电容器与电容-带电粒子在电场中的运动

合集下载

第3讲 电容器与电容 带电粒子在电场中的运动

第3讲 电容器与电容 带电粒子在电场中的运动
6.带电粒子在电场中运动时,不加特别说明重力可以忽略不计,带电微粒、带电液滴在电场中运动时,不加特别说明重力不可以忽略不计。()
答案1.×2.×3.×4.√5.×6.√
二对点激活
1.(教科版选修3-1·P40·T9)关于电容器的电容,下列说法中正确的是()
A.电容器所带电荷量越多,电容越大
B.电容器两板间电压越低,其电容越大
答案AB
解析开始时,油滴所受重力和电场力平衡,即mg=qE,保持S闭合,则两板间电压不变,将A板上移一小段位移,两板间距离d增大,由E= 可知,E变小,油滴所受电场力变小,故油滴应向下加速运动;根据C= 、C= ,知Q= ,故电容器所储存的电量减小,向外放电,故G中有b→a的电流,A正确。保持S闭合,若将A板向左平移一小段位移,由E= 可知,E不变,油滴仍静止;根据Q= ,知电容器所储存的电量减小,向外放电,故G中有b→a的电流,B正确。若将S断开,电容器所储存的电量Q不变,则两板间场强不变,油滴仍静止,故C错误。若将S断开,Q不变,再将B板向下平移一小段位移,根据C= 、C= 、E= ,可得E= ,可知场强E不变,则油滴仍静止;油滴所在位置与A板的距离不变,则根据U=Ed可知油滴所在位置与A板间的电势差不变,又因为A板接地,则油滴所在位置的电势不变,油滴的电势能不变,故D错误。
(1)若电子与氢核的初速度相同,则 = 。
(2)若电子与氢核的初动能相同,则 =1。
考点1平行板电容器的动态分析
1.对公式C= 的理解
电容C= ,不能理解为电容C与Q成正比、与U成反比,一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关。
2.运用电容的定义式和决定式分析电容器相关量变化的思路
一堵点疏通
1.电容器所带的电荷量是指每个极板所带电荷量的代数和。()

高考物理一轮复习 第六章《电容器与电容带电粒子在电场中的运动》试题

高考物理一轮复习 第六章《电容器与电容带电粒子在电场中的运动》试题

权掇市安稳阳光实验学校第六章第三讲带电粒子在电场中的运动一、单项选择题(本题共5小题,每小题7分,共35分)1.如图1所示,从F处释放一个无初速的电子向B板方向运动,指出下列对电子运动的描述中错误的是(设电源电动势为E) ( )[A.电子到达B板时的动能是E eVB.电子从B板到达C板动能变化量为零C.电子到达D板时动能是3E eVD.电子在A板和D板之间做往复运动解析:由电池的接法知:A板带负电,B板带正电,C板带正电,D板带负电,所以A、B板间有向左的电场,C、D板间有向右的电场,B、C板间无电场,由动能定理知:电子到达B板时的动能为E eV,到达D板时的动能为零,在B、C板间做匀速直线运动,总之电子能在A板和D板间往复运动,所以错误选项为C.答案:C2.如图2所示,静止的电子在加速电压U1的作用下从O 经P板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压U2的作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该 ( )A.使U2加倍B.使U2变为原来的4倍C.使U2变为原来的2倍D.使U2变为原来的1/2[解析:要使电子的运动轨迹不变,则应使电子进入偏转电场后任一水平位移x所对应的偏转距离y保持不变.由y=12at2=12·qU2md·(xv0)2=qU2x22mv02d和qU1=12mv02,得y=U2x24U1d,可见在x、y一定时,U2∝U1.所以选项A正确.答案:A3.(2010·厦门模拟)如图3所示,质量相同的两个带电粒子P 、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正射入,Q 从下极板边缘处射入,它们最 后打在同一点(重力不计),则从开始射入到打到上板的过程中( )A .它们运动的时间t Q >t PB .它们运动的加速度a Q <a P[C .它们所带的电荷量之比q P ∶q Q =1∶2D .它们的动能增加量之比ΔE k P ∶ΔE k Q =1∶2解析:设P 、Q 两粒子的初速度为v 0,加速度分别为a P 和a Q ,粒子P 到上极板的距离是h /2,它们做类平抛运动的水平距离为l .则对P ,由l =v 0t P ,h 2=12a P t P 2,得到a P=hv 02l 2;同理对Q ,l =v 0t Q ,h =12a Q t Q 2,得到a Q =2hv 02l 2.由此可见t P =t Q ,a Q =2a P ,而a P =q P E m ,a Q =q Q Em,所以q P ∶q Q =1∶2.由动能定理,它们的动能增加量之比ΔE k P ∶ΔE k Q =ma P h2∶ma Q h =1∶4.综上所述,C 项正确. 答案:C4.如图4所示,一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒 子a 和b ,从电容器边缘的P 点(如图)以相同的水平速度射入两平行板之间.测得a 和b 与电容器极板的撞击点到入射点之间的水平距离之比为[1∶2,若不计重力,则a 和b 的比荷之比是 ( )A .1∶2B .1∶8C .2∶1D .4∶1 解析:带电粒子受到的电场力F =Eq ,产生的加速度a =F m =Eqm,在电场中做类平抛运动的时间t =2d a,位移x=v0t ,x1x2=m1q1m2q2,所以q1m1q2m2=x22x12=41,D正确.答案:D5.如图5所示,一个平行板电容器,板间距离为d,当对其加上电压后,A、B两板的电势分别为+φ和-φ,下述结论错误的是( ) A.电容器两极板间可形成匀强电场,电场强度大小为E=φ/dB.电容器两极板间各点的电势,有的相同,有的不同;有正的,有负的,有的为零C.若只减小两极板间的距离d,该电容器的电容C要增大,极板上带的电荷量Q也会增加D.若有一个电子水平射入穿越两极板之间的电场,则电子的电势能一定会减小解析:由题意可知,两板间电压为2φ,电场强度为E=2φd,A错误;板间与板平行的中线上电势为零,中线上方电势为正,下方电势为负,故B正确;由C∝εr Sd知,d减小,C增大,由Q=CU知,极板带电荷量Q增加,C正确;电子水平射入穿越两极板之间的电场时,电场力一定对电子做正功,电子的电势能一定减小,D正确.答案:A[二、双项选择题(本题共5小题,共35分.在每小题给出的四个选项中,只有两个选项正确,全部选对的得7分,只选一个且正确的得2分,有选错或不答的得0分)6.(2010·泰安质检)传感器是一种采集信息的重要器件,图6所示是一种测定压力的电容式传感器.当待测压力F作用于可动膜片电极上时,以下说法中正确的是 ( )A.若F向上压膜片电极,电路中有从a到b的电流B.若F向上压膜片电极,电路中有从b到a的电流C.若F向上压膜片电极,电路中不会出现电流D.若电流表有示数,则说明压力F 发生变化解析:F向上压膜片电极,使得电容器两板间的距离减小,电容器的电容增加,又因电容器两极板间的电压不变,所以电容器的电荷量增加,电容器继续充电.综上所述,选项B、D正确.答案:BD7.(2008·宁夏高考)如图7所示,C为中间插有电介质的电容器,a和b为其两极板,a板接地;P和Q为两竖直放置的平行金属板,在两板间用绝缘线悬挂一带电小球;P板与b板用导线相连,Q板接地.开始时悬线静止在竖直方向,在b板带电后,悬线偏转了角度α.在以下方法中,能使悬线的偏角α变大的是( )[来A.缩小ab间的距离B.加大ab间的距离C.取出a、b两极板间的电介质D.换一块形状大小相同、介电常数更大的电介质解析:已知电容器C带电荷量不变,a、Q两板均接地,电势为零,b、P 两板电势相等.当ab间距离缩小时,电容器C的电容变大,电压U变小,即b、P 两板电势减小,即P、Q间电压减小,电场强度E减小,悬线偏角α减小,所以A 错误,B正确.取出a、b两极板间电介质时,电容器C的电容变小,电压U变大,悬线偏角α增大,所以C正确.当换一块介电常数更大的电介质时,电容器C的电容变大,电压U变小,悬线偏角α减小,所以D错误.答案:BC8.如图8所示,示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成.如果在荧光屏上P点出现亮斑,那么示波管中的( )A.极板X应带正电 B.极板X′应带正电C.极板Y应带正电 D.极板Y′应带正电解析:由荧光屏上亮斑的位置可知,电子在XX′偏转电场中向X极板方向偏转,故极板X带正电,A正确,B错误;电子在YY′偏转电场中向Y极板方向偏转,故极板Y带正电,C正确,D错误.答案:AC9.(2009·四川高考)如图9所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带[来负电的小物体以初速度v 1从M点沿斜面上滑,到达N 点时速度为零,然后下滑回到[来M点,此时速度为v2(v2<v1).若小物体电荷量保持不变,OM=ON,则( )A.小物体上升的最大高度为v12+v22 4gB.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先增大后减小解析:因为OM=ON,M、N两点位于同一等势面上,所以从M到N的过程中,电场力对小物体先做正功再做负功,电势能先减小后增大,B、C错误;因为小物体先[来靠近正点电荷后远离正点电荷,所以电场力、斜面压力、摩擦力都是先增大后减小,D正确;设小物体上升的最大高度为h,摩擦力做功为W,在上升过程、下降过程根据动能定理得-mgh+W=0-12mv12 ①mgh+W=12mv22,②联立①②解得h=v12+v224g,A正确.答案:AD10.如图10所示,D是一只理想二极管,电流只能从a流向b,而不能从b流向a.平行板电容器的A、B两极板间有一电荷,在P点处于静止状态.以E表示两极板间的电场强度,U表示两极板间的电压,E p表示电荷在P点的电势能.若保持极板B 不动,将极板A 稍向上平移,则下列说法中正确的是() A .E 变小 B .U 变大C .E p 变大D .电荷仍保持静止解析:B 板不动而A 板上移,则电容器的电容减小,本应放电,但由于二极管的单向导电性使电容器不能放电,带电量不变而极板间场强不变,电荷仍保持静止,A错D 正确;而极板间电压U =Ed 变大,B 正确;由于场强E 不变,则U PB=Ed PB 不变,故E p 不变,C 错误. 答案:BD三、非选择题(本题共2小题,共30分)11.(15分)(2010·北京东城模拟)如图11所示为一真空示波管的示意图,电子从灯丝K 发 出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场), 电子进入M 、N 间电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P 点.已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的质量为m ,电荷量为e ,不计电子受到的重力及它们之间的相互作用力. (1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场射出时的侧移量;(3)若要使电子打在荧光屏上P 点的上方,可采取哪些措施? 解析:(1)设电子经电压U 1加速后的速度为v 0,由动能定理 eU 1=12mv 02-0解得v 0=2eU 1m(2)电子以速度v 0进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做[来初速度为零的匀加速直线运动.设偏转电场的电场强度为E,电子在偏转电场中运动的时间为t,加速度为a,电子离开偏转电场时的侧移量为y.由牛顿第二定律和运动学公式t =L v0F =ma,F=eE,E=U2 da=eU2 mdy =12at2解得y=U2L2 4U1d(3)由y=U2L24U1d可知,减小加速电压U1和增大偏转电压U 2均可增大y值,从而使电子打到屏上的位置在P点上方.答案:(1) 2eU1m(2)U2L24U1d(3)减小加速电压U1和增大偏转电压U212.(15分)(2010·鞍山模拟)在场强为E=100 V/m的竖直向下的匀强电场中有一块水平放置的足够大的接地金属板,在金属板的正上方,高为h=0.8 m处有一个小的放射源放[来在一端开口的铅盒内,如图12所示.放射源以v0=200 m/s的初速度向水平面以下各个方向均匀地释放质量为m=2×10-15 kg、电荷量为q=+10-12 C的带电粒子.粒子最后落在金属板上.不计粒子重力,试求:(1)粒子下落过程中电场力做的功;(2)粒子打在金属板上时的动能;(3)计算落在金属板上的粒子图形的面积大小.(结果保留两位有效数字)解析:(1)粒子在下落过程中电场力做的功W=Eqh=100×10-12×0.8 J=8×10-11 J(2)粒子在整个运动过程中仅有电场力做功,由动能定理得W=E k2-E k1E k2=8×10-11 J+2×10-15×2002/2 J=1.2×10-10 J(3)粒子落到金属板上的范围是一个圆.设此圆的半径为r,只有当粒子的初速度与电场的方向垂直时粒子落在该圆的边缘上,由运动学公式得h=12at2=Eq2mt2代入数据求得t≈5.66×10-3 s圆半径r=v0t≈1.13 m圆面积S=πr2≈4.0 m2.答案:(1)8×10-11 J (2)1.2×10-10 J (3)4.0 m2。

