2018-2019学年高中数学苏教版选修2-3:课时跟踪训练(五) 组合与组合数公式-含解析
高中数学 阶段质量检测(五)统计案例 苏教版选修2-3-苏教版高二选修2-3数学试题

阶段质量检测(五)统计案例(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知回归方程y ^=b ^x +a ^,其中a ^=3,且样本点的中心为(1,2),则回归直线方程为( )A.y ^=x +3B.y ^=-2x +3 C.y ^=-x +3 D.y ^=x -3解析:选C 因为回归方程一定经过样本点的中心,所以只需将样本点的中心坐标代入方程,用待定系数法求出即可.2.每一吨铸铁成本y (元)与铸件废品率x %建立的回归方程y ^=56+8x ,下列说法正确的是( )A .废品率每增加1%,成本每吨增加64元B .废品率每增加1%,成本每吨增加8%C .废品率每增加1%,成本每吨增加8元D .如果废品率增加1%,则每吨成本为56元解析:选C 根据回归方程知y 是关于x 的单调增函数,并且由系数知x 每增加一个单位,y 平均增加8个单位.3.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4 用水量y4.5432.5由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^等于( )A .10.5B .5.15C .5.2D .5.25解析:选D 样本点的中心为(2.5,3.5),将其代入线性回归方程可解得a ^=5.25. 4.下表显示出样本中变量y 随变量x 变化的一组数据,由此判断它最可能是( )x 4 5 6 7 8 9 10 y14181920232528AC .指数函数模型D .对数函数模型解析:选A 画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.5.试验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( )A.y ^=x +1B. y ^=x +2 C.y ^=2x +1 D.y ^=x -1解析:选A 由题意发现,(x ,y )的四组值均满足y ^=x +1,故y ^=x +1为回归直线方程. 6.下列说法中,错误说法的个数是( )①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②回归方程y ^=3-5x ,变量x 增加1个单位时,y ^平均增加5个单位; ③线性回归方程y ^=b ^x +a ^必过样本点的中心(x ,y );④在一个2×2列联表中,若χ2的观测值k =13.079,则有99.9%以上的把握认为这两个变量之间有关系.A .0B .1C .2D .3解析:选B 数据的方差与加了什么样的常数无关,故①正确;对于回归方程y ^=3-5x ,变量x 增加1个单位时,y ^平均减少5个单位,故②错误;易知③正确;若k =13.079>10.828,则有99.9%以上的把握认为这两个变量之间有关系,故④正确.7.根据一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的散点图分析存在线性相关关系,求得其回归方程y ^=0.85x -85.7,则在样本点(165,57)处的残差为( )A .54.55B .2.45C .3.45D .111.55解析:选B 把x =165代入y ^=0.85x -85.7,得y =0.85×165-85.7=54.55,故残差为57-54.55=2.45.8.某高校《统计》课程的教师随机给出了选修该课程的一些情况,具体数据如下:χ2>3.841,所以可以判断选修该课程与性别有关.那么这种判断出错的可能性不超过( )A .5%B .95%C .1%D .99%解析:选A 若χ2>3.841,说明在犯错误的概率不超过0.05的前提下认为选修该课程与性别有关,也就是选修该课程与性别有关出错的可能性不超过5%.9.为考察数学成绩与物理成绩的关系,某老师在高二随机抽取了300名学生,得到下面的列联表:A .0.5%B .1%C .2%D .5%解析:选D 由表中数据代入公式得χ2的观测值 χ2=300×(37×143-85×35)2122×178×72×228≈4.514>3.841,所以有95%以上的把握认为数学成绩与物理成绩有关,因此,判断的出错率不超过5%. 10.已知x 与y 之间的几组数据如下表所示.假设根据上表数据所得回归方程为y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′ D.b ^<b ′,a ^<a ′解析:选C 由题意可得,b ′=2,a ′=-2,x =72,y =136.由公式b ^=∑i =16(x i -x )(y i -y)∑i =16(x i -x)2求得b ^=57,a ^=y -b ^x =136-57×72=-13,∴b ^<b ′,a ^>a ′.11.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其2×2列联表如下:( ) A .a =9,b =8,c =7,d =6 B .a =9,b =7,c =6,d =8 C .a =8,b =6,c =9,d =7 D .a =6,b =7,c =8,d =9解析:选B 对于同一样本,|ad -bc |越大,说明X 与Y 之间的关系越强,故检验知选B.12.两个分类变量X 和Y, 值域分别为{x 1,x 2}和{y 1,y 2}, 其样本频数分别是a =10, b =21, c +d =35. 若X 与Y 有关系的可信程度不小于97.5%, 则c 等于( )A .3B .4C .5D .6解析:选A 列2×2列联表如下:故K 2的观测值k =31×35×(10+c )(56-c )≥5.024. 把选项A, B, C, D 代入验证可知选A.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知高三某学生的高考成绩y (分)与高三期间有效复习时间x (天)正相关,且回归方程是y ^=3x +50,若期望他高考达到500分,则他的有效复习时间应不低于________天.解析:本题主要考查运用线性回归方程来预测变量的取值.当y ^=500时,易得x =500-503=150. 答案:15014.