×26=3.10.已知直线l 1经过点A (0,1),直线l 2经过点B (5,0),且直线l 1∥l 2,l 1与l 2间的距离为5,求直线l 1,l 2的方程.解析:∵直线l 1∥l 2,∴当直线l 1,l 2垂直于x 轴时,直线l 1的方程为x =0,直线l 2的方程为x =5, 这时直线l 1,l 2之间的距离等于5,符合题意. 当直线l 1,l 2不垂直于x 轴时,可设其斜率为k , 依题意得,直线l 1的方程为y =kx +1,即kx -y +1=0,直线l 2的方程为y =k (x -5), 即kx -y -5k =0.由两条平行直线间的距离公式,得|1+5k |1+k2=5, 解得k =125.∴直线l 1的方程为12x -5y +5=0,直线l 2的方程为12x -5y -60=0.综上,符合题意的直线l 1,l 2的方程有两组:l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0.基础达标一、选择题1.点P (1,-1)到直线l :3y =2的距离是( )A .3 B.53C .1 D.22解析:点P (1,-1)到直线l 的距离d =|3×-1-2|02+32=53,选B. 答案:B2.已知点M (1,4)到直线l :mx +y -1=0的距离为3,则实数m =( )A .0 B.34C .3D .0或34解析:点M 到直线l 的距离d =|m +4-1|m 2+1=|m +3|m 2+1,所以|m +3|m 2+1=3,解得m =0或m =34,选D.答案:D3.两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为( ) A.1310 B.135 C.72 D.235解析:直线3x +4y -12=0,即直线6x +8y -24=0,根据直线3x +4y -12=0与ax +8y +11=0平行,可得a =6,故两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为|-24-11|36+64=72. 答案:C4.已知点A (1,3),B (3,1),C (-1,0),则△ABC 的面积等于( ) A .3 B .4 C .5 D .6解析:设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=3-12+1-32=22,AB 边上的高h 就是点C 到直线AB 的距离.AB 边所在的直线方程为y -31-3=x -13-1,即x +y -4=0.点C 到直线x +y -4=0的距离为|-1+0-4|2=52,因此,S △ABC =12×22×52=5.答案:C5.直线l 垂直于直线y =x +1,原点O 到l 的距离为1,且l 与y 轴正半轴有交点.则直线l 的方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0解析:因为直线l 与直线y =x +1垂直,所以设直线l 的方程为y =-x +b .又l 与y 轴正半轴有交点,知b >0,即x +y -b =0(b >0),原点O (0,0)到直线x +y -b =0(b >0)的距离为|0+0-b |12+12=1,解得b =2(b =-2舍去),所以所求直线l 的方程为x +y -2=0. 答案:A6.已知△ABC 的三个顶点是A (-a,0),B (a,0)和C ⎝ ⎛⎭⎪⎫a2,32a ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形解析:因为k AC =32a a 2+a =33,k BC =32a a2-a=-3,k AC ·k BC =-1,所以AC ⊥BC ,又|AC |=⎝ ⎛⎭⎪⎫a 2+a 2+⎝ ⎛⎭⎪⎫32a 2=3|a |. |BC |=⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫32a -02=|a |,|AC |≠|BC |. 所以△ABC 为直角三角形.答案:C7.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2 C. 2 D .4解析:由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=3 2.答案:A 二、填空题8.已知点A (-1,2),B (3,b )的距离是5,则b =________.解析:根据两点间的距离公式,可得3+12+b -22=5,解得b =5或b =-1. 答案:5或-19.若点(2,k )到直线5x -12y +6=0的距离是4,则k 的值是________.解析:∵|5×2-12k +6|52+122=4, ∴|16-12k |=52,∴k =-3,或k =173.答案:-3或17310.两直线3x +y -3=0与6x +my +n =0平行且距离为10,则m +n =________. 解析:因为两直线平行,所以m =2, 由两平行线的距离公式知⎪⎪⎪⎪⎪⎪-3-n 232+12=10, 解得n =14或n =-26.