限时规范练 模拟三

合集下载

2024年上海中考数学模拟练习卷三及参考答案

2024年上海中考数学模拟练习卷三及参考答案

上海2024年中考模拟练习试卷3数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=+D .211y x =+3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC=B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数11y x =-的定义域为.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB =.(用a 和b表示)16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是三、解答题(共78分)19.(本题612282-.20.(本题8分)解不等式组:2832x x x <⎧⎨->⎩.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x轴向左平移()0m m>个单位得到新抛物线,且新抛物线仍经过点C,求m的值.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.2024年中考预测模拟考试一(上海卷)数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=【答案】C 【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.4442a a a +=,故该选项不正确,不符合题意;B.448a a a ⋅=,故该选项不正确,不符合题意;C.()1446a a =,故该选项正确,符合题意;D.844a a a ÷=,故该选项不正确,不符合题意;故选:C .【点评】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项的运算法则是解题的关键.2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=D .211y x =【答案】C【分析】设211x y x +=+,则原方程化为2760y y -+=,从而可得答案.【详解】解:()22611711x x x x +++=++,设211x y x +=+,3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定【答案】B【分析】根据平均数的求法求出平均数,再求出两组数据的方差,再比较即可解答.5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等【答案】C【分析】根据已知条件判断出平行四边形,再根据有一个角是直角判断矩形,最后根据矩形的性质判断正确选项即可.【详解】解:∵2AB CD ==,3BC AD ==,∴四边形ABCD 是平行四边形,∵有一个内角是直角,∴四边形ABCD 是矩形,∴对角线互相平分,对角相等,对角线相等,故A ,B ,D 正确,不合题意;对角线不一定互相垂直,故C 错误,符合题意;故选C .【点评】本题考查了矩形的判定和性质,解题的关键是根据已知条件判断出该四边形是矩形.6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC =B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=【答案】B【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形;②对角线相等的梯形是等腰梯形;③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【详解】解:A 、∵四边形ABCD 为梯形,且AD //BC ,AB DC =,∴四边形ABCD 是等腰梯形,故本选项不符合题意;B 、∠DAB =∠ABC ,不能推出四边形ABCD 是等腰梯形,故本选项符合题意;C 、∵四边形ABCD 为梯形,且AD //BC ,∠ABC =∠DCB ,∴四边形ABCD 是等腰梯形,故本选项不符合题意;D 、∵四边形ABCD 为梯形,且AD //BC ,AC DB =,∴四边形ABCD 是等腰梯形,故本选项不符合题意.故选:B .【点评】本题考查了等腰梯形的判定定理,等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.【答案】(9)(9)m m +-【分析】利用平方差公式22()()a b a b a b -=+-进行因式分解即可.【详解】解:281(9)(9)m m m -=+-,故答案为:(9)(9)m m +-.【点评】本题主要考查因式分解,掌握平方差公式是解题的关键.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数1y x =-的定义域为.【答案】1x ≠【分析】求函数的定义域就是找使函数有意义的自变量的取值范围.【详解】解:函数要有意义,则10x -≠,解得:1x ≠,故答案为:1x ≠.【点评】本题考查的知识点是函数的定义域,关键要知道函数有意义的自变量的取值范围.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.【答案】±2【分析】一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac =0,建立关于k 的等式,求出k 的值.【详解】由题意知方程有两相等的实根,∴△=b 2-4ac =k 2-4=0,解得k =±2,故答案为:±2.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.【答案】21y x =-(答案不唯一)【分析】根据二次函数的性质,抛物线开口向下a >0,与y 轴负半轴由交点c <0,然后写出即可.【详解】解:开口向上,并且与y 轴交点在y 轴负半轴,∴抛物线的表达式可以是:y =x 2﹣1.故答案为y =x 2﹣1(答案不唯一).【点评】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与y 轴的交点得到解析式.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB = .(用a 和b 表示)【答案】b a-【分析】根据题意,作出图形,由向量减法运算的三角形法则即可得到答案.【详解】解:如图所示:根据向量减法运算的三角形法则可得DB AB AD b a =-=- ,故答案为:b a - .【点评】本题考查向量的加法运算,熟练掌握向量运算法则是解决问题的关键.16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.【答案】280【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.【点评】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.【答案】30︒/30度18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是【答案】15r ≤≤【分析】求得B 在O 内部且有唯一公共点时B 的半径和⊙O 在B 内部且有唯一公共点时B 的半径,根据图形即可求得.【详解】解:如图,当B 在O 内部且有唯一公共点时,B 的半径为:321-=,当O 在B 内部且有唯一公共点时,B 的半径为325+=,∴如果B 与O 有公共点,那么B 的半径r 的取值范围是15r ≤≤,故答案为:15r ≤≤.【点评】本题考查了圆与圆的位置关系,注意掌握数形结合和分类讨论思想的应用.三、解答题(共78分)19.(本题612-.【答案】2【分析】根据二次根式的加减计算法则和负整数指数幂计算法则求解即可.20.(本题8分)解不等式组:2832x x x<⎧⎨->⎩.【答案】14x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由28x <得:4x <,由32x x ->得:1x >,则不等式组的解集为:14x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?【答案】(1)()6200y x x =-+>(2)6千米【分析】(1)根据高出的温度=地面温度-上升后降低的温度,列式即可得到答案;(2)把16y =-代入函数关系式进行计算即可得到答案.【详解】(1)解: 海拔高度每上升1千米,温度下降6℃,上海地面温度为20℃,()6200y x x ∴=-+>,∴y 与x 之间的函数关系式为:()6200y x x =-+>;(2)解:根据题意可得:当16y =-时,62016x -+=-,解得:6x =,∴此刻飞机离地面的高度为6千米.【点评】本题考查了一次函数的应用,读懂题目信息,根据高出的温度=地面温度-上升后降低的温度,得出函数关系式,是解题的关键.23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定等知识,相似三角形的判定与性质的运用是解题的关键.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x 轴向左平移()0m m >个单位得到新抛物线,且新抛物线仍经过点C ,求m 的值.【答案】(1)265y x x =-+,点C 的坐标是()0,5(2)6【分析】(1)用待定系数法求出二次函数的解析式,进而求出点C 的坐标;(2)把二次函数配方得到顶点式,根据题目进行平移解题即可.【详解】(1)解:把()1,0A 和()5,0B 代入2y x bx c =++010255b c b c=++⎧⎨=++⎩,解得65b c =-⎧⎨=⎩∴抛物线的表达式为265y x x =-+∴当0x =时,5y =∴点C 的坐标是()0,5(2)()226534y x x x =-+=--设平移后的抛物线表达式为()234y x m =-+-把()0,5C 代入得()25034m =-+-解得126,0m m ==∵0m >,∴6m =【点评】本题考查二次函数的解析式和抛物线的平移,掌握二次函数的图象和性质是解题的关键.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.方法二:连接OD=OB OD∴∠=∠OBD ODBDE AC⊥∴∠+∠=︒EDC C90AB AC=∴∠=∠ABC C∴∠=∠ODB C∴∠+∠=︒90 EDC ODBODE∴∠=︒.90∴⊥OD DE的半径 是OOD的切线∴是ODE方法三:连接OD=OB OD∴∠=∠OBD ODBAB AC=∴∠=∠ABC ACB∴∠=∠ODB ACB∴∥OD AC⊥DE AC方法二:、连接AM MB的直径 是OAB∴∠=︒AMB90MN AB⊥。

2023届浙江省温州市普通高中高三下学期选考适应性考试(三模)全真演练物理试题

2023届浙江省温州市普通高中高三下学期选考适应性考试(三模)全真演练物理试题

2023届浙江省温州市普通高中高三下学期选考适应性考试(三模)全真演练物理试题一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,一根弹簧一端固定在左侧竖直墙壁上,另一端连着小球A,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端。

开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为( )A .B.,C.,D.,第(2)题战绳训练中,运动员抖动战绳一端,使其上下振动,运动状态可视为简谐振动。

如图所示,足够长的战绳两端,两位运动员均以的频率、相同的起振方向同时上下抖动战绳,在战绳上传播的波速为,下列说法正确的是( )A.战绳上每个部分振幅都相同B.战绳上每个部分振动频率都为C.战绳上相邻的振动加强区相距为D.战绳上相邻的振动减弱区相距为第(3)题有一种瓜子破壳器其简化截面如图所示,将瓜子放入两圆柱体所夹的凹槽之间,按压瓜子即可破开瓜子壳。

瓜子的剖面可视作顶角为θ的扇形,将其竖直放入两完全相同的水平等高圆柱体A、B之间,并用竖直向下的恒力F按压瓜子且保持静止,若此时瓜子壳未破开,忽略瓜子重力,不考虑瓜子的形状改变,不计摩擦,若保持A、B距离不变,则( )A.圆柱体A、B对瓜子压力的合力为零B.顶角θ越大,圆柱体A对瓜子的压力越小C.顶角θ越大,圆柱体A对瓜子的压力越大D.圆柱体A对瓜子的压力大小与顶角θ无关第(4)题《史记》中对日晕有“日有晕,谓之日轮”的描述.如图(a)所示,日晕是日光通过卷层云时,受到冰晶的折射或反射而形成的。

图(b)为太阳光射到六边形冰晶上发生两次折射的光路图,对于图(b)中出射的单色光a,b,下列说法正确的是()A.单色光a的折射率比单色光b的折射率大B.在冰晶中,单色光a的传播速度比单色光b的传播速度大C.单色光a的频率比单色光b的频率大D.单色光a的单个光子能量比单色光b的单个光子能量大第(5)题如图所示,一绝热容器被隔板K分为A、B两部分,一定量的空气处于A中,而B中真空。