高中物理电容公式带电粒子在电场中的运动

高中物理电容公式带电粒子在电场中的运动

高中物理电容公式带电粒子在电场中的运动
下面是高中物理电容器常见公式,以及带电粒子在电场中的运动问题
1、带电粒子在电场中的加速公式是):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 其中(Vo=0)
2、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏
转(不考虑重力作用的情况下)
在垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
在平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
带电小球接触后,电量分配3、两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
常见电场的电场线分布要求熟记〔[第二册P98];
电容单位换算:1F=106μF=1012PF;
电子伏(eV)是能量的单位,1eV=1.60×10-19J;。

高三物理电容器与电容带电粒子在电场中的运动作业

高三物理电容器与电容带电粒子在电场中的运动作业

电容器与电容带电粒子在电场中的运动一、选择题(本题共8小题,每小题8分,共64分。

其中1~3题为单选,4~8题为多选)1. (2020·北京市东城区一模)如图所示,电容器上标有“80 V1000 μF”字样。

下列说法正确的是()A.电容器两端电压为0时其电容为零B.电容器两端电压为80 V时才能存储电荷C.电容器两端电压为80 V时储存的电荷量为0.08 CD.电容器两端电压低于80 V时其电容小于1000 μF答案 C解析电容表征电容器容纳电荷的本领大小,与电压U和电量Q无关,给定的电容器电容C一定,故A、D错误;由于电容一定,由Q=CU可知,电容器两端只要有电压,电容器就能存储电荷,故B错误;由Q=CU可知,电容器两端电压为80 V时储存的电荷量为Q=1000×10-6×80 C=0.08 C,故C正确。

2.(2018·北京高考) 研究与平行板电容器电容有关因素的实验装置如图所示,下列说法正确的是()A.实验前,只用带电玻璃棒与电容器a板接触,能使电容器带电B.实验中,只将电容器b板向上平移,静电计指针的张角变小C.实验中,只在极板间插入有机玻璃板,静电计指针的张角变大D.实验中,只增加极板带电量,静电计指针的张角变大,表明电容增大答案 A解析 用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异号电荷,从而使电容器带电,故A 正确;根据平行板电容器的电容决定式C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =Q U 可知,电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故B 错误;根据电容的决定式C =εr S 4πkd ,只在极板间插入有机玻璃板,则相对介电常数εr 增大,则电容C 增大,根据C =Q U 可知,电荷量Q 不变,则电压U 减小,则静电计指针的张角变小,故C 错误;电容与电容器所带的电荷量无关,故电容C 不变,故D 错误。