所以m +n =16或m +n =-24. 答案:16或-2411.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________________________________________________________________________.解析:显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, 所以k =2或k =-23.所以所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=012.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________.解析:求x 2+y 2的最小值,就是求2x +y +5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x +y +5=0的距离d =522+12= 5. 答案: 5 三、解答题13.已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解析:(1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见,过P 点垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2.若直线l 的斜率存在,设其方程为y +1=k (x -2),即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34,此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2)过P 点且与原点O 距离最大的直线是过P 点且与OP 垂直的直线.由l ⊥OP ,得k l k OP=-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,存在过点P 且到原点距离最大为5的直线,因此不存在过点P 到原点距离为6的直线.14.已知直线l 1:x +3y -3m 2=0和直线l 2:2x +y -m 2-5m =0相交于点P (m ∈R ). (1)用m 表示直线l 1与l 2的交点P 的坐标;(2)当m 为何值时,点P 到直线x +y +3=0的距离最短?并求出最短距离.解析:(1)解方程组⎩⎪⎨⎪⎧x +3y -3m 2=0,2x +y -m 2-5m =0,得x =3m ,y =m 2-m ,∴直线l 1与l 2的交点P 的坐标为(3m ,m 2-m ).(2)设点P 到直线x +y +3=0的距离为d ,d =|3m +m 2-m +3|2=|m 2+2m +3|2=|m +12+2|2=m +12+22,∴当m =-1时,即P 点坐标为(-3,2)时,点P 到直线x +y +3=0的距离最短,最短距离为 2.能力提升15.已知两点A (2,3),B (4,1),直线l :x +2y -2=0,在直线l 上求一点P . (1)使|PA |+|PB |最小; (2)使||PA |-|PB ||最大.解析:(1)可判断A ,B 在直线l 的同侧,设A 点关于l 的对称点A 1的坐标为(x 1,y 1), 则有⎩⎪⎨⎪⎧x 1+22+2·y 1+32-2=0,y 1-3x 1-2·⎝ ⎛⎭⎪⎫-12=-1,解得⎩⎪⎨⎪⎧x 1=-25,y 1=-95.由直线的两点式方程得直线A 1B 的方程为y -1-95-1=x -4-25-4,即y =711(x -4)+1,由⎩⎪⎨⎪⎧x +2y -2=0,y =711x -4+1得直线A 1B 与l 的交点为P ⎝⎛⎭⎪⎫5625,-325,由平面几何知识可知,此时|PA |+|PB |最小.(2)由直线的两点式方程求得直线AB 的方程为y -31-3=x -24-2,即x +y -5=0.由⎩⎪⎨⎪⎧x +2y -2=0,x +y -5=0得直线AB 与l 的交点为P (8,-3),此时||PA |-|PB ||最大.16.已知三条直线l 1:mx -y +m =0,l 2:x +my -m (m +1)=0,l 3:(m +1)x -y +(m +1)=0,它们围成△ABC .(1)求证:不论m 取何值时,△ABC 中总有一个顶点为定点; (2)当m 取何值时,△ABC 的面积取最值?并求出最值. 解析:(1)证明:设直线l 1与直线l 3的交点为A .由⎩⎪⎨⎪⎧mx -y +m =0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0,∴点A 的坐标为(-1,0),∴不论m 取何值,△ABC 中总有一个顶点A (-1,0)为定点.(2)由⎩⎪⎨⎪⎧ x +my -m m +1=0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =0,y =m +1,即l 2与l 3交点为B (0,m +1).