《点到直线的距离公式》教案(公开课)

合集下载

点到直线的距离公式教案

点到直线的距离公式教案

点到直线的距离公式教案一、教学目标:1.知识目标:了解点到直线的距离的概念和计算公式。

2.能力目标:学会运用点到直线的距离公式解决实际问题。

3.情感目标:培养学生的数学思维能力和解决问题的能力,增强对数学的兴趣和自信心。

二、教学重难点:1.重点:理解点到直线的距离的概念和计算公式。

2.难点:如何将点到直线的距离公式运用到实际问题中。

三、教学过程:1.导入新知识:教师通过实例引导学生回顾如何计算点到直线的距离。

即,点离直线的距离等于点到直线上任意一点所在的垂直平面的距离。

2.点到直线的距离公式的推导:教师通过几何证明或向量证明的方式,推导出点到直线的距离公式。

3.生命周期函数的说明:教师解释什么是函数,如何用函数表示点到直线的距离。

4.点到直线距离公式的使用:教师给出一些实际题材的例子,如房屋平面图中特定点离直线的距离、飞机在空中的高度等,要求学生运用点到直线的距离公式解决问题。

5.练习与讨论:教师布置一些相关的练习题,让学生独自或小组合作解答,并讨论解题思路和方法。

6.示范与操练:教师随机抽一道题目,为学生演示解题过程,并请学生依次完成该题目的解答。

7.温故知新:教师总结重要知识点和思路,帮助学生复习和巩固所学的知识。

8.拓展应用:教师设计一些能够拓展学生思维的应用题,要求学生分析问题并运用点到直线的距离公式解决。

9.讲评与总结:教师和学生共同讨论和总结此次学习的内容,强化学生对点到直线的距离公式的理解和应用。

四、教学评价:1.学生的课堂表现,包括参与讨论、解答问题的积极性和准确性。

2.学生完成的练习题和应用题答案的准确性和深入性。

3.学生在讲评环节的思维能力和解决问题的方法。

五、教学反思:本节课通过引入实例、推导公式、训练练习和应用题拓展等方式,帮助学生掌握了点到直线的距离的计算公式。

同时,通过讨论和解析问题,提高学生的数学思维能力。

但是,需要对练习和应用题的设计进行修改,增加一些开放性和质量较高的题目,以提高学生的解决问题的能力。

《点到直线的距离》教学设计(优质课)

《点到直线的距离》教学设计(优质课)

点到直线的距离(一)教学目标1.知识与技能理解点到直线距离公式的推导,熟练掌握点到直线距离公式.2.过程和方法会用点到直线距离公式求解两平行线距离.3.情感和价值认识事物之间在一定条件下的转化,用联系的观点看问题.(二)教学重点、难点教学重点:点到直线的距离公式.教学难点:点到直线距离公式的理解与应用.(三)教学方法学导式教学环节教学内容师生互动设计意图复习引入前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,两点间的距离公式。

逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我用POWERPOINT打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学.要求学生思考点到直线的距离的计算?能否用两点间距离公式进行推导?设置情境导入新课们将研究怎样由点的坐标和直线的方程求点P到直线l 的距离.概念形成1.点到直线距离公式点P (x0,y0)到直线l:Ax +By + C = 0的距离为0022||Ax By CdA B++=+推导过程方案一:设点P到直线l的垂线段为PQ,垂足为Q,由PQ⊥l可知,直线PQ的斜率为BA(A≠0),根据点斜式写出直线PQ的方程,并由l与PQ的方程求出点Q的坐标:由此根据两点距离公式求出|PQ|,得到点P到直线l的距离为d.此方法虽思路自然,但运算较繁,下面我们探讨另一种(1)教师提出问题已知P(x0,y0),直线l:Ax+ By+C= 0,怎样用点的坐标和直线方程直接求点P到直线l的距离呢?学生自由讨论(2)数形结合,分析问题,提出解决方案.把点到直线l的距离转化为点P到l的垂线段的长,即点到点的距离.画出图形,分析任务,理清思路,解决问题. 寻找最佳方案,附方案二.方案二:设A≠0,B≠0,这时l与x轴、y轴都相交,过点P作x轴的平行线,交l于点R (x1,y0);作y轴的平行线,交l于点S(x0,y2),由11002A x By CAx By C++=⎧⎨++=⎩得0012,By C Ax Cx yA B----==通过这种转化,培养学生“化归”的思想方法.方法.所以0001||||||Ax By CPR x x A++=-=0002||||||Ax By CPS y y B++=-=22||RS PR PS =+=22||A B AB +00||Ax By C ⨯++由三角形面积公式可知d ·|RS |=|PR |·|PS |. 所以0022||Ax By C d A B++=+可证明,当A = 0时仍适用. 这个过程比较繁琐,但同时也使学生在知识、能力、意志品质等方面得到了提高.应用举例例1 求点P = (–1,2 )到直线3x = 2的距离. 解:22|3(1)2|5330d ⨯--==+例2 已知点A (1,3),B (3,1),C (–1,0),求三角形ABC的面积.学生分析求解,老师板书 例2 解:设AB 边上的高为h ,则221||2||(31)(13)22ABCSAB h AB =⋅=-+-=AB 边上的高h 就是点C 到AB 的距离.AB 边所在直线方程为311331y x --=-- 即x + y – 4 = 0.点C 到x + y – 4 = 0的距离为h2|104|5112h -+-==+, 通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性.因此,1522522S ABC=⨯⨯=概念深化2.两平行线间的距离d已知l1:Ax + By + C1 = 0l2:Ax + By + C2 = 01222||C CdA B-=+证明:设P0 (x0,y0)是直线Ax + By + C2= 0上任一点,则点P0到直线Ax+ By + C1=0的距离为00122||Ax By CdA B++=+.又Ax0 + By0 + C2 = 0即Ax0 + By0= –C2,∴1222||C CdA B-=+教师提问:能不能把两平行直线间距离转化为点到直线的距离呢?学生交流后回答.再写出推理过程进一步培养学生化归转化的思想.应用举例例3 求两平行线l1:2x + 3y– 8 = 0l2:2x + 3y– 10 =0的距离.解法一:在直线l1上取一点P(4,0),因为l1∥l2,所以P到l2的距离等于l1与l2的距离,于是22|243010|2131323d⨯+⨯-==+在教师的引导下,学生分析思路,再由学生上台板书.开拓学生思维,培养学生解题能力.备选例题例1 求过点M (–2,1)且与A (–1,2),B (3,0)两点距离相等的直线的方程. 解法一:当直线斜率不存在时,直线为x = –2,它到A 、B 两点距离不相等. 所以可设直线方程为:y – 1 = k (x + 2)即kx – y + 2k + 1 = 0. 由=解得k = 0或12k =-.故所求的直线方程为y – 1 = 0或x + 2y = 0. 解法二:由平面几何知识:l ∥AB 或l 过AB 的中点.若l ∥AB 且12AB k =-,则l 的方程为x + 2y = 0. 若l 过AB 的中点N (1,1)则直线的方程为y = 1. 所以所求直线方程为y – 1 = 0或x + 2y = 0.例2 (1)求直线2x + 11y + 16 = 0关于点P (0,1)对称的直线方程.(2)两平行直线3x + 4y – 1 = 0与6x + 8y + 3 = 0关于直线l 对称,求l 的方程. 【解析】(1)当所求直线与直线2x + 11y + 16 = 0平行时,可设直线方程为2x + 11y + C =0由P 点到两直线的距离相等,即=,所以C = –38.所求直线的方程为2x + 11y – 38 = 0.(2)依题可知直线l 的方程为:6x + 8y + C = 0. 则它到直线6x + 8y – 2 = 0的距离1d =到直线6x + 8y + 3 = 0的距离为2d =所以d 1 = d 2=12C =.即l 的方程为:16802x y ++=.例3 等腰直角三角形ABC 的直角顶点C 和顶点B 都在直线2x + 3y – 6 = 0上,顶点A 的坐标是(1,–2).求边AB 、AC 所在直线方程.【解析】已知BC 的斜率为23-,因为BC ⊥AC 所以直线AC 的斜率为32,从而方程32(1)2y x +=- 即3x – 2y – 7 = 0又点A (1,–2)到直线BC :2x + 3y – 6 = 0的距离为||AC =,且||||AC BC =.由于点B 在直线2x + 3y – 6 = 0上,可设2(,2)3B a a -,且点B 到直线AC的距离为2|32(2)7|a a --- 13|11|103a -= 所以1311103a -=或1311103a -=-,所以6313a =或313 所以6316(,)1313B -或324(,)1313B 所以直线AB 的方程为162132(1)63113y x -++=--或242132(1)3113y x ++=-- 即x – 5y – 11 = 0或5x + y – 3 = 0 所以AC 的直线方程为:3x – 2y – 7 = 0AB 的直线方程为:x – 5y – 11 = 0或5x + y – 3 = 0.。