(整理)电容器、带电粒子在电场中的运动问题

(整理)电容器、带电粒子在电场中的运动问题

电容器、带电粒子在电场中的运动问题二、学习目标:1、知道电容器电容的概念,会判断电容器充、放电过程中各个物理量的变化情况。

2、建立带电粒子在匀强电场中加速和偏转问题的分析思路,熟悉带电粒子在电场中的运动特点。

3、重点掌握与本部分内容相关的重要的习题类型及其解法。

考点地位:带电粒子在电场中的加速与偏转是高考的重点和难点,题型涉及全面,既可以通过选择题也可以通过计算题的形式进行考查,题目综合性很强,能力要求较高,在高考试题中常以压轴题的形式出现,知识面涉及广,过程复杂,对于电容器的考查,因其本身与诸多的电学概念联系而一直处于热点地位,考题多在电容器的决定式及电容器的动态分析上选材。

09年全国Ⅱ卷第19题、福建卷15题、天津卷第5题、08年重庆卷第21题、上海单科卷14题、海南卷第4题、07年广东卷第6题通过选择题形式进行考查,09年四川卷25题、广东卷20题、浙江卷23题、安徽卷23题、08年上海卷23题、07年重庆卷第24题、四川卷第24题、上海卷第22题均通过大型综合计算题的形式进行考查。

三、重难点解析: (一)电容和电容器: 1、电容:(1)定义:电容器所带的电荷量(是指一个极板所带电荷量的绝对值)与电容器两极板间电压的比值.(2)公式:C =Q/U. 单位:法拉,1F=.pF 10F 10126=μ(3)物理意义:电容反映电容器容纳电荷的本领的物理量,和电容器是否带电无关. (4)制约因素:电容器的电容与Q 、U 的大小无关,是由电容器本身情况决定,对一个确定的电容器,它的电容是一定的,与电容器是否带电及带电多少无关。

注意:由U QC =知,对确定的电容器,Q 与U 成正比,比值不变;对不同的电容器,U相同时,Q 越大,则C 越大,因此说C 是反映电容器容纳电荷本领的物理量。

2、平等板电容器(1)决定因素:C 与极板正对面积、介质的介电常数成正比,与极板间距离成反比。

(2)公式:kd 4/S C πε=,式中k 为静电力常量。

第三节 电容器与电容 带电粒子在电场中的运动

第三节 电容器与电容 带电粒子在电场中的运动

(2)用功能观点分析:电场力对带电粒子做的功等于 用功能观点分析: 用功能观点分析
带电粒子动能的增量 , 即○ qU = 1mv2- 1mv2。 25 ○ 0
24
2
2
2.如下图所示,在A板附近有一电子由静止开始向 板运 .如下图所示, 板附近有一电子由静止开始向B板运 板附近有一电子由静止开始向 板时的速率, 动,则关于电子到达B板时的速率,下列解释正确的是 则关于电子到达 板时的速率 下列解释正确的是( A.两板间距越大,加速的时间就越长,则获得的速率越大 .两板间距越大,加速的时间就越长, B.两板间距越小,加速度就越大,则获得的速率越大 .两板间距越小,加速度就越大, C.与两板间的距离无关,仅与加速电压U有关 C.与两板间的距离无关,仅与加速电压U有关 D.以上解释都不正确 . )
同时电场能转化为其他形式的能。 同时电场能转化为其他形式的能。
2.电容 . (1)定义:电容器所带的⑩ 电荷量 定义:电容器所带的 ⑩ 定义 ⑪ 与电容器两极板间的
电势差
的比值。 的比值。
Q (2)公式: C=⑫ U 公式: = 公式
=⑬
∆Q ∆U

(3)物理意义: 电容是表示电容器⑭ 容纳 电荷本领的物理量。 物理意义:电容是表示电容器⑭ 电荷本领的物理量。 物理意义 (4)单位: (4)单位:⑮ 法拉 , 符号⑯ F 。与其他单位间的换算关系为: 符号⑯ 与其他单位间的换算关系为: 单位 1 F=⑰ 106 µF=⑱ 1012 pF。 = = 。 3.平行板电容器 . (1)影响因素: 平行板电容器的电容与极板⑲ 正对面积 影响因素:平行板电容器的电容与极板⑲ 影响因素 成正比, 成正比,
【解题切点】 搞清电路连接方式,电容器中什么量不发生变化, 解题切点】 搞清电路连接方式,电容器中什么量不发生变化, 小球所受电场力如何变化? 小球所受电场力如何变化? 解析】 当电路接通后,对小球受力分析:小球受重力、 【解析】 当电路接通后,对小球受力分析:小球受重力、电场力和 悬线的拉力F三个力的作用,其中重力为恒力,当电路稳定后, 悬线的拉力 三个力的作用,其中重力为恒力,当电路稳定后,R1中 三个力的作用 没有电流,两端等电势,因此电容器两极板电压等于R 两端电压, 没有电流,两端等电势,因此电容器两极板电压等于 0两端电压, 不变, 变化时,电容器两极板电压不变,板间电场强度不变, 当R2不变,R1变化时,电容器两极板电压不变,板间电场强度不变, 小球所受电场力不变, 不变 不变, 、 两项错 若保持R 不变, 两项错。 小球所受电场力不变,F不变,C、D两项错。若保持 1不变,缓慢 增大R 两端电压减小,电容器两端电压减小,内部电场减弱, 增大 2,R0两端电压减小,电容器两端电压减小,内部电场减弱, 小球受电场力减小, 变小 变小。 项正确。 小球受电场力减小,F变小。故B项正确。 项正确 【答案】 B 答案】 【发散思维】 在分析平行板电容器的电容与其他参量的动态变化 发散思维】 有两个技巧: 确定不变量 确定不变量, 选择合适公式 选择合适公式。 时,有两个技巧:(1)确定不变量,(2)选择合适公式。

2012 电容器与电容 带电粒子在电场中的运动学案

2012电容器与电容 带电粒子在电场中的运动学案【知识梳理】一、电容器与电容 一、电容器 1.电容器(1)组成:由两个彼此____又相互____的导体组成. (2)带电量:一个极板所带电量的_______. (3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板上带等量的_________,电容器中储存______ 放电:使充电后的电容器失去电荷的过程,放电过程中______转化为其他形式的能. 2.电容(1)定义:电容器所带的________与电容器两极板间的电势差U 的比值.(2)定义式:_____.(3)物理意义:表示电容器________本领大小的物理量. (4)单位:法拉(F)1F =____________μF =____________pF.3.平行板电容器(1)影响因素:平行板电容器的电容与________成正比,与介质的________成正比,与____________成反比.(2)决定式:C =εS4πkd,其中k 为静电力常量,ε为相对介电常数.4、关于电容器两类典型问题分析方法:(1)首先确定不变量,若电容器充电后断开电源,则 不变;若电容器始终和直流电源相连,则 不变。

(2)当决定电容器大小的某一因素变化时,用公式 判断电容的变化。

(3)用公式 分析Q 和U 的变化。

(4)用公式 分析平行板电容两板间场强的变化。

一、带电粒子的加速1.带电粒子在电场中的加速带电粒子沿与电场线平行的方向进入电场,带电粒子将做________运动.有两种分析方法:(1)用动力学观点分析:a =qE m ,E =U d ,v 2-v 20=2ad .(2)用功能观点分析:粒子只受电场力作用,电场力做的功等于物体动能的变化.qU =12mv 2-12mv 2二、带电粒子的偏转由物体做曲线运动的条件可知:。

其中最简单的就是加速度方向与速度方向垂直。

如右图所示,在真空中水平放置一对金属板Y 和Y ′间的电压为U ,现有一质量为m 、电荷量为q 的带电粒子以水平速度v 0射入电场中,则: 1、带电粒子的运动形式带电粒子沿极板方向作速度为v 0的匀速直线运动,即x =o v t ;垂直于极板方向作初速度为零的匀加速直线运动,即212y at ==212Uq t dm;粒子的合运动为匀变速曲线运动(类平抛L2、带电粒子在垂直于板方向偏移的距离为y =222oUql dmv 。