再由⎩⎪⎨⎪⎧mx -y +m =0,x +my -m m +1=0,解得⎩⎪⎨⎪⎧x =m m 2+1,y =m 3+m 2+mm 2+1,即l 1与l 2交点为C ⎝ ⎛⎭⎪⎫mm 2+1,m 3+m 2+m m 2+1.设边AB 上的高为h , ∴S △ABC =12|AB |·h =12·1+m +12·⎪⎪⎪⎪⎪⎪m m +1m 2+1-m 3+m 2+m m 2+1+m +1m +12+1=12·|m 2+m +1|m 2+1=12·m 2+m +1m 2+1=12⎝ ⎛⎭⎪⎫1+m m 2+1.当m =0时,S =12;当m ≠0时,S =12⎝⎛⎭⎪⎪⎫1+1m +1m . ∵函数f (x )=x +1x的值域为[2,+∞)∪(-∞,-2].∴-12≤1m +1m <0或0<1m +1m≤12,∴14≤S <12或12<S ≤34. 当m =1时,△ABC 的面积的最大值为34,当m =-1时,△ABC 的面积的最小值为14.。
人教版高数必修二第10讲:点、直线的距离和对称(学生版)
点、直线的距离和对称____________________________________________________________________________________________________________________________________________________________________掌握点、直线的距离问题;会求解直线对称的问题.一、距离问题1.设平面上两点()()111222,,,P x y P x y ,则____________________为两点间距离2.点P (x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离d =___________________.3.两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0的距离d =_______________二、对称问题1.关于点对称问题(1)点关于点对称点()00,M x y 关于点(),P a b 的对称点是_____________.特别地,点()00,M x y 关于原点的对称点为___________.(2)线关于点对称已知l 的方程为:0Ax By C ++=()220A B +≠和点()00,P x y ,则l 关于P 点的对称直线方程.设'P ()'',x y 是对称直线'l 上任意一点,它关于()00,P x y 的对称点____________在直线l 上,代入得()()''00220A x x B y y C -+-+=.此直线即为所求对称直线.2.关于线对称问题(1)点关于线对称已知点()00,M x y ,直线:l 0Ax By C ++=()0A B ≠g ,设点M 关于直线l 的对称点为()00,N x y ,则由1MN l k k =-g 得到一个关于,m n 的方程,又线段MN 的中点在直线l 得到另一个关于,m n 的方程,解方程组00001022n y A B m x x m y n A B C -⎧-⨯=-⎪-⎪⎨++⎪++=⎪⎩g g 即可求出点()00,N x y .特别说明:①点()00,M x y 关于x 轴对称的点的坐标是_______,关于y 轴对称点的坐标是_______ ②点()00,M x y 关于直线y x =的对称点坐标是______,关于y x =-对称点为______(2)线关于线对称已知1111:0,:0l A x B y C l Ax By C ++=++=,求直线1l 关于直线l 对称直线2l . 如右图所示,在直线上任取不同于l 与1l 交点P 的任一点M ,先求出点M关于直线l 的对称点N 的坐标,再由,N P 在2l 上,用两点式求出直线2l 的方程.常见的对称结论有:设直线:0l Ax By C ++=.① l 关于x 轴的对称的直线是:()0Ax B y C +-+=;②l 关于y 轴的对称的直线是:()0A x By C -++=;③l 关于原点的对称的直线是:()()0A x B y C -+-+=;④l 关于y x =的对称的直线是:0Ay Bx C ++=;⑤l 关于y x =-的对称的直线是:()()0A y B x C -+-+=;类型一 点到直线的距离例1:求点P (3,-2)到下列直线的距离:(1)3x -4y -1=0;(2)y =6;(3)y 轴.练习1:求点P (-1,2)到直线2x +y -5=0的距离;练习2:点A (a,6)到直线3x -4y =2距离等于4,求a 的值;练习3:求过点A (-1,2)且与原点距离等于22的直线方程.N M P l 2ll 1O y x例2:已知在△ABC 中,A (3,2)、B (-1,5),C 点在直线3x -y +3=0上.若△ABC 的面积为10,求C 点坐标.练习1:求经过点P (1,2)的直线,且使A (2,3),B (0,-5)到它的距离相等的直线方程.