2021届《金版教程》高考物理大一轮总复习配套限时规范特训 选3-4-2-1 Word版含答案

2021届《金版教程》高考物理大一轮总复习配套限时规范特训 选3-4-2-1 Word版含答案

题组一 双基练1. [2021·福州高三期末]如图所示,一束光线从折射率为1.5的玻璃内射向空气,在界面上的入射角为45°,下面四个光路图中,正确的是 ( )解析:本题考查全反射条件.光从玻璃射向空气,是从光密介质射向光疏介质,由于玻璃的折射率n =1.5,因此发生全反射的临界角sin C =1n =23<22,所以C <45°,因此图中的光会发生全反射,A 项正确.答案:A2. [2022·福建高三仿真模拟]如图所示,有一束光投射到放在空气中的平行玻璃砖的表面Ⅰ上,下列说法中正确的是 ( )A. 假如在界面Ⅰ上入射角大于临界角,光将不会进入玻璃砖B. 光从界面Ⅱ射出时出射光线可能与最初的入射光线不平行C. 光进入界面Ⅰ后可能不从界面Ⅱ射出D. 不论光从什么角度入射,都能从界面Ⅱ射出解析:发生全反射的必要条件有两个,即光从光密介质射入光疏介质和入射角不小于临界角,本题中光从空气射入界面Ⅰ上时,光是从光疏介质射入光密介质,所以即使入射角大于临界角,光也不会发生全反射现象,光会进入玻璃砖,选项A 错误;由于光的上、下两个界面平行,光从界面Ⅱ射出时出射光线确定会与最初的入射光线平行,选项B 错误;光进入界面Ⅰ后,从玻璃射向界面Ⅱ时的入射角确定小于临界角,光确定会从界面Ⅱ射出,选项C 错误;不论光从什么角度入射,都能从界面Ⅱ射出,选项D 正确.答案:D3. 夜间行车光照在警示标志上后反射回来特殊醒目,主要是由于警示标志是由球形的反射物制成,如图,假设反射物为分布均匀的球形,其折射率为 3.某次灯光照射在该标志上后,经球形物一系列的折射和反射后,出射光线恰与入射光线平行,则第一次的入射角( )A. 30°B. 45°C. 60°D. 15°解析:设入射角为i ,折射角为θ,作出光路图,由于出射光线恰好和入射光线平行,所以i =2θ,依据折射定律sin i sin θ=sin2θsin θ=3,所以θ=30°,i =2θ=60°.答案:C4. [2022·江苏南京]如图甲所示,在安静的湖面下有一个点光源S ,它发出的是两种不同颜色的a 光和b光,在水面上形成了一个被照亮的圆形区域,该区域的中间为由ab 两种单色光构成的复色光的圆形区域,周边为环状区域,且为a 光的颜色(图乙为俯视图).则以下说法中正确的是 ( )A. 水对a 光的折射率比b 光的大B. a 光在水中的传播速度比b 光的大C. a 光的频率比b 光的大D. 在同一装置的杨氏双缝干涉试验中,a 光的干涉条纹比b 光窄解析:依据“周边为环状区域,且为a 光的颜色”知,点光源射向水面的单色光b 在环形区域内边界处发生全反射,而单色光a 在外边界处发生全反射,即水对单色光b 的临界角C 较小,由sin C =1n 可确定水对单色光a 的折射率比b 光的小,A 项错误;由折射率公式n =cv 知,a 光在水中的传播速度比b 光的大,B 项正确;a 光的频率比b 光的小,C 项错误;a 光的波长比b 光的大,干涉条纹间距与波长成正比,所以在同一装置的杨氏双缝干涉试验中,a 光的干涉条纹比b 光的宽,D 项错误.答案:B5. 如图所示的长直光纤,柱芯为玻璃,外层以折射率较玻璃低的介质包覆.若光线自光纤左端进入,与中心轴的夹角为θ,则下列有关此光线传播方式的叙述正确的是( )A. 不论θ为何值,光线都不会发生全反射B. 不论θ为何值,光线都会发生全反射C. θ够小时,光线才会发生全反射D. θ够大时,光线才会发生全反射解析:发生全反射的条件之一是入射角i 要大于等于临界角C ,即光线传播到光纤侧面时的入射角i 应满。

2014届高考数学(理)二轮复习大题规范训练三

2014届高考数学(理)二轮复习大题规范训练三

弋阳一中2014届高考二轮复习 大题规范练(三) 数列综合题(限时:60分钟)1.(2013·高考山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1) 求数列{a n }的通项公式;(2) 设数列{b n }的前n 项和为T n ,且T n +a n +12n=λ(λ为常数),令c n =b 2n (n ∈N *),求数列{c n }的前n 项和R n .2.已知公比为q 的等比数列{a n }的前6项和S 6=21,且4a 1、32a 2、a 2成等差数列.(1)求a n ;(2)设{b n }是首项为2,公差为-a 1的等差数列,其前n 项和为T n ,求不等式T n -b n >0的解集.3.(2014·济南市模拟)数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1(n ∈N *),等差数列{b n }满足b 3=3,b 5=9.(1)分别求数列{a n },{b n }的通项公式; (2)设c n =b n +2a n +2(n ∈N *),求证:c n +1<c n ≤13.4.已知数列{a n }中,a 1=1,a n +1=a na n +3(n ∈N *).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =(3n-1)n2n a n ,数列{b n }的前n 项和为T n ,若不等式(-1)nλ<T n对一切n ∈N *恒成立,求λ的取值范围.5.(2014·辽宁省五校联考)已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n (其中p为非零常数,n ∈N *). (1)判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列; (2)求a n ;(3)当a =1时,令b n =na n +2a n,S n 为数列{b n }的前n 项和,求S n .6.(2013·高考广东卷)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n∈N*.(1)求a2的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1+1a2+…+1a n<74.大题规范练(三)1.解:(1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1,得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1.① 解得⎩⎪⎨⎪⎧a 1=1,d =2.因此a n =2n -1,n ∈N *.②(4分) (2)由题意知T n =λ-n2n -1,所以当n ≥2时,b n =T n -T n -1=-n2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n -1)⎝ ⎛⎭⎪⎫14n -1,n ∈N *.(6分)所以R n =0×⎝ ⎛⎭⎪⎫140+1×⎝ ⎛⎭⎪⎫141+2×⎝ ⎛⎭⎪⎫142+3×⎝ ⎛⎭⎪⎫143+…+(n -1)×⎝ ⎛⎭⎪⎫14n -1,则14R n =0×⎝ ⎛⎭⎪⎫141+1×⎝ ⎛⎭⎪⎫142+2×⎝ ⎛⎭⎪⎫143+…+(n -2)×⎝ ⎛⎭⎪⎫14n -1+(n -1)×⎝ ⎛⎭⎪⎫14n .(8分)两式相减得34R n =⎝ ⎛⎭⎪⎫141+⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -1-(n -1)×⎝ ⎛⎭⎪⎫14n =14-⎝ ⎛⎭⎪⎫14n1-14-(n -1)×⎝ ⎛⎭⎪⎫14n =13-1+3n 3⎝ ⎛⎭⎪⎫14n, 整理得R n =19⎝ ⎛⎭⎪⎫4-3n +14n +1.所以数列{c n }的前n 项和R n =19⎝ ⎛⎭⎪⎫4-3n +14n -1.(12分)2.解:(1)∵4a 1、32a 2、a 2成等差数列,∴4a 1+a 2=3a 2,即4a 1=2a 2,∴q =2.(2分) 则S 6=a 1(1-26)1-2=21,解得a 1=13,∴a n =2n -13.(5分)(2)由(1)得-a 1=-13,∴b n =2+(n -1)⎝ ⎛⎭⎪⎫-13=7-n 3,T n =2n +n2(n -1)·⎝ ⎛⎭⎪⎫-13=13n -n 26,(9分)∴T n -b n >0,即-(n -1)(n -14)6>0,解得1<n <14(n ∈N *),故不等式T n -b n >0的解集为{n ∈N *|1<n <14}.(12分) 3.解:(1)由a n +1=2S n +1,① 得a n =2S n -1+1(n ≥2,n ∈N *),② ①-②得a n +1-a n =2(S n -S n -1), ∴a n +1=3a n (n ≥2,n ∈N *), 又a 2=2S 1+1=3,∴a 2=3a 1,∴a n =3n -1.(4分)∵b 5-b 3=2d =6,∴d =3, ∴b n =3n -6.(6分) (2)∵a n +2=3n +1,b n +2=3n ,(8分)∴c n =3n 3n +1=n3n ,(9分) ∴c n +1-c n =1-2n3n +1<0,(10分) ∴c n +1<c n <…<c 1=13,(11分)即c n +1<c n ≤13.(12分)4.解:(1)由题知,1a n +1=a n +3a n =3a n+1, ∴1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12,∴1a n +12=⎝ ⎛⎭⎪⎫1a 1+12·3n -1=3n2, ∴a n =23n-1.(4分) (2)由(1)知,b n =(3n-1)·n2n ·23n -1=n ·⎝ ⎛⎭⎪⎫12n -1,T n =1×1+2×⎝ ⎛⎭⎪⎫121+3×⎝ ⎛⎭⎪⎫122+…+n ·⎝ ⎛⎭⎪⎫12n -1,12T n =1×12+2×⎝ ⎛⎭⎪⎫122+…+()n -1⎝ ⎛⎭⎪⎫12n -1+n ⎝ ⎛⎭⎪⎫12n,(6分) 两式相减得,12T n =1+12+122+…+12n -1-n 2n =1-⎝ ⎛⎭⎪⎫12n1-12-n 2n =2-n +22n ,∴T n =4-n +22n -1.(8分) ∵T n +1-T n =⎝⎛⎭⎪⎫4-n +32n -⎝⎛⎭⎪⎫4-n +22n -1=n +12n >0,∴{T n }为递增数列.①当n 为正奇数时,-λ<T n 对一切正奇数成立, ∵(T n )min =T 1=1,∴-λ<1,∴λ>-1; ②当n 为正偶数时,λ<T n 对一切正偶数成立, ∵(T n )min =T 2=2,∴λ<2. 综合①②知,-1<λ<2.(12分)5.解:(1)由a n +2=p ·a 2n +1a n ,得a n +2a n +1=p ·a n +1a n.(1分)令c n =a n +1a n,则c 1=a ,c n +1=pc n . ∵a ≠0,∴c 1≠0,c n +1c n=p (非零常数), ∴数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列.(3分) (2)∵数列{c n }是首项为a ,公比为p 的等比数列, ∴c n =c 1·pn -1=a ·pn -1,即a n +1a n=ap n -1.(4分) 当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=(ap n -2)×(aq n -3)×…×(ap 0)×1=a n -1p n 2-3n +22,(6分)∵a 1满足上式,∴a n =a n -1pn 2-3n +22,n ∈N *.(7分)(3)∵a n +2a n =a n +2a n +1·a n +1a n=(ap n )×(ap n -1)=a 2p 2n -1, ∴当a =1时,b n =na n +2a n=np 2n -1.(8分) ∴S n =1×p 1+2×p 3+…+np2n -1,①p 2S n =1×p 3+…+(n -1)p 2n -1+np 2n +1.②∴当p 2≠1时,即p ≠±1时,①-②得:(1-p 2)S n =p 1+p 3+…+p2n -1-np2n +1=p (1-p 2n )1-p-np 2n +1, 即S n =p (1-p 2n )(1-p 2)2-np 2n +11-p2;(11分)当p =1时,S n =1+2+…+n =n (n +1)2;(12分)当p =-1时,S n =(-1)+(-2)+…+(-n )=-n (n +1)2.(13分)综上所述,S n=⎩⎪⎨⎪⎧n (n +1)2,p =1,-n (n +1)2,p =-1,p (1-p 2n)(1-p 2)2-np 2n +11-p 2,p ≠±1.6.解:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2分)(2)解法一:由题意2S n =na n +1-13n 3-n 2-23n ,所以当n ≥2时,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),(4分)两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得na n +1-(n +1)a n =n (n +1),即a n +1n +1-a nn=1.(6分) 又当n =1时,a 22-a 11=42-11=1,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为1的等差数列,所以a n n=1+(n -1)×1=n ,所以a n =n 2, 所以数列{a n }的通项公式为a n =n 2,n ∈N *.(8分) 解法二:因为2S n n =a n +1-13n 2-n -23,所以2S n n =S n +1-S n -13n 2-n -23.(4分)整理得n +2n S n =S n +1-13(n +1)(n +2), 所以S n +1(n +1)(n +2)-S n n (n +1)=13,所以数列⎩⎨⎧⎭⎬⎫S n n (n +1)是首项为S 12,公差为13的等差数列,(6分)所以S n n (n +1)=S 12+13(n -1)=2n +16,所以S n =n (n +1)(2n +1)6,所以S n -1=(n -1)n (2n -1)6(n ≥2),所以a n =S n -S n -1=n 2(n ≥2). 因为a 1=1符合上式,所以数列{a n }的通项公式为a n =n 2,n ∈N *.(8分) (3)证明:设T n =1a 1+1a 2+…+1a n.当n =1时,T 1=1a 1=1<74;当n =2时,T 2=1a 1+1a 2=1+14=54<74;当n ≥3时,1a n =1n2<1(n -1)n =1n -1-1n,(10分)此时T n =1+14+132+142+…+1n 2<1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n=1+14+12-1n =74-1n <74.综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.(12分)。