专题七 第3讲 电容器与电容带电粒子在电场中的运动

A.电阻 R 中没有电流 B.电容器的电容变小
)
C.电阻 R 中有从 a 流向 b 的电流 D.电阻 R 中有从 b 流向 a 的电流 图 7-3-4
解析: 图中电容器被充电, 极板带正电, 极板带负电. A B 根 εS 据平行板电容器的大小决定因素 C∝ d 可知,当增大电容器两 极板间距离 d 时,电容 C 变小.由于电容器始终与电池相连, Q 电容器两极板间电压 UAB 保持不变,根据电容的定义 C=U , AB 当 C 减小时电容器两极板所带电荷量 Q 减小,A 极板所带正电 荷的一部分从 a 到 b 经电阻 R 流向电源正极,即电阻 R 中有从 a 流向 b 的电流.
D.电容器的电容不随所带电荷量及两极板间的电势差的
变化而变化
Q 解析:本题主要考查电容的定义式C=—,即C与Q、U U
皆无关,Q 与 U 成正比. 答案:D
2.(双选)图 7-3-4 所示的是一个由电池、电阻 R、电键 S 与平行板电容器组成的串联电路,电键闭合,在增大电容器
两极板间距离的过程中(
6 12
距离 正比,与两极板的_____成反比,并且跟板间插入的电介质有关.
εS (2)公式:C=______ 4πkd
4.平行板电容器的动态分析 (1)两种情况:①保持两极板与电源相连,则电容器两极板 电压 电量 间_____不变.②充电后断开电源,则电容器的_____不变.
Q εS (2)三个公式:①C=U;②U=Ed;③C=4πkd. (3)方法:找不变量与变化量之间的公式来决定要比较的量
运动、减速运动至速度为零;如此反复运动,每次向左运动的 距离大于向右运动的距离,最终打在 A 板上,所以B 正确.
3T 若 <t0<T,带正电粒子先加速向A 板运动、再减速运动至 4 速度为零;然后再反方向加速运动、减速运动至速度为零;如 此反复运动,每次向左运动的距离小于向右运动的距离,最终 打在B 板上,所以C 错误.若T<t0< 9T ,带正电粒子先加速向B 8