练习2:若动点()111,P x y ,()222,P x y 分别在直线12:50,:150l x y l x y --=--=上移动,则12P P 的中点P 到原点的距离的最小值是( )A .2B ..2D .类型二 两条平行线之间的距离例3:求两平行线l 1:3x +4y =10和l 2:3x +4y =15的距离.练习1:(2014·陕西汉中市南郑中学高一期末测试)两平行直线x +3y -4=0与2x +6y -9=0的距离是________.练习2:已知平行线2330x y +-=与2390x y +-=,则与它们等距离的直线方程是( )A .23120x y +-=B .2360x y +-=C .230x y +=D .2330x y ++= 类型三 对称问题例4:(2014·甘肃高台一中月考)点P (-1,1)关于直线ax -y +b =0的对称点是Q (3,-1),则a 、b 的值依次是( )A .-2,2B .2,-2C.12, -12D.12,12练习1已知直线l :y =3x +3,求点P (4,5)关于直线l 的对称点坐标.练习2:已知(),P a b 和()1,1Q b a -+是关于直线l 对称的两点,则直线l 的方程为()A .0x y +=B .0x y -=C .10x y ++=D .10x y -+=例5:在直线l :3x -y -1=0上求一点P ,使得:(1)P 到A (4,1)和B (0,4)的距离之差最大;(2)P 到A (4,1)和C (3,4)的距离之和最小.练习1:已知()()3,5,2,15A B -,直线:3440l x y -+=(1)在l 上求一点P ,使PA PB +的值最小;(2)在l 上求一点Q ,使QA QB -的值最小.练习2:若动点()111,P x y ,()222,P x y 分别在直线12:50,:150l x y l x y --=--=上移动,则12P P 的中点P 到原点的距离的最小值是( )A .522 B .52 C .1522 D .1521.已知点()()1,3,2,6A B -,则AB 的长及中点坐标分别是( )A .()32,1,9--B .1932,22⎫-⎪⎭C .193,22⎫--⎪⎭D .1932,22⎫⎪⎭2.若点(),6A a 到直线342x y -=的距离等于4,则a 的值是( )A .2B .463C .0或2D .2或4633.过点()1,2A -且与原点的距离等于22的直线方程是( ) A .10x y +-= B .750x y ++=C .10x y +-=或750x y ++=D .10x y --=或750x y ++=4.若点P 到点()()120,1,7,2P P 及x 轴的距离相等,则P 的坐标是( ) A .()3,5 B .()17,145- C .()3,5或()17,145- D .以上全不对5.(2014·山东东营市广饶一中高一期末测试)两平行线4x +3y -1=0与8x +6y +3=0之间的距离是( )A.25B.110C.15D.126.(2014·山东临沂高一期末测试)若点P (x ,y )在直线x +y -4=0上,O 为原点,则|OP |的最小值是( )A.10B .2 2 C. 6D .27.已知平行四边形相邻两边所在的直线方程是l 1:x -2y +1=0和l 2:3x -y -2=0,此四边形两条对角线的交点是(2,3),则平行四边形另外两边所在直线的方程是( )A .2x -y +7=0和x -3y -4=0B .x -2y +7=0和3x -y -4=0C .x -2y +7=0和x -3y -4=0D .2x -y +7=0和3x -y -4=08.(2014·福建安溪八中高一期末测试)两平行直线x +3y -5=0与x +3y -10=0的距离是________.9.已知正方形中心G (-1,0),一边所在直线方程为x +3y -5=0,求其他三边所在直线方程._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A.2 B .2- 2 C.2-1 D.2+12.过点(1,2)且与原点距离最大的直线方程是( )A .x +2y -5=0B .2x +y -4=0C .x +3y -7=0D .3x +y -5=03.P 、Q 分别为3x +4y -12=0与6x +8y +5=0上任一点,则|PQ |的最小值为( )A.95B.185C.2910D.2954.过点A (-3,1)的直线中,与原点距离最远的直线方程为________________.能力提升5.直线7x +3y -21=0上到两坐标轴距离相等的点的个数为( )A .3B .2C .1D .06.两平行直线l 1,l 2分别过点P (-1,3)、Q (2,-1),它们分别绕P 、Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是( )A .(0,+∞)B .[0,5]C .(0,5]D .[0,17]7.已知a 、b 、c 为某一直角三角形的三边长,c 为斜边,若点P (m ,n )在直线ax +by +2c =0上,则m 2+n 2的最小值为________.8.与三条直线l 1:x -y +2=0,l 2:x -y -3=0,l 3:x +y -5=0,可围成正方形的直线方程为__________.9.△ABC 的三个顶点是A (-1,4)、B (-2,-1)、C (2,3).(1)求BC 边的高所在直线的方程;(2)求△ABC 的面积S .10.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.。