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京市高三三模数学模拟试题一、单选题1.如图,集合A B 、均为U 的子集,()U A B ⋂ð表示的区域为()A .IB .IIC .IIID .IV【正确答案】D【分析】由补集和交集的概念求解即可.【详解】由补集的概念,U A ð表示的区域如下图所示阴影区域,∴()U A B ⋂ð表示的区域为下图所示阴影区域,即为图中的区域Ⅳ.故选:D.2.在下列四个函数中,在定义域内单调递增的有()A .()tan =f x xB .()f x x =C .()2xf x =D .()2f x x=【正确答案】C【分析】A.利用正切函数的性质判断;B.利用绝对值函数的性质判断;C.利用指数函数的性质判断;D.利用二次函数的性质判断.【详解】解:A.()tan =f x x 的增区间为πππ,π,Z 22k k k ⎛⎫-+∈ ⎪⎝⎭,在整个定义域上不单调,故错误;B.()f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;C.()2xf x =在R 上递增,故正确;D.()2f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;故选:C3.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.4.已知tan 2x =,则tan 4x π⎛⎫+ ⎪⎝⎭的值为()A .3B .-3C .13D .34-【正确答案】B【分析】利用两角和的正切公式求解.【详解】解:因为tan 2x =,所以πtan tanπ214tan 3π41211tan tan 4x x x ++⎛⎫+===- ⎪-⋅⎝⎭-⋅,故选:B5.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2023年5月1日12350002023年5月15日6035500注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升【正确答案】D【分析】分析表中数据,得出行驶路径和耗油量,可计算结果.【详解】由表中的数据可知,行驶路径500千米耗油量为60升,则该车每100千米平均耗油量为60125=升.故选:D6.已知||1,||0OA OB OA OB =⋅=,点C 在AOB ∠内,且30AOC ∠=︒.设()OC mOA nOB m n =+∈R、,则mn等于()A .13B .3CD 【正确答案】B【分析】由题意可得OA OB ⊥,建立坐标系,由已知条件可得()OC m =,进而可得tan 30︒==,即可得答案.【详解】解:因为||1,||0OA OB OA OB =⋅=,所以OA OB ⊥ ,又因为点C 在AOB ∠内,且30AOC ∠=︒,建立如图所示的坐标系:则(1,0)OA = ,OB =,又因为()OC mOA nOB m n =+∈R、,所以()OC m =,所以tan 303m ︒==,所以3mn=.故选:B.7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .【正确答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()14πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.8.已知{}n a 为无穷等差数列,则“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】B【分析】根据等差数列性质结合充分、必要条件分析判断.【详解】“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”,不能推出“存在2k ≥且*k ∈N ,使得0k a =”,例如32n a n =-,则121,1a a ==-,即1,2i j ==,满足120i j a a a a +=+=,但令320k a k =-=,则*32k =∉N ,故不存在存在2k ≥且*k ∈N ,使得0k a =,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的不充分条件;若“存在2k ≥且*k ∈N ,使得0k a =”,则取11,1i k j k =-≥=+,则1120i j k k k a a a a a -++=+==,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要条件;综上所述:“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要不充分条件.故选:B.9.十八世纪,瑞士数学家欧拉研究调和级数时,得到了以下结果:当n 很大时,1111ln 23n nγ++++=+ (其中γ为常数,其近似值为0.577)据此,可以估计111200012000230000+++ 的值为()A .4ln10B .ln6C .ln2D .3ln2【正确答案】D【分析】根据已知结论得两个等式相减即可得解.【详解】由题意得1111ln300002330000γ++++=+ ,1111ln200002320000γ++++=+ ,两式相减得,111300003ln 30000ln 20000ln ln 200012000230000200002+++=-== .故选:D .10.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.已知常数0,0p q ≥≥,给出下列命题:①若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个;②若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个;③若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.上述命题中,正确命题的个数是()A .0B .1C .2D .3【正确答案】D【分析】根据“距离坐标”的定义,依次分析各命题即可得答案.【详解】解:①,若0p q ==,则“距离坐标”为()0,0的点是两条直线的交点O ,因此有且仅有1个,故正确.②,若0pq =,且0p q +≠,则“距离坐标”为()0,q 或(),0p 的点有且仅有2个,故正确.③若0pq ≠,则0,0p q ≠≠,“距离坐标”为(),p q 的点有且仅有4个,为123,,,M M M M ,如图,故正确.故正确的命题个数为3个.故选:D二、填空题11.若5(1a =+,a b 为有理数),则a b +=_______________.【正确答案】120【分析】利用二项式定理展开5(1并计算,再利用有理项、无理项求解作答.【详解】由二项式定理得:1234555555513C 9C 97644(1=+++++=+依题意,76a +=+,a b 为有理数,因此76,44a b ==,所以120a b +=.故12012.银行储蓄卡的密码由6位数字组成,某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,但记得密码的最后1位是偶数,则在第一次没有按对的条件下第2次按对的概率是_________.【正确答案】14/0.25【分析】根据条件概率公式直接计算即可.【详解】记事件A :第一次没有按对密码;事件B :第二次按对密码;()45P A =,()411545P AB =⨯=,()()()14P AB P B A P A ∴==.故答案为.14三、双空题13.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知14b c a -=,2sin 3sin B C =,则bc=_______,cos A 的值为________.【正确答案】3214-【分析】利用正弦定理边角互化即可求得b c,利用余弦定理即可求得cos A .【详解】因为ABC 中,2sin 3sin B C =,所以由正弦定理可得23b c =,即32b c =.又因为14b c a -=,所以2a c =,所以由余弦定理可得()2222223212cos 32422c c c b c a A bc c c ⎛⎫+- ⎪+-⎝⎭===-⨯⨯,故32;14-14.已知n S 是数列{}n a 的前n 项和,且对任意的正整数n ,都满足:11122n nn a a +-=+,若112a =,则3a =________,2023S =______________.【正确答案】11220232024【分析】直接利用条件可递推出第三项,利用累加法可得数列通项再用裂项相消法求和即可.【详解】由11122n n n a a +-=+和112a =可得:21232311111146,612,a a a a a a -=⇒=∴-=⇒=即3a =112;由11122n n n a a +-=+可得:()112211111112,21,...,4n n n n n n a a a a a a ----=-=--=,累加得()()()124111111211n n n n a a a n n n n +--=⇒==-++,所以20231111112023 (1223202320242024)S ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故112,20232024四、填空题15.已知曲线:44C x x y y -=.①若00(,)P x y 为曲线C 上一点,则0020x y ->;②曲线C 在()0,1-处的切线斜率为0;③R,20m x y m ∃∈-+=与曲线C 有四个交点;④直线20x y m -+=与曲线C无公共点当且仅当((),0,m ∈-∞⋃+∞.其中所有正确结论的序号是_____________.【正确答案】①②【分析】分x 、y 的符号情况化简曲线C 的方程,从而可画出曲线C 的图象,结合图象逐一分析即可.【详解】当0x ≥,0y ≥时,曲线C 的方程为2244x y -=,即2214x y -=,曲线C 是双曲线的一部分;当0x ≥,0y <时,曲线C 的方程为2244x y +=,即2214x y +=,曲线C 是椭圆的一部分;当0x <,0y ≥时,曲线C 的方程为2244x y --=,曲线C 不存在;当0x <,0y <时,曲线C 的方程为2244x y -+=,即2214x y -=,曲线C 是双曲线的一部分;双曲线2214x y -=和2214y x -=有一条共同的渐近线20x y -=,综上,可作出曲线C的图象,如图:由图象可知曲线C 的图象上的点都在直线20x y -=的下方,所以当00(,)P x y 在曲线C 上时,有0020x y ->,故①正确;设过点()0,1-的直线l 的方程是1y kx =-,若直线l 与椭圆2214x y +=相切,则由22114y kx x y =-⎧⎪⎨+=⎪⎩得221408()k x kx -+=,2640k ∆==,得0k =;若直线l 与双曲线2214x y -=相切,则由22114y kx x y =-⎧⎪⎨-=⎪⎩得22(41)80k x kx --=,则2410k -≠且2640k ∆==,得0k =,此时直线l 的方程是1y =-,与曲线C 相切,故②正确;直线20x y m -+=是表示与直线20x y -=平行或重合的直线,由曲线C 的图象可知,直线20x y m -+=与曲线C 不可能有四个交点,故③错误;设直线20x y n -+=与椭圆2214x y +=相切,则由222014x y n x y -+=⎧⎪⎨+=⎪⎩得228440y ny n -+-=,所以221632(4)0n n ∆=--=,解得n =±C的图象,取n =-,即直线20x y --=与曲线C 相切,所以若直线20x y m -+=与曲线C 无公共点,结合曲线C 的图象,0m ≥或m <-.故①②.方法点睛:1.曲线方程中带有绝对值,一般是分绝对值里的式子的符号讨论去绝对值;2.直线与曲线的交点问题常采用数形结合的方法.五、解答题16.在ABC 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC 存在.求ABC 的面积条件①:sin 47A =;条件②:sin B =【正确答案】(1)4π;(2)【分析】(1)直接由正弦定理边化角,结合倍角公式即可求解;(2)若选①:由正弦定理及倍角公式得4sin 23B =,ABC 不存在;若选②:先判断cos 0B >,再由sin 2B =求出cos B ,由73a b =及余弦定理求得a ,再计算面积即可.