新课标全国高考考前复习物理 6.3 电容器和电容 带电粒子在电场中的运动

新课标全国高考考前复习物理6.3 电容器和电容 带电粒子在电场中的运动1.如图6-3-1所示是某个点电荷电场中的一根电场线,在线上O 点由静止释放一个自由的负电荷,它将沿电场线向B 点运动.下列判断中正确的是 ( ).A .电场线由B 指向A ,该电荷做加速运动,加速度越来越小B .电场线由B 指向A ,该电荷做加速运动,其加速度大小的变化不能确定C .电场线由A 指向B ,该电荷做匀速运动D .电场线由B 指向A ,该电荷做加速运动,加速度越来越大解析 在由电场线上O 点由静止释放一个自由的负电荷,它将沿电场线沿B 点运动,受 电场力方向由A 指向B ,则电场线方向由B 指向A ,该负电荷做加速运动,其加速度大 小的变化不能确定.选项B 正确. 答案 B2. 如图6-3-2所示是测定液面高度h 的电容式传感器示意图,E 为电源,G 为灵敏电流计,A 为固定的导体芯,B 为导体芯外面的一层绝缘物质,C 为导电液体.已知灵敏电流计指针偏转方向与电流方向的关系为:电流从左边接线柱流进电流计,指针向左偏.如果在导电液体的深度h 发生变化时观察到指针正向左偏转,则 ( ).A .导体芯A 所带电荷量在增加,液体的深度h 在增大B .导体芯A 所带电荷量在减小,液体的深度h 在增大C .导体芯A 所带电荷量在增加,液体的深度h 在减小D .导体芯A 所带电荷量在减小,液体的深度h 在减小解析 电流计指针向左偏转,说明流过电流计G 的电流由左→右,则导体芯A 所带电荷 量在减小,由Q =CU 可知,芯A 与液体形成的电容器的电容减小,则液体的深度h 在 减小,故D 正确. 答案 D3.静电计是在验电器的基础上制成的,用其指针张角的大小来定性显示其金属球与外壳之间的电势差大图6-3-1图6-3-2小.如图6-3-3所示,A 、B 是平行板电容器的两个金属板,G 为静电计.开始时开关S 闭合,静电计指针张开一定角度,为了使指针张开的角度增大些,下列采取的措施可行的是( ).图6-3-3A .断开开关S 后,将A 、B 分开些 B .保持开关S 闭合,将A 、B 两极板分开些C .保持开关S 闭合,将A 、B 两极板靠近些D .保持开关S 闭合,将变阻器滑动触头向右移动解析 要使静电计的指针张开角度增大些,必须使静电计金属球和外壳之间的电势差增 大,断开开关S 后,将A 、B 分开些,电容器的带电荷量不变,电容减小,电势差增大, A 正确;保持开关S 闭合,将A 、B 两极板分开或靠近些,静电计金属球和外壳之间的 电势差不变,B 、C 均错误;保持开关S 闭合,将滑动变阻器滑动触头向右或向左移动, 静电计金属球和外壳之间的电势差不变,D 错误. 答案 A4.如图6-3-4所示,一带电小球以水平速度射入接入电路中的平行板电容器中,并沿直线 打在屏上O 点,若仅将平行板电容器上极板平行上移一些后,让带电小球再次从原位置水平射入并能打在屏上,其他条件不变,两次相比较,则再次射入的带电小球( ).A .将打在O 点的下方B .将打在O 点的上方C .穿过平行板电容器的时间将增加D .达到屏上动能将增加解析 由题意知,上极板不动时,小球受电场力和重力平衡,平行板电容器上移后,两 极板间电压不变,电场强度变小,小球再次进入电场,受电场力减小,合力方向向下, 所以小球向下偏转,将打在O 点下方,A 项正确,B 项错误;小球的运动时间由水平方图6-3-4向的运动决定,两次通过时水平速度不变,所以穿过平行板电容器的时间不变,C 项错 误;由于小球向下偏转,合力对小球做正功,小球动能增加,所以D 项正确. 答案 AD5.如图6-3-5所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为45°,则此带电小球通过P 点时的动能为 ( ). A .mv 02B.12mv 02C .2mv 02D.52mv 02解析 由题意可知小球到P 点时水平位移和竖直位移相等,即v 0t =12v Py t ,合速度v P =v 02+v Py 2=5v 0E kP =12mv P 2=52mv 02,故选D(等效思维法).答案 D6.如图6-3-6所示,电子由静止开始从A 板向B 板运动,当到达B 极板时速度为v ,保持两板间电压不变,则 ( ).A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间也增大解析 电子从静止开始运动,根据动能定理,从A 运动到B 动能的变化量等于电场力做 的功.因为保持两个极板间的电势差不变,所以末速度不变,平均速度不变,若两板间 距离增加,时间变长.图6-3-6图6-3-5答案 CD7.如图6-3-7所示,从炽热的金属丝漂出的电子(速度可视为零),经加速电场加速后从两极板中间垂直射入偏转电场.电子的重力不计.在满足电子能射出偏转电场的条件下,下述四种情况中,一定能使电子的偏转角变大的是( ).A .仅将偏转电场极性对调B .仅增大偏转电极间的距离C .仅增大偏转电极间的电压D .仅减小偏转电极间的电压 解析 设加速电场电压为U 0,偏转电压为U ,极板长度为L ,间距为d ,电子加速过程 中,由U 0q =mv 022,得v 0=2U 0qm,电子进入极板后做类平抛运动,时间t =L v 0,a =Uq dm,v y =at ,tan θ=v y v 0=UL2U 0d,由此可判断C 正确.(类平抛模型)答案 C8.如图6-3-8所示,一带电荷量为q 的带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直.粒子从Q 点射出电场时,其速度方向与电场线成30°角.已知匀强电场的宽度为d ,P 、Q 两点的电势差为U ,不计重力作用,设P 点的电势为零.则下列说法正确的是( ).A .带电粒子在Q 点的电势能为-Uq B .带电粒子带负电图6-3-7图6-3-8C .此匀强电场的电场强度大小为E =23U3dD .此匀强电场的电场强度大小为E =3U 3d解析 根据带电粒子的偏转方向,可判断B 错误;因为P 、Q 两点的电势差为U ,电场 力做正功,电势能减少,而P 点的电势为零,所以A 正确;设带电粒子在P 点时的速度 为v 0,在Q 点建立直角坐标系,垂直于电场线为x 轴,平行于电场线为y 轴,由曲线运 动的规律和几何知识求得带电粒子在y 轴方向的分速度为v y =3v 0.带电粒子在y 轴方向 上的平均速度为v y =3v 02;带电粒子在y 轴方向上的位移为y 0,带电粒子在电场中的 运动时间为t ,y 0=3v 02t ,d =v 0t ,得y 0=3d 2,由E =U y 0得E =23U 3d,C 正确,D 错误. 答案 AC9.如图6-3-9所示,A 板发出的电子经加速后,水平射入水平放置的两平行金属板间,金属板间所加的电压为U ,电子最终打在荧光屏P 上,关于电子的运动,则下列说法中正确的是( ).A .滑动触头向右移动时,其他不变,则电子打在 荧光屏上的位置上升B .滑动触头向左移动时,其他不变,则电子打在荧光屏上的位置 上升C .电压U 增大时,其他不变,则电子打在荧光屏上的速度大小不变D .电压U 增大时,其他不变,则电子从发出到打在荧光屏上的速度变大解析 设加速电压为U 0,进入偏转电场时的速度大小为v 0,则电子经加速电场:eU 0=12mv 02① 偏转电场中:L =v 0t② y =12×Uedmt 2③图6-3-9eU d y =12mv 2-12mv 02④由①②③得y =L 2U 4dU 0.当滑动触头向右滑动时,U 0变大,y 变小, 所以选项A 错,B 对. 由①②③④得12mv 2=L 2U 2e4d 2U 0+eU 0当U 增大时,12mv 2增大,电子打到屏上的速度变大,故选项C 错,D 对.答案 BD10.M 、N 是某电场中一条电场线上的两点,若在M 点释放一个初速度为零的电子,电子仅受电场力作用,并沿电场线由M 点运动到N 点,其电势能随位移变化的关系如图6-3-10所示,则下列说法正确的是 ( ).A .电子在N 点的动能小于在M 点的动能B .该电场有可能是匀强电场C .该电子运动的加速度越来越小D .电子运动的轨迹为曲线解析 电子仅受电场力的作用,电势能与动能之和恒定,由图像可知电子由M 点运动到N 点,电势能减小,动能增加,A 选项错误;分析图像可得电子的电势能随运动距离的增大,减小的越来越慢,即经过相等距离电场力做功越来越少,由W =qE Δx 可得电场强 度越来越小,B 选项错误;由于电子从M 点运动到N 点电场力逐渐减小,所以加速度逐 渐减小,C 选项正确;电子从静止开始沿电场线运动,可得MN 电场线为直线,由运动 与力的关系可得轨迹必为直线,D 选项错误. 答案 C11.如图6-3-11甲所示,静电除尘装置中有一长为L 、宽为b 、高为d 的矩形通道,其前、后面板使用绝缘材料,上、下面板使用金属材料.图6-3-26乙是装置的截面图,上、下两板与电压恒定的高压直流电源相连.质量为m 、电荷量为-q 、分布均匀的尘埃以水平速度v 0进入矩形通道,当带负电的尘埃碰到下板后其所带电荷被中和,同时被收集.通过调整两板间距d 可以改变收集效率η.当d =d 0时,η为81%(即离下板0.81d 0范围内的尘埃能够被收集).不计尘埃的重力及尘埃之间的相互作用.图6-3-10图6-3-11(1)求收集效率为100%时,两板间距的最大值d m ; (2)求收集效率η与两板间距d 的函数关系.解析 (1)收集效率η为81%,即离下板0.81 d 0的尘埃恰好到达下板的右端边缘,设高压 电源的电压为U ,则在水平方向有L =v 0t① 在竖直方向有0.81d 0=12at2② 其中a =F m =qE m =qUmd 0③当减小两板间距时,能够增大电场强度,提高装置对尘埃的收集效率.收集效率恰好为 100%时,两板间距即为d m .如果进一步减小d ,收集效率仍为100%.因此,在水平方向有L =v 0t④ 在竖直方向有d m =12a ′t2⑤ 其中a ′=F ′m =qE ′m =qU md m⑥ 联立①②③④⑤⑥式可得d m =0.9d 0⑦(2)当d >0.9d 0时,设距下板x 处的尘埃恰好到达下板的右端 边缘,此时有x =12qU md ⎝ ⎛⎭⎪⎫L v 0 2⑧ 根据题意,收集效率为η=x d⑨联立①②③⑧⑨式可得η=0.81⎝ ⎛⎭⎪⎫d 0d 2.答案 (1)0.9d 0 (2)η=0.81⎝ ⎛⎭⎪⎫d 0d 212.如图6-3-12所示,长L =1.2 m 、质量M =3 kg 的木板静止放在倾角为37°的光滑斜面上,质量m =1 kg 、带电荷量q =+2.5×10-4C 的物块放在木板的上端,木板和物块间的动摩擦因数μ=0.1,所在空间加有一个方向垂直斜面向下、场强E =4.0×104N/C 的匀强电场.现对木板施加一平行于斜面向上的拉力F =10.8 N .取g =10 m/s 2,斜面足够长.求: (1)物块经多长时间离开木板? (2)物块离开木板时木板获得的动能.(3)物块在木板上运动的过程中,由于摩擦而产生的内能.解析 (1)物块向下做加速运动,设其加速度为a 1,木板的加速度为a 2,则由牛顿第二定 律对物块:mg sin 37°-μ(mg cos 37°+qE )=ma 1 对木板:Mg sin 37°+μ(mg cos 37°+qE )-F =Ma 2 又12a 1t 2-12a 2t 2=L 得物块滑过木板所用时间t =2s .(2)物块离开木板时木板的速度v 2=a 2t =3 2 m/s. 其动能为E k2=12Mv 22=27 J.(3)由于摩擦而产生的内能为(程序思维法)Q =Fs 相对=μ(mg cos 37°+qE )·L =2.16 J.答案 (1) 2 s (2)27 J (3)2.16 J图6-3-12。

2023届高考物理一轮复习学案 8.3 电容器带电粒子在电场中的运动

第3节电容器带电粒子在电场中的运动学案基础知识:一、电容器及电容1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成。

(2)带电荷量:一个极板所带电荷量的绝对值。

(3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能。

放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能。

2.电容(1)定义:电容器所带的电荷量与电容器两极板间的电势差的比值。

(2)定义式:C=Q U。

(3)物理意义:表示电容器容纳电荷本领大小的物理量。

(4)单位:法拉(F),1 F=106μF=1012 pF。

3.平行板电容器的电容(1)影响因素:平行板电容器的电容与极板的正对面积成正比,与电介质的相对介电常数成正比,与极板间距离成反比。

(2)决定式:C=εr S4πkd,k为静电力常量。

二、带电粒子在匀强电场中的运动1.做直线运动的条件(1)初速度v0≠0粒子所受合外力F合=0,粒子做匀速直线运动。

(2)初速度v0≠0粒子所受合外力F合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。

2.偏转(1)运动情况:如果带电粒子以初速度v0垂直场强方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图所示。

(2)处理方法:将粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动。

根据运动的合成与分解的知识解决有关问题。

(3)基本关系式:运动时间t=lv0,加速度a=Fm=qEm=qUmd,偏转量y=12at2=qUl22md v 20,偏转角θ的正切值:tan θ=v yv0=atv0=qUlmd v 20。