高中数学 必修二 3.3.2两点间的距离公式练习
3.3.2两点间的距离公式练习新人教A版必修2一、选择题1.点M(1,2)关于y轴的对称点N到原点的距离为( )A.2 B.1 C. 5 D.5[答案] C[解析] N(-1,2),|ON|=-2+22= 5.故选C.2.已知A(2,1),B(-1,b),|AB|=5,则b等于( )A.-3 B.5C.-3或5 D.-1或-3[答案] C[解析] 由两点间的距离公式知|AB|=-1-2+b-2=b2-2b+10,由5=b2-2b+10,解得b=-3或b=5.3.一条平行于x轴的线段长是5个单位,它的一个端点是A(2,1),则它的另一个端点B的坐标为( )A.(-3,1)或(7,1) B.(2,-2)或(2,7)C.(-3,1)或(5,1) D.(2,-3)或(2,5)[答案] A[解析] ∵AB∥x轴,∴设B(a,1),又|AB|=5,∴a=-3或7.4.设点A在x轴上,点B在y轴上,AB的中点是P(2,-1),则|AB|等于( ) A.5 B.4 2C.2 5 D.210[答案] C[解析] 设A(x,0)、B(0,y),由中点公式得x=4,y=-2,则由两点间的距离公式得|AB|=-2+-2-2=20=2 5.5.△ABC三个顶点的坐标分别为A(-4,-4)、B(2,2)、C(4,-2),则三角形AB边上的中线长为( )A.26 B.65C.29 D.13[答案] A[解析] AB的中点D的坐标为D(-1,-1).∴|CD|=-1-2+-1--2=26;故选A .6.已知三点A (3,2),B (0,5),C (4,6),则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形[答案] C [解析] |AB |=-2+-2=32,|BC |=-2+-2=17, |AC |=-2+-2=17,∴|AC |=|BC |≠|AB |, 且|AB |2≠|AC |2+|BC |2.∴△ABC 是等腰三角形,不是直角三角形,也不是等边三角形. 二、填空题7.已知点M (m ,-1),N (5,m ),且|MN |=25,则实数m =_________. [答案] 1或3 [解析] 由题意得m -2+-1-m2=25,解得m =1或m =3.8.已知A (1,-1),B (a,3),C (4,5),且|AB |=|BC |,则a =_________. [答案] 12[解析] a -2++2=-a2+-2,解得a =12.三、解答题9.求证:等腰梯形的对角线相等. [证明] 已知:等腰梯形ABCD . 求证:AC =BD .证明:以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图平面直角坐标系.设A (-a,0)、D (b ,c ),由等腰梯形的性质知B (a,0),C (-b ,c ). 则|AC |=-b +a2+c -2=a -b2+c 2,|BD |=b -a2+-c2=a -b 2+c 2,∴|AC |=|BD |.即:等腰梯形的对角线相等.10.已知直线l 1:2x +y -6=0和A (1,-1),过点A 作直线l 2与已知直线交于点B 且|AB |=5,求直线l 2的方程.[解析] 当直线l 2的斜率存在时,设其为k ,则⎭⎪⎬⎪⎫l 2:y +1=k x -又由2x +y -6=0⇒(k +2)x =k +7, 而k ≠-2,故解得x =k +7k +2,所以B (k +7k +2,4k -2k +2), 又由|AB |=5,利用两点间距离公式得k +7k +2-2+4k -2k +2+2=5⇒k =-34,此时l 2的方程为3x +4y +1=0.而当l 2的斜率不存在时,l 2的方程为x =1.此时点B 坐标为(1,4),则|AB |=|4-(-1)|=5,也满足条件综上,l 2的方程为3x +4y +1=0或x =1.能力提升一、选择题1.已知点A (2,3)和B (-4,1),则线段AB 的长及中点坐标分别是( ) A .210,(1,2) B .210,(-1,-2) C .210,(-1,2) D .210,(1,-2)[答案] C [解析] |AB |=-4-2+-2=210,中点坐标为(2-42,3+12),即(-1,2),故选C .2.已知两点P (m,1)和Q (1,2m )之间的距离大于10,则实数m 的范围是( ) A .-45<m <2B .m <-45或m >2C .m <-2或m >45D .