【详解】(1)由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又3sin 7A =,故sin 21B =,又()0,B π∈,故22B π=,4B π=;(2)若选①:由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又sin 47A =,故4sin 23B =,此时ABC 不存在;若选②:由7cos 06a B b =>,又sin 2B =,则1cos 2B =,73a b =,由余弦定理得2222cos b a c ac B =+-,即2276483a a a ⎛⎫=+- ⎪⎝⎭,解得3a =或245a =-(舍去),故ABC的面积为1sin 2ac B =.17.如图,在四棱锥P ABCD -中,PA ⊥底面,,//ABCD AD AB AB DC ⊥,2,1AD DC AP AB ====,点E 为棱PC的中点.(1)证明:BE DC ⊥;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AB P --的余弦值.【正确答案】(1)证明见解析;(2(3.【分析】(1)可以建立空间直角坐标系,利用向量数量积来证明BE DC ⊥,;(2)向量法:先求平面PBD 的法向量A ,然后利用公式1sin cos ,n BE n BE n BEθ⋅==⋅ 求直线BE 与平面PBD 所成角的正弦值;(3)向量法:先求平面ABF 和平面PBA 的法向量12,n n ,再利用公式121212cos ,n n n n n n ⋅=⋅ 来求二面角F AB P --的余弦值.【详解】依题意,以点E 为原点建立空间直角坐标系(如图),可得(1,0,0),(2,2,0)B C ,(0,2,0),(0,0,2)D P ,由点E 为棱PC 的中点,得()1,1,1E .(1)向量()0,1,1BE = ,()2,0,0DC = ,故0BE DC ⋅= .∴BE CD ⊥.(2)向量(1,2,0),(1,0,2)BD PB =-=- ,设()1,,n x y z = 为平面PBD 的法向量,则00n BD n PB ⎧⋅=⎨⋅=⎩,即2020x y x z -+=⎧⎨-=⎩,不妨令1z =,可得()2,1,1n = 为平面PBD 的一个法向量.于是有3cos ,||||62n BE n BE n BE ⨯〈〉==⨯⨯ ,∴直线BE 与平面PBD 所成角的正弦值为33.(3)()2,2,2,(2,2,0),(1,0,0),CP AC AB =--== ,由点F 在棱PC 上,故(12,22,2)BF BC CF BC lCP l l l =+=+=-- ,由BF AC ⊥,得+22(12)(22=0)l l --,解得34l =,即113,,222BF ⎛⎫=- ⎪⎝⎭.设1(,,)n x y z = 为平面ABF 的法向量,则1100n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即01130222x x y z =⎧⎪⎨-++=⎪⎩,不妨令1z =,可得1(0,3,1)n =- 为平面ABF 的一个法向量.取平面PAB 的法向量2(0,1,0)n = ,则121212310cos ,1010n n n n n n ⋅===-⋅ .易知,二面角F AB P --31010.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%(1)计算表中十二周“水站诚信度”的平均数X ;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.【正确答案】(1)91%(2)见解析(3)两次活动效果均好.详见解析【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数;(2)随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望;(3)根据后继一周都有提升可得两次活动效果均好.【详解】(1)表中十二周“水站诚信度”的平均数:959892889494838085929596191%12100x +++++++++++=⨯=.(2)随机变量X 的可能取值为0,1,2,3,()1212044464P X ==⨯⨯=,()3211211444444P X ==⨯⨯+⨯⨯1231444464+⨯⨯=,()3213212444444P X ==⨯⨯+⨯⨯3233044464+⨯⨯=,()32318344464P X ==⨯⨯=,∴X 的分布列为:X 0123P 1327321532932171590123232323232EX =⨯+⨯+⨯+⨯=.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%94%→和80%到85%看出,后继一周都有提升.本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.19.已知函数()ln f x ax x x =-.(1)当1a =时,求()f x 的零点;(2)讨论()f x 在[]1,e 上的最大值;(3)是否存在实数a ,使得对任意0x >,都有()f x a ≤?若存在,求a 的取值范围;若不存在,说明理由.【正确答案】(1)ex =(2)答案见解析(3)存在,a 的取值范围是1a =【分析】(1)利用导函数判断()f x 的单调性,进而判断零点的情况即可;(2)利用导函数判断()f x 在区间[]1,e 的单调性,进而求最值即可;(3)由题意只需()max f x a ≤即可,利用(2)中结论即1e 0a a --≤,利用导数求a 的范围即可.【详解】(1)()ln f x ax x x =-的定义域为()0,∞+,当1a =时,()ln f x x x x =-,()ln f x x '=-,所以当()0,1x ∈时,()0f x ¢>,()f x 单调递增,当()1,x ∈+∞时,()0f x '<,()f x 单调递减,又因为当0x →时()0f x >,()11f =,()e 0f =,所以()f x 仅有一个零点,e x =.(2)()1ln f x a x =--',令()0f x '=,解得1e a x -=,在区间()0,∞+内,x ()10,e a -1e a -()1e,a -+∞()f x '+0-()f x 单调递增极大值单调递减当1e 1a -≤(即1a ≤)时,在[]1,e 上()f x 单调递减,()max ()1f x f a ==,当1e e a -≥(即2a ≥)时,在[]1,e 上()f x 单调递增,()max ()e e e f x f a ==-,当11e e a -<<(即12a <<)时,在1e ,e a -⎡⎤⎣⎦上()f x 单调递增,在11,e a -⎡⎤⎣⎦上()f x 单调递减,()()1111max ()e e e 1e a a a a f x f a a ----==--=.综上所述,当1a ≤时,()f x 的最大值为a ,当2a ≥时,()f x 的最大值为e e a -,当12a <<时,()f x 的最大值为1e a -.(3)由(2)知在()0,∞+上,()11max ()ee a af x f --==,构造函数()()11e e a a g a f a a --=-=-,由题意应使()0g a ≤,()1e 1a g a -'=-,令()0g a '=,解得1a =.a (),1-∞1()1,+∞()g a '-0+()g a 单调递减极小值单调递增所以()min ()10g a g ==,所以使()0g a ≤的实数a 只有1a =,即a 的取值范围是1a =.20.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【正确答案】(Ⅰ(Ⅱ)1;(Ⅲ)平行,理由见解析.【详解】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;(Ⅱ)由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与3x =相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;(Ⅲ)分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c所以椭圆C 的离心率c e a ==.(Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-.(Ⅲ)直线BM 与直线D E 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =.又因为直线D E 的斜率10121DE k -==-,所以//BM DE .当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠.设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--.令3x =,得点1113(3,)2y x M x +--.由2233{(1)x y y k x +==-,得2222(13)6330k x k x k +-+-=.所以2122613k x x k +=+,21223313k x x k -=+.直线BM 的斜率11212323BM y x y x k x +---=-.因为()()()()()()()11212121131232132BM k x x k x x x x k x x -+--------=--121221(1)[2()3)(3)(2)k x x x x x x --++-=--2222213312(1)[3)1313(3)(2)k k k k k x x -+-+-++=--0=,所以1BM DE k k ==.所以//BM DE .综上可知,直线BM 与直线D E 平行.椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.21.若项数为()3N N ≥的数列12:,,,N N A a a a 满足:()*11,N 2,3,,i a a i N =∈= ,且存在{}2,3,,1M N ∈- ,使得{}{}11,2,111,2,1n n n M a a M n N +⎧≤≤-⎪-∈⎨--≤≤-⎪⎩,则称数列N A 具有性质P .(1)①若3N =,写出所有具有性质P 的数列3A ;②若44,3N a ==,写出一个具有性质P 的数列4A ;(2)若2024N =,数列2024A 具有性质P ,求2024A 的最大项的最小值;(3)已知数列1212:,,,,:,,,N N N N A a a a B b b b 均具有性质P ,且对任意{},1,2,,i j N ∈ ,当i j ≠时,都有,i j i j a a b b ≠≠.记集合{}112,,,N T a a a = ,{}212,,,N T b b b = ,求12T T ⋂中元素个数的最小值.【正确答案】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)1013(3)3【分析】(1)直接根据性质P 的概念一一列举即可;(2)根据性质P 及累加法得M a M ≥和2025M a M ≥-,两式相加即可求解;(3)根据性质P 及累加法得23M a N ≤-,23M b N ≤-,求出并集中元素个数的最大值,从而求出交集中的元素个数最小值.【详解】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)当2024N =时,{}2,3,,2023M ∈ .由12111,1,,1M M a a a a a -=-≥-≥ ,累加得M a M ≥;又由20242023202411,1,,1M M a a a a a +≥-≥-≥ ,累加得2025M a M ≥-;相加得22025M a ≥,又*M a ∈N ,所以1013M a ≥.所以数列2024A 的最大项M a 的最小值为1013,一个满足条件的数列为()()1,2,,101320261014,1015,,2024n n n a n n ⎧=⎪=⎨-=⎪⎩ ;(3)由12111,2,,2M M a a a a a -=-≤-≤ ,累加得21M a M ≤-.又1M N ≤-,所以23M a N ≤-,同理,23M b N ≤-,所以{}()12121,2,,23,card 23T T N T T N ⋃⊆-⋃≤- ,因为()()12card card T T N ==,所以()()()()121212card card card card 3T T T T T T ⋂=+-⋃≥,所以12T T ⋂中元素个数的最小值为3,一组满足条件的数列为()()()()()11211,2,,1222,3,,12425n n n n n N a b n n N N n N N n N ⎧=⎧-=-⎪⎪==-=-⎨⎨-=⎪⎩⎪-=⎩ ,此时{}121,24,25T T N N ⋂=--.思路点睛:此题考查数列与集合结合的新定义问题,属于难题,关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。