《点到直线的距离公式》示范公开课教学设计【高中数学必修4(北师大版)】

《点到直线的距离公式》示范公开课教学设计【高中数学必修4(北师大版)】

《点到直线的距离公式》教学设计“点到直线的距离”是在学生学习直线方程的基础上,进一步研究两直线位置关系的一节内容,我们知道两条直线相交后,进一步的量化关系是角度,而两条直线平行后,进一步的量化关系是距离,而平行线间的距离是通过点到直线距离来解决的。

【知识与能力目标】1掌握点到直线距离公式及其应用。

2.会用点到直线距离求两平行线间的距离。

【过程与方法目标】经历公式的形成过程,体会由实例得出公式的方法,培养学生提出问题、分析问题和解决问题的能力。

【情感态度价值观目标】通过推导公式方法的发现,培养学生观察、思考、分析、归纳等数学能力;在推导过程中,渗透数形结合、转化(或化归)等数学思想以及特殊与一般的方法;通过本节学习,引导学生用联系与转化的观点看问题,体验在探索问题的过程中获得的成功感。

【教学重点】理解点到直线的距离公式,并能进行简单应用【教学难点】会用点到直线距离求两平行线间的距离电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。

一、复习引入。

回顾:两点间的距离公式平面上P 1(x 1,y 1),P 2(x 2,y 2)两点间的距离公式P 1P 2=x 2-x 12+y 2-y 12.特别地,当x 1=x 2=0,即两点在y 轴上时,P 1P 2=|y 1-y 2|;当y 1=y 2=0,即两点在x 轴上时,P 1P 2=|x 1-x 2|。

巩固练习1.点(-2,3)到原点的距离为________。

【解析】 d =-2-02+3-02=13。

【答案】13。

2.三角形三顶点为A (-1,0),B (2,1),C (0,3),则△ABC 的三边长分别为________。

【解析】 |AB |=2+12+1-02=10,|AC |=0+12+3-02=10, |BC |=2-02+1-32=22。

【答案】10,10,22。

回顾:中点坐标公式对于平面上的两点P 1(x 1,y 1),P 2(x 2,y 2),线段P 1P 2的中点是M (x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22.。