-2<m <45[答案] B[解析] 根据两点间的距离公式 |PQ |=m -2+-2m2=5m 2-6m +2>10⇒5m 2-6m -8>0⇒m <-45或m >2.3.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A 、B ,则|AB |等于( )A .895 B .175C .135D .115[答案] C[解析] 易得A (0,-2),B (-1,25).∴|AB |=-1-2+25+2=135. 4.在直线2x -3y +5=0上求点P ,使P 点到A (2,3)距离为13,则P 点坐标是( ) A .(5,5)B .(-1,1)C .(5,5)或(-1,1)D .(5,5)或(1,-1)[答案] C[解析] 设点P (x ,y ),则y =2x +53,由|PA |=13得(x -2)2+(2x +53-3)2=13,即(x -2)2=9,解得x =-1或x =5, 当x =-1时,y =1,当x =5时,y =5,∴P (-1,1)或(5,5). 二、填空题5.已知点A (5,2a -1),B (a +1,a -4),若|AB |取得最小值,则实数a 的值是_________. [答案] 12[解析] 由题意得|AB |=-a -2+a -1-a +2=2a 2-2a +25=a -122+492,所以当a =12时,|AB |取得最小值.6.已知点A (4,12),在x 轴上的点P 与点A 的距离等于13,则点P 的坐标为_________. [答案] (9,0)或(-1,0) [解析] 设P (a,0),则a -2+122=13,解得a =9或a =-1,∴点P 的坐标为(9,0)或(-1,0). 三、解答题7.用坐标法证明定理:若四边形ABCD 是长方形,则对平面内任一点M ,等式AM 2+CM 2=BM 2+DM 2成立.[解析] 以一个直角所在的两边为坐标轴,建立直角坐标系.证明:如图,取长方形ABCD 的两条边AB 、AD 所在的直线分别为x 轴、y 轴建立直角坐标系.设长方形ABCD 的四个顶点分别为A (0,0)、B (a,0)、C (a ,b )、D (0,b ).在平面上任取一点M (m ,n ),则有AM 2+CM 2=m 2+n 2+(m -a )2+(n -b )2,BM 2+DM 2=(m -a )2+n 2+m 2+(n -b )2,∴AM 2+CM 2=BM 2+DM 2.8.如下图所示,一个矩形花园里需要铺设两条笔直的小路,已知矩形花园的长AD =5 m ,宽AB =3 m ,其中一条小路定为AC ,另一条小路过点D ,问是否在BC 上存在一点M ,使得两条小路AC 与DM 相互垂直?若存在,则求出小路DM 的长.[分析] 建立适当的坐标系,转几何问题为代数运算.[解析] 以B 为坐标原点,BC 、BA 所在直线为x 、y 轴建立如图所示的平面直角坐标系.因为AD =5 m ,AB =3 m , 所以C (5,0),D (5,3),A (0,3). 设点M 的坐标为(x,0),因为AC ⊥DM , 所以k AC ·k DM =-1, 即3-00-5·3-05-x=-1. 所以x =3.2,即BM =3.2,即点M 的坐标为(3.2,0)时,两条小路AC 与DM 相互垂直. 故在BC 上存在一点M (3.2,0)满足题意. 由两点间距离公式得DM =-2+-2=3534.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典例题:已知过点A (1,1)且斜率为-m(m>0)的直线与x ,y 轴分别交于P 、Q ,过P 、Q 作直线02=+y x 的垂直平分线,垂足为R 、S ,求四边形PRSQ 的面积的最小值. 练习:1.方程y=k(x-2)表示( )A .过点(-2,0)的所有直线B .通过点(2,0)的所有直线C .通过点(2,0)且不垂直于x 轴的直线D .通过点(2,0)且除去x 轴的直线2.在等腰AOB 中,|AO|=|AB|,点O(0,0), A(1,3), 而点B 在x 轴的正半轴上,则此直线AB 的方程为( )A .y-1=3(x-3)B .y-1=-3(x-3)C .y-3=3(x-1)D .y-3=-3(x-1)3.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线沿y 轴负方向平移a(a ≠0)个单位,再沿轴正方向平移a +1个单位,若此时所得直线与直线重合,则直线l 的斜率是( )A .B .-C .D .-5.下列四个命题中的真命题是( )A .经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B .经过任意两个不同的点P1(x1,y1)和P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示C .不经过原点的直线都可以用方程+=1表示D .经过定点A (0,b )的直线都可以用方程y=kx+b 表示6.过点A (1,2)作直线使它在两坐标轴上的截距的绝对值相等,满足条件的直线的条数是( )A .1B .2C .3D .47.