2024年北京中考数学第三次模拟卷含答案解析

2024年北京中考数学第三次模拟卷含答案解析

2024年中考第三次模拟考试数学(考试时间:120分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104 3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<16.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A.B.C.D.7.(2分)已知关于x的一元二次方程kx2﹣(4k﹣1)x+4k﹣3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<B.k>﹣且k≠0C.k>﹣D.k<且k≠08.(2分)在Rt△ABC中,AC=BC,点D为AB中点,∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 .10.(2分)因式分解:xy3﹣25xy= .11.(2分)分式方程的解为 .12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 y2(填“>”,“=”或“<”).13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 .14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 °.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 元.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)三.解答题(共12小题,满分68分)17.(5分)计算:.18.(5分)解不等式组:.19.(5分)已知x +y =6,xy =9,求的值.20.(6分)如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接DE ,DG .(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC =60°,∠C =45°,DE =2,求BC 的长.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了. 不对呀,是144元.22.(5分)已知一次函数 y =(k ﹣2)x ﹣3k +12.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数 y =(k ﹣2)x ﹣3k +12 的函数值y 随x 的增大而减小,求k 的取值范围.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m )如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= ,b= ;(2)这两人中, 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 ;线段OP的取值范围是 ;②点O与线段DE (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2024年中考第三次模拟考试数学·全解全析第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看,是一行两个矩形.故选:B.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:35800=3.58×104.故选:D.3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°【分析】根据多边形的内角和公式为(n﹣2)180°列出方程,求出边数,再根据外角和定理求出这个多边形的一个外角.【解答】解:设这个多边形的边数为n,根据题意列方程:(n﹣2)180°=2340°,解得n=15,360°÷15=24°,故选:A.5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.6.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A .B .C .D .【分析】画树状图列出所有等可能结果,从中找到松鼠走出笼子的路线是“先经过A 门,再经过E 门”的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中松鼠走出笼子的路线是“先经过A 门,再经过E 门”的只有1种结果,所以松鼠走出笼子的路线是“先经过A 门,再经过E 门”的概率为,故选:D .7.(2分)已知关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,则实数k 的取值范围是( )A .k <B .k >﹣且k ≠0C .k >﹣D .k <且k ≠0【分析】根据方程有两个不相等的实数根,得到根的判别式大于0且二次项系数不为0,求出k 的范围即可.【解答】解:∵关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,∴Δ=(4k ﹣1)2﹣4k (4k ﹣3)>0且k ≠0,解得:k且k ≠0.故选:B .8.(2分)在Rt △ABC 中,AC =BC ,点D 为AB 中点,∠GDH =90°,∠GDH 绕点D 旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个【分析】连接CD,根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE =CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理AE2+BF2=EF2,因为S四边形CEDF=S△EDC+S△EDF,得出.【解答】解:连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,∴.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.∴∠ADE+∠EDC=90°,∵∠EDC+∠FDC=∠GDH=90°,∴∠ADE=CDF.在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,DE=DF,S△ADE=S△CDF.∵AC=BC,∴AC﹣AE=BC﹣CF,∴CE=BF.∵AC=AE+CE,∴AC=AE+BF.∵AC2+BC2=AB2,∴,∴.∵DE=DF,∠GDH=90°,∴△DEF始终为等腰直角三角形.∵CE2+CF2=EF2,∴AE2+BF2=EF2.∵S四边形CEDF=S△EDC+S△EDF,∴.∴正确的有4个.故选:D.第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 x≠3 .【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.10.(2分)因式分解:xy3﹣25xy= xy(x+5)(x﹣5) .【分析】先提公因式xy,然后根据平方差公式进行计算即可求解.【解答】解:原式=xy(y2﹣25)=xy(y+5)(y﹣5).故答案为:xy(y+5)(y﹣5).11.(2分)分式方程的解为 .【分析】去分母后化为整式方程求解,后检验即可.【解答】解:,3x=x﹣3,2x=﹣3,,经检验,是原分式方程的解.故答案为:.12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 > y2(填“>”,“=”或“<”).【分析】由k<0,双曲线在第二,四象限,根据x1<0<x2即可判断A在第二象限,B 在第四象限,从而判定y1>y2.【解答】解:∵k=﹣4<0,∴双曲线在第二,四象限,∵x2<0<x1,∴B在第二象限,A在第四象限,∴y1<y2;故答案为:<.13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 6 .【分析】由平行四边形的性质得AD∥CB,AD=CB,则AE=AD=CB,可证明△EAF∽△BCF,得==,则CF=AC=6,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∵AE=AD,∴AE=CB,∵AE∥CB,∴△EAF∽△BCF,∴==,∴CF=AC=AC=×10=6,故答案为:6.14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 59或121 °.【分析】根据切线的性质得到∠OAP=90°,∠OBP=90°,再根据四边形内角和得到∠AOB=118°,然后根据圆周角定理和圆内接四边形的性质求∠ACB的度数.【解答】解:连接OA,OB,∵PA,PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB,∴∠OAP=90°,∠OBP=90°,而∠P=62°,∴∠AOB=360°﹣90°﹣90°﹣62°=118°,当点P在劣弧AB上,则∠ACB=∠AOB=59°,当点P在优弧AB上,则∠ACB=180°﹣59°=121°.故答案为:59或121.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 98或77 元.【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为【解答】解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 4 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 8 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)【分析】根据题意可知,筷子的颜色共有3种,根据抽屉原理可知,先拿出3根是三种颜色,所以一次至少要拿出3+1=4(根)筷子才能保证一定有2根同色的筷子;根据题意可知,先把其中一种颜色的全部(5根)摸出,剩下的2种颜色的筷子各再摸出1根,即2根,还不能满足条件,则此时再任意拿出1根,必定会出现有2双不同色的筷子,据此解答即可.【解答】解:3+1=4(根),答:每次最少拿出4根才能保证一定有2根同色的筷子;5+2+1=8(根),答:要保证有2双不同色的筷子,每次最少拿出8根.故答案为:4,8.三.解答题(共12小题,满分68分)17.(5分)计算:.【分析】先分别按照负整数指数幂、求立方根、绝对值的化简法则及特殊角的三角函数值化简,再合并同类项及同类二次根式即可.【解答】解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解不等式组:.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)已知x+y=6,xy=9,求的值.【分析】首先化简,然后把x+y=6,xy=9代入化简后的算式计算即可.【解答】解:∵x+y=6,xy=9,∴====.20.(6分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=60°,∠C=45°,DE=2,求BC的长.【分析】(1)四边形EBGD为菱形,根据邻边相等的平行四边形是菱形即可判断;(2)过D作DM⊥BC于M,分别求出CM、BM即可;【解答】解:(1)四边形EBGD 为菱形;理由:∵EG 垂直平分BD ,∴EB =ED ,GB =GD ,∴∠EBD =∠EDB ,∵∠EBD =∠DBC ,∴∠EDF =∠GBF ,∴DE ∥BG ,同理BE ∥DG ,∴四边形BEDG 为平行四边形,又∵DE =BE ,∴四边形EBGD 为菱形;(2)如图,过D 作DM ⊥BC 于M ,由(1)知,∠DGC =∠ABC =60°,∠DBM =∠ABC =30°,DE =DG =2,∴在Rt △DMG 中,得DM =3,在Rt △DMB 中,得BM =3又∵∠C =45°,∴CM =DM =3,∴BC =3+3.