三、示波管1.示波管的构造①电子枪,②偏转电极,③荧光屏。

(如图所示)2.示波管的工作原理(1)YY′偏转电极上加的是待显示的信号电压,XX′偏转电极上是仪器自身产生的锯齿形电压,叫作扫描电压。

(2)观察到的现象①如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子沿直线运动,打在荧光屏中心,产生一个亮斑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在电场中的运动考纲解读1.理解电容器的基本概念,掌握好电容器的两类动态分析.2.能运用运动的合成与分解解决带电粒子的偏转问题.3.用动力学方法解决带电粒子在电场中的直线运动问题.1.[对电容器和电容的理解]关于电容器及其电容的叙述,正确的是( )A .任何两个彼此绝缘而又相互靠近的导体,就组成了电容器,跟这两个导体是否带电无关B .电容器所带的电荷量是指每个极板所带电荷量的代数和C .电容器的电容与电容器所带电荷量成反比D .一个电容器的电荷量增加ΔQ =1.0×10-6C 时,两板间电压升高10 V ,则电容器的电容无法确定 答案 A2.[带电粒子在板间的加速问题]如图1所示,电子由静止开始从A 板向B 板运动,当到达B 极板时速度为v ,保持两板间电压不变,则( )A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大图1C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间也增大 答案 CD解析 电子从静止开始运动,根据动能定理,从A 板运动到B 板动能的变化量等于电场力做的功.因为保持两个极板间的电势差不变,所以末速度不变,而位移(两板间距离)如果增加的话,电子在两板间运动的时间变长,故C 、D 正确.3.[带电粒子在板间的偏转问题]如图2所示,静止的电子在加速电压为U 1的电场作用下从O 经P 板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压为U 2的电场作用下偏转一段距离.现使U 1加倍, 要想使电子的运动轨迹不发生变化,应该 ( ) 图2A .使U 2加倍B .使U 2变为原来的4倍C .使U 2变为原来的2倍D .使U 2变为原来的12答案 A解析 电子经U 1加速后获得的动能为E k =12mv 2=qU 1,电子在偏转电场中的侧移量为:y =12at 2=12qU 2md l2v2=U 2l 24U 1d,可见当U 1加倍时,要使y 不变,需使U 2加倍,显然A 正确. 考点梳理一、电容器的充、放电和电容的理解 1.电容器的充、放电(1)充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能. (2)放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.电容(1)定义:电容器所带的电荷量Q 与电容器两极板间的电势差U 的比值. (2)定义式:C =Q U.(3)物理意义:表示电容器容纳电荷本领大小的物理量. 3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两板间的距离成反比.(2)决定式:C =εS4πkd,k 为静电力常量.特别提醒 C =Q U (或C =ΔQ ΔU )适用于任何电容器,但C =εS4πkd仅适用于平行板电容器.二、带电粒子在电场中的运动 1.带电粒子在电场中加速若不计粒子的重力,则电场力对带电粒子做的功等于带电粒子动能的增量. (1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20或F =qE =q Ud =ma .(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=12qU mdt 2,t = 2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uq md离开电场时的偏移量:y =12at 2=Uql 22mdv2离开电场时的偏转角:tan θ=v y v 0=Uql mdv20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.4.[控制变量法的应用]如图3所示,设两极板正对面积为S ,极板间的距离为d ,静电计指针偏角为θ.实验中,极板所带电荷量不变,若( )图3A .保持S 不变,增大d ,则θ变大B .保持S 不变,增大d ,则θ变小C .保持d 不变,减小S ,则θ变小D .保持d 不变,减小S ,则θ不变 答案 A解析 静电计指针偏角反映电容器两板间电压大小.在做选项所示的操作中,电容器电荷量Q 保持不变,由C =Q U =εS 4πkd知,保持S 不变,增大d ,则C 减小,U 增大,偏角θ增大,选项A 正确,B 错误;保持d 不变,减小S ,则C 减小,U 增大,偏角θ也增大,故选项C 、D 均错.5.[用平抛运动的分解思想解决偏转问题]如图4所示,示波器的 示波管可视为加速电场与偏转电场的组合,若已知加速电压为U 1,偏转电压为U 2,偏转极板长为L ,极板间距为d ,且电子被加速前的初速度可忽略,则关于示波器灵敏度[即偏转电场中图4每单位偏转电压所引起的偏转量(y U 2)]与加速电场、偏转电场的关系,下列说法中正确的是( )A .L 越大,灵敏度越高B .d 越大,灵敏度越高C .U 1越大,灵敏度越高D .U 2越大,灵敏度越高答案 A解析 偏转位移y =12at 2=12qU 2md (L v )2=U 2L 24dU 1,灵敏度y U 2=L24dU 1,故A 正确,B 、C 、D 错误.方法提炼1.电容器的两类动态分析(1)明确是电压不变还是电荷量不变.(2)利用公式C =Q U 、C =εS 4πkd 及E =Ud进行相关动态分析.2.带电粒子在电场中的偏转按类平抛运动进行处理.考点一 平行板电容器的动态分析 1.对公式C =Q U的理解电容C =Q U,不能理解为电容C 与Q 成正比、与U 成反比,一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关.2.运用电容的定义式和决定式分析电容器相关量变化的思路 (1)确定不变量,分析是电压不变还是所带电荷量不变. (2)用决定式C =εS4πkd分析平行板电容器电容的变化.(3)用定义式C =Q U分析电容器所带电荷量或两极板间电压的变化. (4)用E =U d分析电容器两极板间电场强度的变化.3.电容器两类问题的比较例1一个正试探电荷固定在P 点,如图5所示,以C 表示电容器的 电容、E 表示两板间的场强、φ表示P 点的电势,E p 表示正电 荷在P 点的电势能,若正极板保持不动,将负极板缓慢向右平 移一小段距离x 0的过程中,各物理量与负极板移动距离x 的关图5系图象中正确的是( )解析 由平行板电容器的电容C =εS4πkd 可知d 减小时,C 变大,但不是一次函数,A 错.在电容器两极板所带电荷量一定的情况下,U =Q C ,E =U d =4πkQεS,与x 无关,则B 错.在负极板接地的情况下,设P点最初的电势为φ0,则平移后P 点的电势为φ=φ0-Ex 0,C 项正确.正电荷在P 点的电势能E p =q φ=q (φ0-Ex 0),显然D 错. 答案 C突破训练1 如图6所示,两块正对平行金属板M 、N 与电池相连,N 板 接地,在距两板等距离的P 点固定一个带负电的点电荷,如果M 板向上 平移一小段距离,则( ) A .点电荷受到的电场力变小图6B .M 板的带电荷量增加C .P 点的电势升高D .点电荷在P 点具有的电势能增加 答案 AD考点二 带电粒子(带电体)在电场中的直线运动 1.带电粒子在匀强电场中做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动. 2.用动力学方法分析a =F 合m ,E =U d;v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1例2 如图7所示,一带电荷量为+q \,质量为m 的小物块处于一倾角 为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中时, 小物块恰好静止.重力加速度取g ,sin 37°=0.6,cos 37°=0.8.求: (1)水平向右电场的电场强度;图7(2)若将电场强度减小为原来的1/2,物块的加速度是多大; (3)电场强度变化后物块下滑距离为L 时的动能.解析 (1)小物块静止在斜面上,受重力、电场力和斜面支持力,示意图如图所示,则有F N sin 37°=qE ① F N cos 37°=mg②由①②可得E =3mg4q(2)若电场强度减小为原来的12,即E ′=3mg8q由牛顿第二定律得mg sin 37°-qE ′cos 37°=ma 可得a =0.3g .(3)电场强度变化后物块下滑距离L 时,重力做正功,电场力做负功,由动能定理得mgL sin 37°-qE ′L cos 37°=E k -0可得E k =0.3mgL .