若直线(m+2)x+(m2-2m-3)y=2m在x轴上的截距是3,则m的值是()A.B.6 C.-D.-68.过点(5,2),且在x轴上的截距是在y轴上的截距的2倍的直线方程是()A.2x+y-12=0 B.2x+y-12=0 或2x-5y=0 C.x-2y-1=0 D.x+2y-9=0或2x-5y=0 9.二元一次方程Ax+By+C=0表示为直线方程,下列不正确叙述是()A.实数A、B必须不全为零B.A2+B20 C.所有的直线均可用Ax+By+C=0 (A2+B20)表示D.确定直线方程Ax+By+C=0须要三个点坐标待定A,B,C三个变量10.过点M(2,1)的直线与x轴,y轴分别相交于P,Q两点,且|MP|=|MQ|,则直线的方程是()A.x-2y+3=0 B.2x-y-3=0 C.2x+y-5=0 D.x+2y-4=011.若(m2-4)x+(m2-4m+3)y+1=0表示直线,则()A.m2且m1, m 3 B.m 2 C.m1,且m 3 D.m可取任意实数12.若直线ax+by+c=0在第一、二、三象限,则()A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<013.直线ax+by=1 (ab0)与两坐标轴围成的面积是()A.ab B.|ab| C.D.14.直线l过点A(0, 1)和B(-2, -1),如果直线l绕点A逆时针旋转450得直线l1,那么l1的方程是.如果直线l绕点B逆时针旋转450得直线l2,那么l2的方程是.15.以下四个命题: (1)所有直线总可以用直线的点斜式、斜截式表示; (2) 直线的点斜式和斜截式是可以等价转换的; (3)一次函数的图象是一条直线,直线方程总可以用一个一次函数去表示; (4) 斜截式y=kx+b中的b表示直线与y轴交点到原点的距离.其中正确命题的题号是________.16.直线过点(3,4),且在第一象限和两坐标轴围成的三角形的面积是24,则的截距式方程是_______________.17.若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则A,B,C应满足条件___________.18.求与两坐标轴围成三角形周长为9且斜率为-的直线方程.19.在直角坐标系中,过点A(1,2)且斜率小于0的直线中,当在两坐标轴上的截距之和最小时,求该直线的斜率.、20.光线从点A(-3,4)射出,经x轴上的点B反射后交y轴于C点,再经C点从y轴上反射恰好经过点D(-1,6),求直线AB,BC,CD的方程.21.已知直线1:y=4x与点P(6,4),在1上求一点Q,使直线PQ与直线1,以及x 轴在第一象限围成的三角形面积最小.参考答案:经典例题:解:设方程为,则从而可得直线PR和QS的方程分别为:和又PR∥QS∴又|PR|,四边形PRSQ为梯形∴∴四边形PRSQ的面积的最小值为3.6.当堂练习:1.C;2.D;3.C;4.B;5.B;6.C;7.D;8.D;9.D; 10.D; 11.D; 12.D; 13.D; 14. x=0,y= -1; 15. (2); 16.; 17. A且B,C R;18.解:设直线的斜截式方程为y=-x+b, 令x=0, y=b; 令y=0, x=b, 由|b|+|b|+, 即(1++)|b|=9,得|b|=3,即b=3,所求直线的方程为y=-x 3.19.解:设直线方程为y-2=k(x-1) (k<0),令y=0, x=1-; 令x=0, y=2-k ,则截距和b=(1-)+(2-k)=3+(-)+(-k), 当且仅当-=-k, 即k= -(k<0).另解: b= (1-)+(2-k),整理成关于k的一元二次方程:k2+(b-3)k+2=0有实数解,因此=(b-3)2-80,即b,此时k= -.20. 解:作点A关于x轴的对称点A1(-3,-4),D点关于y轴的对称点D1(1,6),直线A1D1(即直线BC)的方程为5x-2y+7=0, 令y=0,得x= -,即B(-,0),同理可求得C(0,),于是可求得直线AB的方程为5x+2y+7=0, 直线CD的方程为5x+2y-7=0.21. 解:设Q(x1,4x1), x1>1, 过两点P、Q的直线方程为, 若QP交x轴于点M(x2,0),得x2=, M(,0). ,由S=,得10x12-Sx1+S=0,据0,得S40,当S=40时,x1=2, 点Q(2,8).经典例题:已知三角形的两个顶点是B (2,1)、C (-6, 3), 垂心是H (-3, 2), 求第三个顶A的坐标.当堂练习:1.下列命题中正确的是()A.平行的两条直线的斜率一定相等B.平行的两条直线的倾斜角相等C.斜率相等的两直线一定平行D.两直线平行则它们在y轴上截距不相等2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为,则m,n的值分别为()A.4和3 B.-4和3 C.-4和-3 D.4和-33.直线:kx+y+2=0和:x-2y-3=0, 若,则在两坐标轴上的截距的和()A.-1 B.-2 C.2 D.64.