高中数学教案点到直线的距离公式

高中数学教案点到直线的距离公式

高中数学教案【课题】点到直线的距离公式【课题类型】新知课【教学目的】1.使学生了解点到直线的距离公式的推导过程2.要求学生牢记并会灵活运用点到直线的距离公式【重点】掌握并会灵活运用点到直线的距离公式【难点】点到直线的距离公式的推导过程【教学过程】1.引出新课⑴提出问题让同学们思考,在平面直角坐标系中,如果已知某点P的坐标为(x0,y0),直线L的方程Ax+By+C=0,那么怎样由点的坐标和直线的方程直接求出点P到直线L的距离呢?⑵提问问题找同学回答点到直线的距离是如何定义的(点P到直线L的距离d是点P到直线L的垂线段的长度⑶做出图形让同学观察图形,则图中PQ即为所求点到直线的距离引导学生思考,若求PQ,则要用到连点之间的距离公式,因此要求出点配合点Q的坐标,由于P点的坐标已知,因此之需求Q.若求Q,由于Q是直线L与直线PQ的交点,因此需要求出直线PQ的方程,又点P的坐标已知,PQ与直线L垂直,故PQ的斜率为B/A通过以上分析,可计算出PQ的长度,即点P到直线L的距离要求学生下去自己求解,但由于计算过程复杂,问是否有简单的方法呢?2.讲新课I.分析过程⑴在图上作出过P点与x轴,y轴垂直的直线PS,PR与直线分别交与S,R让同学们观察是不是有什么新的思路。

⑵两分钟后,和同学们一起分析,PQ相当于直角三角线PRS斜边上的高,即S=1/2|RS||PQ| 然而,直角三角形的面积S=1/2|PR||PS|因此有1/2|RS||PQ|=1/2|PR||PS|即|PQ|=|PR||PS|/PQ⑶那么要求|PQ|,只需求解|PS|,|PR|,|PQ|,那么怎么求解这几个量呢?II.推倒过程此时,可设P(x0,y0),则R(x1,y0),S(x0,y2) 由Ax1+By0+C=0Ax0+By2+C=0得x1=(-By0-C)/A y2=(-Ax0-C)/B所以,|PR|=|x0-x1|=|(Ax0+By0+C)/A||PS|=|y0-y2|=|(Ax0+By0+C)/C||RS|=√PR*PR+PS*PS=√A*A+B*B/AB*| Ax0+By0+C|代入面积公式,得|PQ|=| Ax0+By0+C|/√A*A+B*B3.讲例题求点P(X0.Y0)到直线2X+Y-10=0的距离【留作业】85页2,3题。

点到直线的距离公式教案

点到直线的距离公式教案

点到直线的距离公式教案教案标题:点到直线的距离公式教案教学目标:1. 理解点到直线的距离公式的概念和应用。

2. 掌握使用点到直线的距离公式计算点到直线的距离。

3. 运用点到直线的距离公式解决实际问题。

教学准备:1. 教师准备:投影仪、白板、黑板、白板笔、教学PPT、教学素材。

2. 学生准备:课本、笔记本、铅笔、计算器。

教学过程:引入活动:1. 使用一张图片或实物,向学生展示一个点和一条直线,并提问:如何计算点到直线的距离?2. 让学生思考并讨论这个问题,引导他们思考点到直线的距离公式的可能性。