答案 (1)3mg4q(2)0.3g (3)0.3mgL突破训练2 如图8甲所示,在真空中足够大的绝缘水平地面上,一个质量为m =0.2 kg 、带电荷量为q =+2.0×10-6C 的小物块处于静止状态,小物块与地面间的动摩擦因数μ=0.1.从t =0时刻开始,空间上加一个如图乙所示的电场.(取水平向右的方向为正方向,g 取10 m/s 2)求: (1)4秒内小物块的位移大小; (2)4秒内电场力对小物块所做的功.甲 乙图8答案 (1)8 m (2)1.6 J 解析 (1)0~2 s 内小物块加速度a 1=E 1q -μmg m=2 m/s 2位移s 1=12a 1t 21=4 m2 s 末的速度为v 2=a 1t 1=4 m/s 2 s ~4 s 内小物块加速度a 2=E 2q -μmg m=-2 m/s 2位移s 2=v 2t 2+12a 2t 22=4 m4秒内的位移s =s 1+s 2=8 m.(2)v 4=v 2+a 2t 2=0,即4 s 末小物块处于静止状态 设电场力对小物块所做的功为W ,由动能定理有:W -μmgs =0解得W =1.6 J考点三 带电粒子在电场中的偏转 1.粒子的偏转角(1)以初速度v 0进入偏转电场:如图9所示,设带电粒子质量为m , 带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏 转电压为U 1,若粒子飞出电场时偏转角为θ 则tan θ=v y v x,式中图9v y =at =qU 1md ·lv 0,v x =v 0,代入得tan θ=qU 1lmv 20d①结论:动能一定时tan θ与q 成正比,电荷量一定时tan θ与动能成反比. (2)经加速电场加速再进入偏转电场若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由动能定理有:qU 0=12mv 2② 由①②式得:tan θ=U 1l2U 0d③结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场. 2.粒子在匀强电场中偏转时的两个结论 (1)以初速度v 0进入偏转电场 y =12at 2=12·qU 1md ·(l v 0)2④作粒子速度的反向延长线,设交于O 点,O 点与电场右边缘的距离为x ,则x =y ·cot θ=qU 1l 22dmv 20·mv 20dqU 1l=l2结论:粒子从偏转电场中射出时,就像是从极板间的l2处沿直线射出.(2)经加速电场加速再进入偏转电场:若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由②和④得:偏移量y =U 1l 24U 0d⑤上面③式偏转角正切为: tan θ=U 1l2U 0d结论:无论带电粒子的m 、q 如何,只要经过同一加速电场加速,再垂直进入同一偏转电场,它们飞出的偏移量y 和偏转角θ都是相同的,也就是运动轨迹完全重合.例3 如图10所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场 线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试 求:图10(1)粒子从射入到打到屏上所用的时间.(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x .解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入到打到屏上所用的时间t =2Lv 0.(2)设粒子射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a=Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv20解法二 x =v y ·L v 0+y =3qEL22mv20.解法三 由x y =L +L 2L 2得:x =3y =3qEL22mv 20.答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL22mv 20计算粒子打到屏上的位置离屏中心的距离Y 的三种方法:(1)Y =y +d tan θ(d 为屏到偏转电场的水平距离) (2)Y =(L2+d )tan θ(L 为电场宽度) (3)Y =y +v y ·dv 0(4)根据三角形相似:Y y =L2+d L2突破训练3 如图11所示为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、 N 间电场时的速度与电场方向垂直,电子经过偏转电场后打在图11荧光屏上的P 点.已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的质量为m ,电荷量为e ,不计电子受到的重力及它们之间的相互作用力. (1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场射出时的偏移量;(3)若要使电子打在荧光屏上P 点的上方,可采取哪些措施? 答案 (1)2eU 1m (2)U 2L24U 1d(3)减小加速电压U 1或增大偏转电压U 2解析 (1)设电子经电压U 1加速后的速度为v 0,由动能定理有eU 1=12mv 20-0,解得v 0=2eU 1m(2)电子以速度v 0进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动.由牛顿第二定律和运动学公式有t =L v 0F =ma ,F =eE , E =U 2d ,y =12at 2解得偏移量y =U 2L 24U 1d(3)由y =U 2L 24U 1d可知,减小U 1或增大U 2均可使y 增大,从而使电子打在P 点上方.42.用等效法处理带电粒子在电场、重力场中的运动1.方法提炼等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法.例如我们学习过的等效电阻、分力与合力、合运动与分运动等都体现了等效思维方法.常见的等效法有“分解”、“合成”、“等效类比”、“等效替换”、“等效变换”、“等效简化”等,从而化繁为简,化难为易. 2.模型转换与构建带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题,是高中物理教学中一类重要而典型的题型.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则能避开复杂的运算,过程比较简捷.先求出重力与电场力的合力,将这个合力视为一个“等效重力”,将a =F 合m视为“等效重力加速度”.再将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解即可.例4 如图12所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一 个质量为m 的小球,带正电荷量为q =3mg3E,要使小球能安图12全通过圆轨道,在O 点的初速度应满足什么条件?解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比 重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE2+mg2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 2解得v 0=103gR3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR3. 答案 v ≥103gR3突破训练4 一个带负电荷量为q ,质量为m 的小球,从光滑绝缘的 斜面轨道的A 点由静止下滑,小球恰能通过半径为R 的竖直圆形 轨道的最高点B 而做圆周运动.现在竖直方向上加如图13所示 的匀强电场,若仍从A 点由静止释放该小球,则 ( ) 图13A .小球不能过B 点 B .小球仍恰好能过B 点C .小球通过B 点,且在B 点与轨道之间的压力不为0D .以上说法都不对 答案 B解析 小球从光滑绝缘的斜面轨道的A 点由静止下滑,恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动,则mg =m v 21R ,mg (h -2R )=12mv 21;加匀强电场后仍从A 点由静止释放该小球,则(mg -qE )(h -2R )=12mv 22,联立解得mg -qE =m v 22R,满足小球恰好能过B 点的临界条件,选项B 正确.高考题组1.(2012·江苏单科·2)一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容C 和两极板间的电势差U 的变化情况是 ( )A .C 和U 均增大B .C 增大,U 减小 C .C 减小,U 增大D .C 和U 均减小答案 B解析 由平行板电容器电容决定式C =εS4πkd 知,当插入电介质后,ε变大,则在S 、d 不变的情况下C增大;由电容定义式C =Q U 得U =Q C,又电荷量Q 不变,故两极板间的电势差U 减小,选项B 正确. 2.(2012·海南单科·9)将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d 、U 、E 和Q 表示.