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了.不对呀,是144元.【分析】设中性笔的单价是x 元,笔记本的单价是y 元,利用总价=单价×数量,可列出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设中性笔的单价是x元,笔记本的单价是y元,根据题意得:,解得:.答:中性笔的单价是2元,笔记本的单价是6元.22.(5分)已知一次函数y=(k﹣2)x﹣3k+12.(1)k为何值时,函数图象经过点(0,9)?(2)若一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求k的取值范围.【分析】(1)根据一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),列方程即可得到结论;(2)根据k﹣2<0时一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求出k的取值范围即可.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),∵(k﹣2)×0﹣3k+12=9,解得k=1,故当k=1时,函数图象经过点(0,9);(2)∵一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,∴k﹣2<0,解得k<2.故当k=1或﹣1时,一次函数y=(k﹣2)x﹣3k+12的值都是随x值的增大而减小.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= 1.68 ,b= 1.70 ;(2)这两人中, 甲 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.【分析】(1)利用众数及中位数的定义分别求得a、b的值即可;(2)根据方差的计算公式分别计算方差,再根据方差的意义判断即可;(3)看哪位运动员的成绩在1.69m以上的多即可.【解答】解:(1)∵甲的成绩中1.68出现了3次,最多,∴a=1.68,乙的中位数为b==1.70,故答案为:1.68,1.70;(2)分别计算甲、乙两人的跳高成绩的方差分别:S甲2=×[(1.71﹣1.69)2+(1.65﹣1.69)2+…+(1.67﹣1.69)2]=0.00065,S乙2=×[(1.60﹣1.69)2+(1.74﹣1.69)2+…+(1.75﹣1.69)2]=0.00255,∵S甲2<S乙2,∴甲的成绩更为稳定;故答案为:甲;(3)应该选择乙,理由如下:若1.69m才能获得冠军,那么成绩在1.69m及1.69m以上的次数乙多,所以选择乙.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.【分析】(1)根据等腰三角形的性质、平行线的性质、圆内接四边形的性质证明∠BAD=∠EAD;(2)连接AC,证明△ADB≌△ADE,得到∠ABD=∠E,根据圆周角定理得到∠ABD=∠ACD,证明△ACE∽△DAE,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】(1)证明:∵AD=ED,∴∠EAD=∠E,∵AE∥BC,∴∠E+∠BCD=180°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BAD=∠EAD;(2)解:如图,连接AC,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴∠ABD=∠E,由圆周角定理得:∠ABD=∠ACD,∴∠ACD=∠E=∠EAD,∵∠E=∠E,∴△ACE∽△DAE,∴=,即=,解得:AE=2,∴AB=AE=2.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?【分析】(1)应用待定系数法即可求出函数解析式;(2)分别求出y=3时,x的值,再比较即可得到答案.【解答】解:(1)场景A:把(0,21),(10,16),代入y=﹣0.04x2+bx+c,得:,解得,∴y=﹣0.04x2﹣0.1x+21;场景B:把(0,21),(5,16),代入y=ax+c,得:,解得,∴y=﹣x+21;场景A的函数表达式为y=﹣0.04x2﹣0.1x+21,场景B的函数表达式为y=﹣x+21;(2)当y=3时,场景A中,3=﹣0.04x2﹣0.1x+21,解得:x1=20,x2=﹣22.5(舍去),场景B中,3=﹣x+21,解得x=18,∵20>18,∴化学试剂在场景A下发挥作用的时间更长.26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.【分析】(1)将a=2代入二次函数,再将二次函数化为顶点式即可得到答案;(2)由题意可得(﹣1,y0)为抛物线顶点,从而得到抛物线的对称轴为x=﹣1,从而计算出a的值,再将A(m,n),B(2﹣m,p)代入如抛物线的解析式得到n+p=2(m﹣1)2﹣8,即可得到答案.【解答】解:(1)∵a=2,∴抛物线的解析式为y=x2−4x+5,∵y=x2−4x+5=(x−2)2+1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,1);(2)∵抛物线过点(−1,y n),且对于抛物线上任意一点(x1,y1)都有y1≥y0,∴(−1,y0)为抛物线的顶点,∴抛物线的对称轴为直线x=﹣1,∴=−1.∴a=﹣4,∴该抛物线的解析式为y=x2+2x−7,∵A(m,n),B(2﹣m,p)是抛物线上不同的两点,∴n=m2+2m−7,p=(2−m)2+2(2−m)−7.∴n+p=m2+2m﹣7+(2﹣m)2+2(2﹣m)﹣7=2(m﹣1)2﹣8,又∵m≠2﹣m,∴m≠1,∴n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 AE=CF ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.【分析】(1)如图所示,连接AD,根据等腰三角形的性质可证△AED≌△CFD(SAS),由此即可求解;(2)由(1)中△AED≌△CFD(SAS),再根据△DEF为等腰直角三角形,由此即可求解;(3)点C、E、F三点共线,分类讨论,根据(2),(3)中的结论即可求解.【解答】解:(1)AE=CF,理由如下,如图所示,连接AD,∵△ABC为等腰直角三角形,∠BAC=90°,∴∠B=∠ACB=45°,∵点D为BC中点,∴AD⊥BC,∴∠ACD=∠DAC=45°,∴AD=CD,∵△DEF为等腰直角三角形,∠EDF=90°,∴DE=DF,∠EDA+∠ADF=∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴AE=CF,故答案为:AE=CF;(2)证明:如图2所示,连接AD,由(1)可知,△AED≌△CFD(SAS),∴∠EAD=∠FCD,AE=CF,∴CE=CF+EF=AE+EF,∴CE﹣AE=CE﹣CF=EF,∵△DEF是等腰直角三角形,即DE=DF,∴EF2=DE2+DF2=2DE2,∴EF=DE=DF,∴CE﹣AE=DE;(3)解:AB=,AE=,C、E、N三点共线,①由(2)可知,CE﹣AE=DE,由(1)可知,∠EAD=∠FCD,∵∠ACD=∠ACE+∠FCD=45°,∠DCF+∠FCA+∠DAC=90°,∴∠EAD+∠FCA+∠DAC=90°,∴∠AEC=90°,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE﹣CF=,∴DE=FE=;②如图所示,由(1)可知,△ADE≌△CDN,AE=CF=,∠DAE=∠DCF,∴∠DAE+∠EAC+∠ACD=∠DCF+∠EAC+∠ACD=90°,∴△AEC是直角三角形,∴CE===,∴EF=CF﹣CE=(不符合题意舍去);③如图,∵△DEF是等腰直角三角形,∴∠F=∠DEF=45°,同法可证△ADE≌△CDF,∴∠AED=∠F=45°,∴∠AED+∠DEF=45°+45°=90°,即△ACM是直角三角形,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE+CF=,∵EF=DE,∴DE==;综上所述,DE的长为或.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 2 ;线段OP的取值范围是  ;②点O与线段DE 是 (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.【分析】(1)①根据垂线段最短以及已知条件,确定OP,DP的最大值,最小值即可解决问题;②根据限距关系的定义判断即可;(2)根据两直线平行k相等计算设FG的解析式为:y=﹣x+b,得G(0,b),F(b,0),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K 都满足限距关系,构建不等式求解即可.【解答】解:(1)①如图1中,∵点C(,0),E(0,1),∴OE=1,OC=,∴EC=2,∠ECO=30°,当OP⊥EC时,OP的值最小,当P与C重合时,OP的值最大是,Rt△OPC中,OP=OC=,即OP的最小值是;如图2,当DP⊥EC时,DP的值最小,Rt△DEP中,∠OEC=60°,∴∠EDP=30°,∵DE=2,∴cos30°=,∴=,∴DP=,∴当P与E重合时,DP的值最大,DP的最大值是2,线段DP的最小值为,最大值为2;线段OP的取值范围是;故答案为:,2,;②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,如图3,故点O与线段DE满足限距关系;故答案为:是;(2)∵点C(,0),E(0,1),∴设直线CE的解析式为:y=kx+m,∴,解得,∴直线CE的解析式为:y=﹣x+1,∵FG∥EC,∴设FG的解析式为:y=﹣x+b,∴G(0,b),F(b,0),∴OG=b,OF=b,当0<b<时,如图5,线段FG在⊙O内部,与⊙O无公共点,此时⊙O上的点到线段FG的最小距离为1﹣b,最大距离为1+b,∵线段FG与⊙O满足限距关系,∴1+b≥2(1﹣b),解得b≥,∴b的取值范围为≤b<;当1≤b≤6时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当b>6时,如图6,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为b﹣1,最大距离为b+1,∵线段FG与⊙O满足限距关系,∴b+1≥2(b﹣1),而b+1≥2(b﹣1)总成立,∴b>6时,线段FG与⊙O满足限距关系,综上所述,点G的纵坐标的取值范围是:b≥2;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,两圆的距离的最小值为2r﹣6,最大值为2r+6,∵⊙H和⊙K都满足限距关系,∴2r+6≥2(2r﹣6),解得r≤9,故r的取值范围为0<r≤9.2024年中考第三次模拟考试数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678B DC A CD B D第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.x≠3.10.xy(y+5)(y﹣5).11..12.<.13.6.14.59或121.15.98或77.16.4,8.三.解答题(共12小题,满分68分)17.(5分)解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)解:∵x+y=6,xy=9,∴====.20.(6分)解:(1)四边形EBGD为菱形;理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,∴DE∥BG,同理BE∥DG,∴四边形BEDG为平行四边形,又∵DE=BE,∴四边形EBGD为菱形;。