知识讲解:1. 通过教学PPT或黑板,向学生介绍点到直线的距离公式的概念和推导过程。

2. 解释公式中的各个符号的含义,如点的坐标、直线的一般方程等。

3. 提供示例,演示如何使用点到直线的距离公式计算点到直线的距离。

示例练习:1. 提供一些简单的示例问题,让学生尝试使用点到直线的距离公式计算点到直线的距离。

2. 引导学生思考并解决问题中可能遇到的困难和问题。

3. 鼓励学生在小组内互相讨论和交流解题思路和答案。

拓展应用:1. 提供一些实际生活中的问题,让学生运用点到直线的距离公式解决问题。

2. 引导学生分析问题,确定如何应用点到直线的距离公式进行计算。

3. 鼓励学生在小组内分享和讨论解题思路和答案。

总结归纳:1. 总结点到直线的距离公式的应用和计算方法。

2. 强调学生掌握并理解该公式的重要性和实际应用价值。

3. 鼓励学生在课后继续练习和应用点到直线的距离公式。

评估活动:1. 提供一些评估题目,让学生独立完成并提交答案。

2. 评估学生对点到直线的距离公式的理解和应用能力。

教学延伸:1. 鼓励学生在课余时间进一步研究和应用点到直线的距离公式。

2. 推荐相关的教学资源和参考书籍,帮助学生深入学习和理解该知识点。

教学反思:1. 教师对本节课的教学进行总结和反思,分析学生的学习情况和问题。

2. 根据学生的反馈和表现,调整教学策略和方法,进一步优化教学效果。

点到直线的距离公式教案

点到直线的距离公式教案

点到直线的距离公式教案教学目标:1. 理解点到直线的距离定义;2. 知道点到直线的距离公式及其推导过程;3. 能够熟练运用点到直线的距离公式求解相关题目。

教学重点:1. 点到直线的距离定义;2. 点到直线的距离公式的推导过程。

教学难点:能够熟练运用点到直线的距离公式求解相关题目。

教学准备:1. 教师准备白板、黑板笔、教学PPT等教学工具;2. 学生准备纸、铅笔和计算器。

教学过程:一、导入(5分钟)教师可以通过以下问题导入:怎样计算一个点到一条直线的距离呢?请学生思考并提出自己的见解。

二、讲解点到直线的距离定义(5分钟)教师通过PPT展示点到直线的距离定义,并解释清楚每个术语的含义。

例如,点$P(x_0,y_0)$ 到直线$Ax+By+C=0$的距离定义为点P到直线上一点$Q(x,y)$的最短距离。

三、推导点到直线的距离公式(15分钟)教师通过几何解析法详细讲解点到直线的距离公式的推导过程。

具体步骤如下:1. 假设点P到直线的距离为d,直线上的一点为Q;2. 连接PQ,假设直线的斜率为k,直线上点Q的坐标为$(x,y)$;3. PQ的斜率为$\frac{y-y_0}{x-x_0}$,与直线的斜率k相乘得到-1,即$\frac{y-y_0}{x-x_0}\cdot k=-1$;4. 化简上式得到$y=kx+kx_0-y_0$;5. PQ的长度为$d=\sqrt{(x-x_0)^2 + (y-y_0)^2}$;6. 代入$y=kx+kx_0-y_0$得到$d=\frac{|Ax+By+C|}{\sqrt{A^2+B^2}}$。

四、概念讲解(5分钟)教师讲解点到直线的距离公式中的一些常见概念和符号,例如,|x|表示x的绝对值,A、B、C分别表示直线的系数。

五、例题演练(20分钟)教师通过多个例题的演练来帮助学生掌握点到直线的距离公式的运用。

学生可以通过纸和铅笔分步解题,最后用计算器求得具体数值。

六、巩固练习(10分钟)教师布置一些类似的练习题,要求学生用点到直线的距离公式来解答。

《点到直线的距离》的说课稿[大全5篇]

《点到直线的距离》的说课稿[大全5篇]

《点到直线的距离》的说课稿[大全5篇]第一篇:《点到直线的距离》的说课稿一、教学方法的选择(1)指导思想:在“以生为本”理念的指导下,充分体现“教师为主导,学生为主体”。

(2)教学方法:问题解决法、讨论法等。

本节课的任务主要是公式推导思路的获得和公式的推导及应用。

我选择的是问题解决法、讨论法等。

通过一系列问题,创造思维情境,通过师生互动,让学生体验、探究、发现知识的形成和应用过程,以及思考问题的方法,促进思维发展;学生自主学习,分工合作,使学生真正成为教学的主体。

二、教学用具的选用在选用教学用具时,我考虑到,在本节课的公式推导和例题求解中思路较多,所以采用了计算机多媒体和实物投影仪作为辅助教具.它可以将数学问题形象、直观显示,便于学生思考,实物投影仪展示学生不同解题方案,提高课堂效率。

三、关于教学过程的设计“数学是思维的体操”,一题多解可以培养和提高学生思维的灵活性,及分析问题和解决问题的能力.课程标准指出,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识间的有机联系,感受数学的整体性。

课标又指出,鼓励学生积极参与教学活动.为此,在具体教学过程中,把本节课分为以下:“创设情境提出问题——自主探索推导公式——变式训练学会应用——学生小结教师点评——课外练习巩固提高”五个环节来完成.下面对每个环节进行具体说明。