两条直线mx+y-n=0和x+my+1=0互相平行的条件是()A. m=1 B.m= 1 C.D.或5.如果直线ax+(1-b)y+5=0和(1+a)x-y-b=0同时平行于直线x-2y+3=0,则a、b的值为()A.a=, b=0 B.a=2, b=0 C.a=-, b=0 D.a=-, b=26.若直线ax+2y+6=0与直线x+(a-1)y+(a2-1)=0平行但不重合,则a等于()A.-1或2 B.-1 C.2 D.7.已知两点A(-2,0),B(0,4),则线段AB的垂直平分线方程是()A.2x+y=0 B.2x-y+4=0 C.x+2y-3=0 D.x-2y+5=08.原点在直线上的射影是P(-2,1),则直线的方程为()A.x+2y=0 B.x+2y-4=0 C.2x-y+5=0 D.2x+y+3=09.两条直线x+3y+m=0和3x-y+n=0的位置关系是()A.平行B.垂直C.相交但不垂直D.与m,n的取值有关10.方程x2-y2=1表示的图形是()A.两条相交而不垂直的直线B.一个点C.两条垂直的直线D.两条平行直线11.已知直线ax-y+2a=0与直线(2a-1)x+ay+a=0互相垂直,则a等于()A.1 B.0 C.1或0 D.1或-112.点(4,0)关于直线5x+4y+21=0对称的点是()A.(-6,8)B.(-8,-6)C.(6,8)D.(-6,-8)13.已知点P(a,b)和点Q(b-1,a+1)是关于直线对称的两点,则直线的方程为()A.x+y=0 B.x-y=0 C.x+y-1=0 D.x-y+1=014.过点M(3,-4)且与A(-1,3)、B(2,2)两点等距离的直线方程是__________________.15.若两直线ax+by+4=0与(a-1)x+y+b=0垂直相交于点(0, m),则a+b+m的值是_____________________.16.若直线1:2x-5y+20=0和直线2:mx-2y-10=0与坐标轴围成的四边形有一个外接圆,则实数m的值等于________.17.已知点P是直线上一点,若直线绕点P沿逆时针方向旋转角(00<<900)所得的直线方程是x-y-2=0, 若将它继续旋转900-,所得的直线方程是2x+y-1=0, 则直线的方程是___________.18.平行于直线2x+5y-1=0的直线与坐标轴围成的三角形面积为5,求直线的方程.19.若直线ax+y+1=0和直线4x+2y+b=0关于点(2,-1)对称,求a、b的值.20.已知三点A(1,0),B(-1,0),C(1,2),求经过点A并且与直线BC垂直的直线的方程.21.已知定点A(-1,3),B(4,2),在x轴上求点C,使AC BC.参考答案:经典例题:解:AC BH,, 直线AB的方程为y=3x-5 (1)AB CH,, 直线AC的方程为y=5x+33 (2)。
由(1)与(2)联立解得A点的坐标为(-19,-62).当堂练习:1.B; 2.C; 3.C; 4.D; 5.C; 6.B; 7.C; 8.C; 9.B; 10.C; 11.D; 12.D; 13.D; 14. x+3y+9=0 或13x+5y-19=0; 15. 2或-1; 16. -5; 17. x-2y-3=0;18. 解:依题意,可设的方程为2x+5y+m=0, 它与x,y轴的交点分别为(-,0),(0,-),由已知条件得:,m2=100, 直线的方程为2x+5y10=0.19. 解:由4x+2y+b=0,即2x+y+=0, 两直线关于点对称,说明两直线平行,a=2.在2x+y+1=0上取点(0,-1),这点关于(2,-1)的对称点为(4,-1),又(4,-1)满足2x+y+=0, 得b= -14, 所以a=2, b= -14.20. 解:kBC==1,kl =-1, 所求的直线方程为y= -(x-1),即x+y-1=0.21. 解:设C(x,0)为所求点,则kAC=, kBC=AC BC,kAC kBC=-1,即x=1或x=2, 故所求点为C(1,0)或C(2,0)能力提升17.(2010北京丰台,模拟)圆关于直线对称,则ab的取值范围是A.B.C.D.18.设P为圆上的动点,则点P到直线的距离的最小值是_________.19.(2010天津南开,模拟)两圆交于点A(1,3)和B(m,1),两圆的圆心都在直线上,则的值等于________.综合探究20.(2011 课标20)在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于两点,且,求的值.能力提升17. A解析:∵直线过圆心,∴ -2a-2b+2=0,即a+b=1,∴,∴.18.1解析:圆的圆心是O(0,0),圆心O到直线的距离是,所以点P到直线的距离的最小值是.故填1.19. 3解析:由题意,AB与直线垂直,且AB中点在上,∴,m=3,,∴ c=0,∴ m+c=3.20. 解析:(1)曲线与轴的交点为,与轴的交点为,.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,其坐标满足方程组:消去,得到方程由已知可得,判别式因此,从而(1)由于,可得又,所以由(1)(2)得,满足故.。