下列说法正确的是( )A .保持U 不变,将d 变为原来的两倍,则E 变为原来的一半B .保持E 不变,将d 变为原来的一半,则U 变为原来的两倍C .保持d 不变,将Q 变为原来的两倍,则U 变为原来的一半D .保持d 不变,将Q 变为原来的一半,则E 变为原来的一半 答案 AD解析 由E =Ud知,当U 不变,d 变为原来的两倍时,E 变为原来的一半,A 项正确;当E 不变,d 变为原来的一半时,U 变为原来的一半,B 项错误;当电容器中d 不变时,C 不变,由C =Q U知,当Q 变为原来的两倍时,U 变为原来的两倍,C 项错误;Q 变为原来的一半,则U 变为原来的一半,E 变为原来的一半,D 项正确.3.(2012·课标全国·18)如图14,平行板电容器的两个极板与水平地面成一 角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平 直线通过电容器,则在此过程中,该粒子( ) A .所受重力与电场力平衡 B .电势能逐渐增加图14C .动能逐渐增加D .做匀变速直线运动答案 BD解析 带电粒子在平行板电容器之间受到两个力的作用,一是重力mg ,方向竖直向下;二是电场力F =Eq ,方向垂直于极板向上,因二力均为恒力,又已知带电粒子做直线运动,所以此二力的合力一定在粒子运动的直线轨迹上,根据牛顿第二定律可知,该粒子做匀减速直线运动,选项D 正确,选项A 、C 错误;从粒子运动的方向和电场力的方向可判断出,电场力对粒子做负功,粒子的电势能增加,选项B 正确.4.(2011·福建·20)反射式速调管是常用的微波器件之一,它利用电子 团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如 图15所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场, 一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动.已知电场强度的大小分别是E 1=2.0×103N/C 图15和E 2=4.0×103N/C ,方向如图所示.带电微粒质量m =1.0×10-20kg ,带电荷量q =-1.0×10-9C ,A 点距虚线MN 的距离d 1=1.0 cm ,不计带电微粒的重力,忽略相对论效应.求: (1)B 点距虚线MN 的距离d 2;(2)带电微粒从A 点运动到B 点所经历的时间t . 答案 (1)0.50 cm (2)1.5×10-8s解析 (1)带电微粒由A 运动到B 的过程中,由动能定理有 |q |E 1d 1-|q |E 2d 2=0① 由①式解得d 2=E 1E 2d 1=0.50 cm②(2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2,由牛顿第二定律有|q |E 1=ma 1 ③ |q |E 2=ma 2④设微粒在虚线MN 两侧运动的时间分别为t 1、t 2,由运动学公式有d 1=12a 1t 21⑤ d 2=12a 2t 22⑥ 又t =t 1+t 2⑦由②③④⑤⑥⑦式解得t =1.5×10-8s 模拟题组5.如图16所示,由两块相互靠近的平行金属板组成的平行板电容器 的极板N 与静电计相接,极板M 接地.用静电计测量平行板电容 器两极板间的电势差U .在两极板相距一定距离d 时,给电容器充 电,静电计指针张开一定角度.在整个实验过程中,保持电容器 图16所带电荷量Q 不变,下面操作能使静电计指针张角变小的是( ) A .将M 板向下平移B .将M 板沿水平方向向左远离N 板C .在M 、N 之间插入云母板(介电常数ε>1)D .在M 、N 之间插入金属板,且不和M 、N 接触 答案 CD解析 由C =εS4πkd 可知,将M 板向下平移,S 减小,将M 板沿水平方向向左移动,d 增大,均使C 变小,再由Q =CU 可知,电容器两板间电压增大,静电计指针张角增大,A 、B 均错误;在M 、N 间插入云母板,ε增大,C 增大,U 变小,静电计指针张角减小,C 正确;在M 、N 间插入金属板,相当于d 减小,故C 增大,U 变小,静电计指针张角减小,D 正确.6.为模拟空气净化过程,有人设计了如图17所示的含灰尘空气的密闭玻璃圆桶,圆桶的高和直径相等.第一种除尘方式是: 在圆桶顶面和底面间加上电压U ,沿圆桶的轴线方向形成一 个匀强电场,尘粒的运动方向如图甲所示;第二种除尘方式 是:在圆桶轴线处放一直导线,在导线与桶壁间加上的电压 也等于U ,形成沿半径方向的辐向电场,尘粒的运动方向如图17图乙所示.已知空气阻力与尘粒运动的速度成正比,即F f =kv (k 为一定值),假设每个尘粒的质量和带电荷量均相同,重力可忽略不计,则在这两种方式中( )A .尘粒最终一定都做匀速运动B .尘粒受到的电场力大小相等C .电场对单个尘粒做功的最大值相等D .在乙容器中,尘粒会做类平抛运动 答案 C解析 由于电压U 、圆桶的高与直径及空气阻力的大小不能计算,就不能确定尘粒最终是否做匀速运动,A 项错误;在甲、乙容器中,E =Ud 中的d 是不同的,所以F =qE =qU d一定不同,B 项错误;电场力对单个尘粒做功的最大值均为W =qU ,C 项正确;由于忽略重力,在甲、乙桶中,尘粒均做直线运动,D 项错误.(限时:45分钟)►题组1 电容器、电容及动态分析1.(2011·天津·5)板间距为d 的平行板电容器所带电荷量为Q 时,两极板间电势差为U 1,板间场强为E 1.现将电容器所带电荷量变为2Q ,板间距变为12d ,其他条件不变,这时两极板间电势差为U 2,板间场强为E 2,下列说法正确的是( )A .U 2=U 1,E 2=E 1B .U 2=2U 1,E 2=4E 1C .U 2=U 1,E 2=2E 1D .U 2=2U 1,E 2=2E 1答案 C解析 由C =Q U 和C =εS 4k πd 及E =U d 得,E =4k πQ εS ,由电荷量由Q 增为2Q ,板间距由d 减为d 2,得E 2=2E 1;又由U =Ed 可得U 1=U 2,故A 、B 、D 错,C 对.2.一平行板电容器两极板间距为d 、极板面积为S ,电容为ε0Sd,其中ε0是常量,对此电容器充电后断开电源.当增大两极板间距时,电容器极板间 ( )A .电场强度不变,电势差变大B .电场强度不变,电势差不变C .电场强度减小,电势差不变D .电场强度减小,电势差减小 答案 A解析 电容器充电后断开,故电容器的带电荷量不变,当增大两极板间的距离时,由C =ε0S d可知,电容器的电容变小,由U =Q C 可知电势差变大,又由E =U d 可得E =U d =Q Cd =Q ε0S dd=Qε0S,与d 无关,所以电场强度不变,A 正确.►题组2 带电粒子在电场中的直线运动3.如图1所示,在等势面沿竖直方向的匀强电场中,一带负电的微粒以 一定初速度射入电场,并沿直线AB 运动,由此可知( ) A .电场中A 点的电势低于B 点的电势B .微粒在A 点时的动能大于在B 点时的动能,在A 点时的电势能小 图1 于在B 点时的电势能C .微粒在A 点时的动能小于在B 点时的动能,在A 点时的电势能大于在B 点时的电势能D .微粒在A 点时的动能与电势能之和等于在B 点时的动能与电势能之和 答案 B解析 一带负电的微粒以一定初速度射入电场,并沿直线AB 运动, 对其受力分析知其受到的电场力F 只能垂直等势面水平向左,电场 强度则水平向右,如图所示.所以电场中A 点的电势高于B 点的电势,A 错;微粒从A 向B 运动,则合外力做负功,动能减小,电场力做负功,电势能增加,B 对,C 错;微粒的动能、重力势能、电势能三种能量的总和保持不变,所以D 错.4.如图2所示,一质量为m 、电荷量为q 的小球在电场强度为E 、区域足够大的匀强电场中,以初速度v 0沿ON 在竖直面内做匀变速直线 运动.ON 与水平面的夹角为30°,重力加速度为g ,且mg =Eq ,则( )图2A .电场方向竖直向上B .小球运动的加速度大小为gC .小球上升的最大高度为v202gD .若小球在初始位置的电势能为零,则小球电势能的最大值为mv204答案 BD解析 由于带电小球在竖直面内做匀变速直线运动,其合力沿ON方向,而mg =qE ,由三角形定则,可知电场方向与ON 方向成 120°角,A 错误;由图中几何关系可知,其合力为mg ,由牛顿第 二定律可知a =g ,方向与初速度方向相反,B 正确;设带电小球上升的最大高度为h ,由动能定理可得:-mg ·2h =0-12mv 20,解得:h =v204g ,C 错误;电场力做负功,带电小球的电势能变大,当带电小球速度为零时,其电势能最大,则E p =-qE ·2h cos 120°=qEh =mg ·v 204g =mv 204,D 正确.5.如图3甲所示,三个相同的金属板共轴排列,它们的距离与宽度均相同,轴线上开有小孔,在左边和右边两个金属板上加电压U 后,金属板间就形成匀强电场;有一个比荷qm=1.0×10-2C/kg 的带正电的粒子从左边金属板小孔轴线A 处由静止释放,在电场力作用下沿小孔轴线射出(不计粒子重力),其v -t 图象如图乙所示,则下列说法正确的是( )图3A .右侧金属板接电源的正极B .所加电压U =100 VC .乙图中的v 2=2 m/sD .通过极板间隙所用时间之比为1∶(2-1) 答案 BD。

相关文档
最新文档