(一)[创设情境提出问题]1、这一环节要解决的主要问题是:创设情境,引导学生分析实际问题,由实际问题转化为数学问题,揭示本课任务.同时激发学生学习兴趣,培养学生数学建模能力.2、具体教学安排:多媒体显示实例,电信局线路问题,实际怎样解决?能否转化为解析几何问题?学生很快想到建立坐标系.如何建立坐标系?建系不同,点和直线方程不同,用点的坐标和直线方程如何解决距离问题,由此引出本课课题“点到直线的距离”。

(二)[自主探索推导公式]1、这一环节要解决的主要问题是:充分发挥学生的主体作用,引导学生发现点到直线距离公式的推导方法,并推导出公式.在公式的推导过程中,围绕两条线索:明线为知识的学习,暗线为特殊与一般的逻辑方法以及转化、数形结合等数学思想的渗透。

高中数学点到直线的距离公开课教案

高中数学点到直线的距离公开课教案

《点到直线的距离》教学设计教材:人教A版高中《数学》必修2第三章第3.3.3节【教学内容解析】《点到直线的距离》是人教A版高中《数学》必修2中第三章第3.3.3节的内容. 它既是两点间距离公式的延续,又为导出两平行线间距离公式作了铺垫,具有承上启下的重要作用.这一节课的任务是:给出已知点的坐标与已知直线的方程,求点到直线的距离,建立点到直线的距离公式.从课型来说,应该属于“问题教学”.以一个问题为载体,学生在教师的引导与帮助下,分析、研究问题,制定解决问题的策略,选择解决问题的方法.本节课的教学重点是点到直线距离公式的探索与应用;难点是点到直线距离公式的推导.本节课蕴含特殊到一般,转化与化归,数形结合,函数与方程等丰富的数学思想方法.【教学目标设置】1.探索并掌握点到直线的距离公式;学会点到直线距离公式的应用.2.通过经历公式多种推导方案的设计及比较,领会特殊到一般,转化与化归,数形结合,函数与方程等丰富的数学思想方法.3.在探索问题的过程中,在运算的比较与优化思考的过程中,感受数学的严谨与统一,感受数学的形式美与简洁美.【学生学情分析】学生已经学习了直线的倾斜角和斜率,两点间的距离公式,且具备了相关的几何知识和三角函数知识,如:交点、垂直、三角函数等. 学生对坐标法解决几何问题有初步的认识.【教学策略分析】本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学.通过合作交流,类比联想,归纳化归,总结提升,让学生在学习中学会怎样发现问题、分析问题、解决问题.【教学过程】一、回顾旧知 引出课题回顾两点间的距离公式,同时,引出课题——点到直线的距离.【设计意图】平面图形最基本的要素是点和线.在研究了两点间距离公式后,很自然地会去研究点线间的距离,当然还可以更深入地去探究两平行线间的距离.这三个距离公式是一脉相承的,因此,这样引入自然、贴切,符合学生的认知规律.二、特例探路 巧作铺垫引例:已知点(2,1)P ,直线l 的方程为290x y +-=,求点P 到直线l 的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《点到直线的距离公式》教案
一、教学目标
(一)知识教学点
点到直线距离公式的推导思想方法及公式的简单应用.
(二)能力训练点
培养学生数形结合能力,综合应用知识解决问题的能力、类比思维能力,训练学生由特殊到一般的思想方法.
(三)知识渗透点
由特殊到一般、由感性认识上升到理性认识是人们认识世界的基本规律.
二、教材分析
1.重点:展示点到直线的距离公式的探求思维过程.
2.难点:推导点到直线距离公式的方法很多,怎样引导学生数形结合,利用平面几何知识得到课本上给出的证法是本课的难点,可构造典型的、具有启发性的图形启发学生逐层深入地思考问题.
3.疑点:点到直线的距离公式是在A≠0、B≠0的条件下推得的.事实上,这个公式在A=0或B=0时,也是成立的.