高三数学限时规范训练

小题精练(一) 集合(限时:60分钟)1.(2013·高考新课标全国卷)已知集合M={x|(x-1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}2.(2014·成都市诊断检测)已知全集U={x|x>0},M={x|x2<2x},则∁U M=( ) A.{x|x≥2} B.{x|x>2}C.{x|x≤0或x≥2} D.{x|0<x<2}3.若集合A={x∈Z|2<2x+2≤8},B={x∈R|x2-2x>0},则A∩(∁R B)所含的元素个数为( )A.0 B.1C.2 D.34.(2014·北京东城模拟)设U=R,M={x|x2-x≤0},函数f(x)=1x-1的定义域为D,则M∩(∁U D)=( )A.[0,1) B.(0,1)C.[0,1] D.{1}5.(2014·泰安模拟)设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则( ) A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P6.集合A={0,log123,-3,1,2},集合B={y|y=2x,x∈A},则A∩B=( ) A.{1} B.{1,2}C.{-3,1,2} D.{-3,0,1}7.(2014·湖北省八校联考)已知M={a||a|≥2},A={a|(a-2)(a2-3)=0,a∈M},则集合A的子集共有( )A.1个 B.2个C.4个 D.8个8.(2013·高考山东卷)已知集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )A.1 B.3C.5 D.99.(2013·高考江西卷)已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=( )A.-2i B.2iC.-4i D.4i10.(2014·合肥市高三质检)已知集合A={x∈R||x|≥2},B={x∈R|x2-x-2<0},且R 为实数集,则下列结论正确的是( )A.A∪B=R B.A∩B≠∅C.A⊆∁R B D.A⊇∁R B11.(2014·福建省质量检测)设数集S={a,b,c,d}满足下列两个条件:(1)∀x,y∈S,xy∈S;(2)∀x,y,z∈S或x≠y,则xz≠yz现给出如下论断:①a,b,c,d中必有一个为0;②a,b,c,d中必有一个为1;③若x∈S且xy=1,则y∈S;④存在互不相等的x,y,z∈S,使得x2=y,y2=z.其中正确论断的个数是( )A.1 B.2C.3 D.412.定义差集A-B={x|x∈A,且x∉B},现有三个集合A,B,C分别用圆表示,则集合C -(A-B)可表示下列图中阴影部分的为( )13.(2014·武汉市调研测试)设集合A={1,-1,a},B={1,a},A∩B=B,则a=________.14.已知集合A={3,m2},B={-1,3,2m-1}.若A⊆B,则实数m的值为________.15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.16.(2014·青岛模拟)已知集合A={(x,y)|x2+y2+2ny+n2-4=0},B={(x,y)|x2+y2-6mx-4ny+9m2+4n2-9=0},若A∩B为单元素集,则点P(m,n)构成的集合为________.。

2024届山东省高三新高考实战模拟全真演练物理试题(三)

2024届山东省高三新高考实战模拟全真演练物理试题(三)一、单选题:本题共7小题,每小题4分,共28分 (共7题)第(1)题下列说法正确的是( )A.电磁波在真空中以光速c传播B.在空气中传播的声波是横波C.声波只能在空气中传播D.光需要介质才能传播第(2)题如图所示,一高考倒计时牌通过一根轻绳悬挂在定滑轮上。

挂上后发现倒计时牌是倾斜的,已知∠AOB=90°,计时牌的重力大小为G。

不计一切摩擦,则平衡时绳OB中的张力大小为( )A.B.C.D.G第(3)题图甲为利用光电管研究光电效应的电路图,其中光电管阴极K的材料是钾,钾的逸出功为。

图乙为实验中用某一频率的光照射光电管时,测量得到的光电管伏安特性曲线,当电压为时,光电流恰好为零。

已知普朗克常量为h,光电子的电荷量为e。

下列说法正确的是()A.该实验的入射光频率为B.该实验的光电子获得的最大初动能为C.光电管两极间的正向电压越大,光电流越大D.当入射光的频率小于时,仍可以发生光电效应第(4)题某汽车无线充电站的无线充电设备充电效率约为80%,一辆新能源汽车最大充电容量为,从0到100km/h的加速时间为7s。

当汽车电池容量低于最大容量20%,要求进入充电站进行充电。

下列说法正确的是()A.充电过程能量不守恒B.从电池容量20%到充满电,需要消耗电能C.电机正常工作时的电流等于输入电压与电动机电阻的比值D.保持最大功率恒定不变加速时,汽车的加速度减小第(5)题下列实验中用到了模拟实验方法的是( )A.①②③④全都是B.只有②③④C.只有③④D.只有④第(6)题某种风力发电机的原理如图所示。

发电机的线圈固定,磁体在叶片驱动下绕线圈对称轴匀速转动的角速度为ω。

已知磁体间的磁场近似为匀强磁场,磁感应强度的大小为B,线圈的匝数为N、面积为S。

下列说法正确的是()A.线圈中感应电动势的有效值B.1s内线圈中感应电流的方向改变次C.当线圈处在图中所示的位置时,线圈中的感应电动势达到最大值D.以图中线圈所处位置开始计时,线圈中感应电动势的瞬时值表达式为第(7)题如图所示,质量为2m的物块甲和质量为m的小球乙静止于固定光滑斜面上,二者间用平行于斜面的轻质弹簧相连,甲用细线拴在挡板上。

模拟三力测试题及答案

模拟三力测试题及答案一、选择题(每题2分,共20分)1. 力的三要素包括以下哪三项?A. 大小、方向、作用点B. 大小、方向、作用力C. 大小、方向、受力物体D. 大小、作用点、受力物体答案:A2. 根据牛顿第三定律,以下说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力可以抵消C. 作用力和反作用力不能同时存在D. 作用力和反作用力作用在同一个物体上答案:A3. 以下哪种情况下,物体所受的合力为零?A. 物体静止B. 物体匀速直线运动C. 物体做加速运动D. 物体做减速运动答案:B4. 根据牛顿第二定律,以下说法不正确的是:A. 物体的质量越大,加速度越小B. 物体所受合力越大,加速度越大C. 力是产生加速度的原因D. 力是维持物体运动的原因答案:D5. 以下哪种力是保守力?A. 摩擦力B. 重力C. 弹力D. 空气阻力答案:B6. 以下哪个选项描述的是惯性?A. 物体保持静止或匀速直线运动的属性B. 物体抵抗加速度变化的属性C. 物体抵抗速度变化的属性D. 物体抵抗位置变化的属性答案:C7. 以下哪种情况下,物体的动量保持不变?A. 物体受到外力作用B. 物体受到平衡力作用C. 物体受到非平衡力作用D. 物体速度大小不变答案:B8. 以下哪种运动属于简谐运动?A. 直线运动B. 圆周运动C. 抛物线运动D. 振动答案:D9. 根据能量守恒定律,以下说法不正确的是:A. 能量不能被创造B. 能量不能被消灭C. 能量可以在不同形式之间转换D. 能量总是从高能级向低能级转移答案:D10. 以下哪种情况是能量的转化?A. 物体从高处自由落体B. 物体在水平面上匀速运动C. 物体在斜面上加速下滑D. 物体在斜面上减速上升答案:A二、填空题(每空1分,共10分)1. 力的三要素包括大小、________和作用点。

答案:方向2. 牛顿第三定律表述了作用力和反作用力的关系,即它们大小________,方向________。

2014高考历史一轮复习限时规范训练第3课时

专题二近代中国维护国家主权的斗争和民主革命第3课时列强入侵与民族危机及中国军民维护国家主权的斗争(时间:45分钟满分:100分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·鹰潭模拟)1840~1842年的鸦片战争中国战败,以一个《南京条约》的签署告终。

而那些战争的当事人是怎样看待这场战争的结果的呢?据史料记载:清政府极力的把鸦片战争定性为“地方性事件”,从历史的角度看,对此理解最准确的是()。

A.清政府对鸦片战争影响的实际反思有限B.清政府理性分析了鸦片战争的影响C.清政府逐渐放弃天朝上国的思维D.清政府想尽量保持自己的颜面解析鸦片战争是近代中国屈辱的开始,是中国主权丧失的开端,但清政府极力的把鸦片战争定性为“地方性事件”,这说明清政府对鸦片战争影响的实际反思有限。

B、C两项与材料信息不符;D项属于现象。

故选A项。

答案 A2.(原创题)1841年,广东地区张贴了一张布告,威胁外国人说:“如果我们不彻底消灭你们这些猪、狗的话,我们就不是顶天立地的勇敢的中国人。

……我们一定要杀了你们,砍掉你们的脑袋,烧死你们。

”这说明()。

A.殖民统治引起人们的不满B.清政府发动人民反抗外来侵略C.中国人民具有反抗精神D.中外矛盾成为社会的主要矛盾解析A项中的“殖民统治”说法不对,广州此时仅是通商口岸;清政府没有发动人民群众反抗外来侵略,故B项错误;清政府腐败无能,但人民对外国人毫无畏惧,说明中国人民具有反抗精神,故C项正确;鸦片战争后中国社会的主要矛盾仍是封建社会与人民大众的矛盾,故D项说法错误。

答案 C3.(2013·湖南师大附中月考)鸦片战争后,中国社会有两对主要矛盾:帝国主义与中华民族的矛盾,封建主义和人民大众的矛盾,其中“人民大众”包括()。

①农民阶级②无产阶级③小商品生产者④资产阶级⑤地主阶级A.①②③④B.①②C.①②③D.①⑤解析人民大众指的是一切推动历史发展进程的阶级、阶层或社会集团,它是一个动态的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时规范练模拟三一、选择题(每小题5分,共60分)1.下图山东省最低工资标准的走势显示()①公有制的主体地位不断增强②劳动报酬在初次分配中的比重逐步提高③效率与公平的关系趋向合理④财政保障人民生活的作用逐渐发挥A.①②B.①②③C.②③D.②③④2.针对物价上涨过快、通胀预期增强问题,国家要把稳定物价总水平作为2011年宏观调控的首要任务。