三、活动设计
启发、思考,逐步推进,讲练结合.
四、教学过程
(一)提出问题
已知点P(x0,y0)和直线l:Ax+By+C=0,点的坐标和直线的方程确定后,它们的位置也就确定了,点到直线的距离也是确定的,怎样求点P到直线l的距离呢?
(二)构造特殊的点到直线的距离学生解决
思考题1 求点P(2,0)到直线L:x-y=0的距离(图1-33).
学生可能寻求到下面三种解法:
方法2 设M(x,y)是l:x-y=0上任意一点,则
当x=1时|PM|有最小值,这个值就是点P到直线l的距离.
方法3 直线x-y=0的倾角为45°,在Rt△OPQ中,|PQ|=|OP|
进一步放开思路,开阔眼界,还可有下面的解法:
方法4 过P作y轴的平行线交l于S,在Rt△PAS中,|PO|=|PS|
方法5 过P作x轴的垂线交L于S
∵|OP|·|PS|=|OS|·|PQ|,
比较前面5种解法,以第3种或4种解法为最佳,那么第3种解法是否可以向一般情况推广呢?
思考题2 求点P(2.0)到直线2x-y=0的距离(图1-34).
思考题 3求点P(2,0)到直线2x-y+2=0的距离(图1-35).
思考题4 求点P(2,1)到直线2x-y+2=0的距离(图1-36).
过P作直线的垂线,垂足为Q,过P作x轴的平行线交直线于R,
(三)推导点到直线的距离公式有思考题4作基础,我们很快得到
设A≠0,B≠0,直线l的倾斜角为α,过点P作PR∥Ox, PR与l交于R(x1,x1)(图1-37).
∵PR∥Ox,
∴y1=y.
代入直线l的方程可得:
当α<90°时(如图1-37甲),α1=α.
当α>90°时(如图1-37乙),α1=π-α.
∵α<90°,
∴|PQ|=|PR|sinα1
这样,我们就得到平面内一点P(x0,y0)到一条直线Ax+By+C=0的距离公式:
如果A=0或B=0,上面的距离公式仍然成立,但这时不需要利用公式就可以求出距离.
(四)例题
例1 求点P0(-1,2)到直线:(1)2x+y-10=0,(2)3x=2的距离.
解:(1)根据点到直线的距离公式,得
(2)因为直线3x=2平行于y轴,所以
例2 求平行线2x-7y+8=0和2x-7y-6=0的距离.
解:在直线2x-7y-6=0上任取一点,例如取P(3,0),则两平行线间的距离就是点P(3,0)到直线2x-7y+8=0的距离(图1-38).
例3 正方形的中心在C(-1,0),一条边所在的直线方程是x+3y-5=0,求其它三边所在的直线方程.
解:正方形的边心距
设与x+3y-5=0平行的一边所在的直线方程是x+3y+C1=0,则中心到
C1=-5(舍去0)或C1=7.
∴与x+3y-5=0平行的边所在的直线方程是x+3y+7=0.
设与x+3y-5=0垂直的边所在的直线方程是3x-y+C2=0,则中心到这
解之有C2=-3或C2=9.
∴与x+3y-5=0垂直的两边所在的直线方程是3x-y-3=0和3x-y+9=0.
(五)课后小结
(1)点到直线的距离公式及其证明方法.
(2)两平行直线间的距离公式.
五、布置作业
1.(1.10练习第1题)求坐标原点到下列直线的距离:
2.(1.10练习第2题)求下列点到直线的距离:
3.(1.10练习第3题)求下列两条平行线的距离:
(1)2x+3y-8=0, 2x+3y+18=0.
(2)3x+4y=10, 3x+4y=0.
解:x-y-6=0或x-y+2=0.
5.正方形中心在C(-1,0),一条边所在直线方程是3x-y二0,求其它三边所在的直线方程.
解:此题是例3交换条件与结论后的题:x+3y-5=0, x+3y+7=0, 3x-y+9=0.六、板书设计。

相关文档
最新文档