下列措施中属于运用经济手段抑制物价过快上涨的是()①加大对价格违法行为的处罚力度②推进能源资源型产品价格改革③上调银行人民币存贷款基准利率④严厉打击滥用食品添加剂行为A.①②B.②③C.②④D.①③3根据以上信息,该省进一步提高开放型经济水平,应该()①坚持市场多元化战略,防范和化解经济风险②进一步优化利用外资结构,提高利用外资水平③限制一般性产品贸易,大幅增加高新技术产品的出口④支持企业在产品研发、生产、销售方面开展国际化经营A.②④B.①③C.②③D.①④建设保障性住房既是增加房源、调控房价之举,又是改善民生、促进和谐之策。

据此回答4~5题。

4.多年来一直住在棚户区的低保户张某领到一套保障性住房。

在2011年春节前喜迁新居之际,他想用春联来表达对党和政府的感激之情。

下列春联中最合适的是()A.家过小康欢乐日国迎盛世太平年B.门庭更新泽仁治华屋添喜承德政C.家余德泽福运久里有仁风春意常D.莺歌燕舞家和谐龙腾虎跃国富强5.依据上题材料,这幅春联反映出()①党和政府坚持以人为本的价值观②党和政府尊重人民的国家主人翁地位③价值判断和选择具有社会历史性④人民群众是社会变革的决定力量A.①②B.①②③C.③④D.①②③④6.由于利比亚国内局势动荡和严重人道主义危机,2011年2月26日联合国安理会通过1970号决议,决定对利比亚实施武器禁运等制裁,中国投了赞成票。

后在阿拉伯国家联盟呼吁下,3月17日安理会又通过1973号决议,决定在利比亚设立禁飞区,并采取一切必要措施保护平民,中国投了弃权票。

如果将此事写成新闻报道,适合的标题可以是()①国家利益是国际关系的决定性因素②联合国在国际社会中始终发挥积极作用③中国在国际事务中坚持负责任原则④中国是维护世界和平与发展的积极因素A.①②B.①②③C.③④D.②③④7.温家宝总理在2011年《政府工作报告》中指出,各级政府要广泛动员和组织群众依法参与社会管理,发挥社会组织的积极作用,完善社会管理格局。

这一要求旨在()A.建设服务政府,弱化社会管理职能B.自觉接受监督,扩大群众的知情权C.创新管理理念,维护社会和谐稳定D.加强经济职能,促进经济科学发展8.《中国国家形象片》从2011年1月17日起在美国、欧洲、拉美、中东等地区广泛播放,向世界宣传中国的国家形象。

如果对此写一篇评论文章,适用的关键词是()A.传播中华文化消除文化差异B.加强中外文化交流增强文化渗透力C.汲取世界文化提升文化软实力D.展示中华文化魅力增强国际影响力9.某网友在微博上发起了“随手拍照解救乞讨儿童”活动,信息被关注和转发,产生了一系列连锁反应:社会公众参与街拍、慈善基金参与救助、警方调查核实……“关注产生力量,围观改变中国”。

由此可见()①文化传播的深度和广度影响文化的力量②文化的力量深深植根于信息传递过程中③文化影响人们的认识活动和实践活动④文化交流是永葆民族凝聚力的重要保证A.①③B.①②③C.②④D.②③④10.2010年12月,中国极深地下实验室投入使用,我国正式加入暗物质(有质量但不可见的物质)研究。

理论物理证实暗物质占宇宙比重超过20%,但目前只发现了4%,要深入认识暗物质,需要进一步的探测与捕捉。

这启示我们()①人们的认识受具体实践水平的限制②人们认识物质的过程是圆圈式的循环运动③科学实验的发展推动着认识的发展④发挥意识能动作用就能抓住暗物质的本质A.①②B.③④C.①③D.②④11.包容性发展是所有人机会平等、成果共享的发展;是各个国家和民族互利共赢、共同进步的发展;是各种文明相互激荡、兼容并蓄的发展;是人与自然和谐相处、良性循环的发展。

下列表述与上述思想不一致的是()A.是亦彼也,彼亦是也(《庄子》) B.各美其美,美人之美,美美与共(费孝通)C.和实生物,同则不继(《国语》) D.万物并育而不相害,道并行而不相悖(《礼记》) 12.2011年4月25日,中国人大网公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见。

修正案(草案)拟将个人所得税起征点由2 000元/月提至3 000元/月,并将工薪所得9级超额累进税率修改为7级。

对于3 000元起征点是否合理、级次级距调整是否会加重中等收入人群负担、如何加强对高收入人群税收征管等问题,社会不同阶层反应不一。

如果你为个税改革建言献策,从哲学上看()①坚持用全面的观点看问题,统筹兼顾②坚持用发展的观点看问题,兼顾长远③树立群众观点,个税起征点越高越好④树立正确的价值观,站在广大人民的立场上看问题A.①②③B.②③④C.①③④D.①②④二、非选择题(共40分)13.2010年11月3日,国务院常务会议决定扩大中央国有资本经营预算实施范围,提高中央企业国有资本收益收取比例。

为进一步完善中央国有资本经营预算制度,落实“十二五”规划中提出的“富民”的目标和任务,会议决定,从2011年起,将5个中央部门(单位)和2个企业集团所属共1 631户企业纳入中央国有资本经营预算实施范围。

同时,兼顾中央企业承受能力和扩大中央国有资本经营预算收入规模,适当提高中央企业国有资本收益收取比例。

目前,国家对央企收益的征缴率为净利润的5%~10%不等。

报道称,央企上缴红利比例或上调5%到30%不等。

我国共有约12万户国有及国有控股企业,其中由国资委管理的中央企业123家,余下有财政部托管的中央金融企业和其他80个部门下属的各类中央企业。

我国政府上述做法体现了经济生活的哪些道理?并从经济的角度说明理由。

(16分)14.材料一2010年以来,我国的文化体制改革明显加速,运行机制更加合理,改革正在向纵深挺进:无论是《文化产业振兴规划》的出台,还是《金融支持文化出口指导意见》的制定;无论是新闻出版系统,还是文化和广电系统;无论是公益性的文化事业,还是经营性的文化产业;无论是跨地区合作,还是上市融资……随着改革推进,越来越多自主经营、自负盈亏的独立法人成为我国文化市场的主体。

绝大多数文化产品已经实现了市场化。

截至2010年7月全国30个省级国有新华书店系统已全面完成转制。

国有电影制片企业继续向集团化、公司制迈进。

电台、电视台制播分离改革加速。

文化市场综合执法改革取得实质性进展,许多省市实现了文化、广电、新闻出版三局合并,建立了文化市场综合执法机构。

材料二2010年以来中国新闻出版业总产出超万亿元,年出版图书30万种、报纸期刊11 700余种。

电影产量近500部、票房收益超60亿,国产影片票房连续6年超过进口片。

专业艺术表演团体年演出超过50万场,吸引近4.6亿观众。

由此可见,改革毫无疑问是推动中国文化繁荣发展的强大动力。

(1)根据材料一,说明以前我国在文化发展方面存在哪些问题?并说明解决所存在问题的哲学依据。

(9分)(2)结合上述材料,从政治生活的角度分析各地政府是如何解决所存在问题的?(8分)(3)有人认为:“文化的价值在于它的经济价值。

”谈谈你的认识。

(7分)答案1.C2.B 3.A4.B 5.B6.C7.C8.D9.A 10.C11.A12.D13.影响财政收入的主要因素除经济发展水平外还有分配政策。

上述做法体现国家对分配政策的调整。

①财政收支实质上是一种分配政策,如何将有限的社会财富公平合理的分配,关系到全社会积极性的调动、企业生产发展和社会稳定。

②国企利润是国家财政收入的重要组成部分,此举是为了确保国家集中必要的财政收入,保障国家职能的正常行使。

③“十二五规划”提出加大民生投入的“富民”计划,必然使政府财政支出面临巨大压力。

④目前国家对中央国企特别是垄断性企业征缴利润过低,导致企业之间、行业之间收入差距过大,并使财政收入增长挤压居民收入增长空间,社会保障支出不足,严重影响居民消费水平提高,也有违社会公平。

因此有必要上调央企上缴利润的比例。

14.(1)说明我国以前存在的文化体制和文化运行机制不合理的现象已经严重制约了我国文化事业和文化产业的发展。

①事物是发展的,发展的实质是新事物代替旧事物,要求我们坚持用发展的观点看问题。

②辩证否定的实质是“扬弃”,我们要树立创新意识,创新是民族进步的灵魂。

③辩证法就其本质来说是革命的批判的和创新的,辩证法的革命批判精神也需要创新意识。

文化体制的改革,既是新事物代替旧事物,辩证否定的过程,也是不断创新的过程。

正是因为改革的不断深入和实质性的进展,才使我国文化事业和产业的发展取得了可喜的成绩。

因此,深化文化体制改革是推动我国文化发展的强大动力。

(2)①履行政府职能,制定和出台相关政策,加快文化体制和运行机制的改革。

②坚持市场化原则,推动国有文化事业和企业单位改组、改制,促进文化产业的发展。

③加快政府机构改革步伐,合并机构,提高行政效率;努力做到为人民服务,对人民负责。

④加强文化市场执法监督体系的建设,为文化产业和事业的发展创造良好的社会环境。

(3)①文化的经济价值只是文化价值的表现形式之一,因为文化作为一种精神力量能够在人们认识世界、改造世界的过程中转化为物质力量;文化与经济相互交融并反作用于经济。

因此文化的发展,特别是文化产业不仅会促进经济的发展,还会带来巨大的经济价值。

②但文化的价值不仅在于它的经济价值,更重要的是它的社会价值,文化不仅可以影响人们的交往行为和交往方式,还可以塑造人生:丰富人的精神世界,增强人的精神力量,促进人的全面发展。

文化与政治相互交融,还可以影响一国的综合国力,等等。

③此观点过于片面。

相关文档
最新文档