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),若e i 恒为0,则r 2为________.解析:e i 恒为0,说明随机误差总为0,于是y i =y ^,故r 2=1. 答案:115.欲知作者的性别是否与读者的性别有关,某出版公司派工作人员到各书店随机调查了500位买书的顾客,结果如下表所示.________.(填“有关”或“无关”)解析:由公式得χ2=500×(142×133-122×103)2264×236×245×255≈5.131>5.024,所以在犯错误的概率不超过0.025的前提下作者的性别与读者的性别有关.答案:有关16.已知x ,y 之间的一组数据如下表,对于表中数据,甲、乙两同学给出的拟合直线分别为l 1:y =13x +1与l 2:y =12x +12,利用最小二乘法判断拟合程度更好的直线是______________.解析:用y =13x +1作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 1=⎝⎛⎭⎪⎫1-432+(2-2)2+(3-3)2+⎝⎛⎭⎪⎫4-1032+⎝⎛⎭⎪⎫5-1132=73.用y =12x +12作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 2=(1-1)2+(2-2)2+⎝⎛⎭⎪⎫3-722+(4-4)2+⎝⎛⎭⎪⎫5-922=12. 因为S 2<S 1,故用直线l 2:y =12x +12,拟合程度更好.答案:y =12x +12三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)对某校小学生进行心理障碍测试得如下列联表:(其中焦虑、说谎、懒惰都是心理障碍)解:对于上述三种心理障碍分别构造三个随机变量χ21,χ22,χ23, 由表中数据可得χ21=110×(5×60-25×20)230×80×25×85≈0.863,χ22=110×(10×70-20×10)230×80×20×90≈6.366,χ23=110×(15×30-15×50)230×80×65×45≈1.410.因为χ22的值最大,所以说谎与性别关系最大.18.(本小题满分12分)某房地产公司有6名产品推销员,其中5名推销员的工作年限与年推销金额的数据如表:(1)求这5 (2)若第6名推销员的工作年限为11年,试估计他的推销金额.解:(1)设所求的线性回归方程为y ^=b ^x +a ^,由题表数据得x =6,y =3.4,则b ^=∑i =15(x i -x )(y i -y)∑i =15(x i -x)2=1020=0.5,a ^=y -b ^x =0.4. 所以这5名推销员的年推销金额y 关于工作年限x 的线性回归方程为y ^=0.5x +0.4. (2)当x =11时,y ^=0.5×11+0.4=5.9.所以估计第6名推销员的年推销金额为5.9百万元.19.(本小题满分12分)淘宝网卖家在某商品的所有买家中,随机选择男女买家各50位进行调查,他们的评分等级如下:(2)规定:评分等级在[0,3]为不满意该商品,在(3,5]为满意该商品.完成下列2×2列联表,并帮助卖家判断能否95%的把握的认为是否满意该商品与性别有关系.解:(1)20种选法,其中恰有1人为男性的共有C 112C 18=96种选法,所以所求概率P =96190=4895.(2)2×2列联表如下:假设H 0由公式得χ2=100×(32×30-20×18)250×50×52×48≈5.769>3.841,所以能95%的把握认为是否满意该商品与性别有关.20.(本小题满分12分)某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:(1)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与生产出一等品是否有关?甲工艺乙工艺总计一等品非一等品总计附:P(χ2≥k0)0.100.050.01k0 2.706 3.841 6.635χ2=n(ad2(a+b)(c+d)(a+c)(b+d)(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.解:(1)2×2列联表如下:甲工艺乙工艺总计一等品5060110非一等品504090总计100100200K2=200×(110×90×100×100≈2.02<2.706,所以没有理由认为选择不同的工艺与生产出一等品有关.(2)由题知运用甲工艺生产单件产品的利润X的分布列为X的数学期望为E(X)24,X的方差为V(X)=(30-24)2×0.5+(20-24)2×0.3+(15-24)2×0.2=39.乙工艺生产单件产品的利润Y的分布列为Y的数学期望为E(Y),Y的方差为V(Y)=(30-24.5)2×0.6+(20-24.5)2×0.1+(15-24.5)2×0.3=47.25.由上述结果可以看出V(X)<V(Y),即甲工艺波动小,虽然E(X)<E(Y),但相差不大,所以以后应选择甲工艺.21.(本小题满分12分)某区卫生部门成立了调查小组,调查常吃零食与患龋齿的关系,对该区六年级的800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.(1)完成下列2×2列联表,并分析能否在犯错概率不超过0.001的前提下,认为该区的学生常吃零食与患龋齿有关系?(2)4负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.解:(1)由题意可得列联表如下所示.因为K2的观测值k=≈16.667>10.828,160×640×200×600所以能在犯错概率不超过0.001的前提下,认为该区的学生常吃零食与患龋齿有关系.(2)设其他工作人员为丙和丁,4人分组的所有情况有:收集数据组:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁;相应的处理数据组:丙丁;乙丁;乙丙;甲丁;甲丙;甲乙.共有6种情况. 记事件A 为“工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组”, 则满足条件的情况有:甲丙收集数据,乙丁处理数据或 甲丁收集数据,乙丙处理数据,共2种情况. 所以P (A )=26=13.22.(本小题满分12分)某市为了对学生的数理(数学与物理)学习能力进行分析,从10 000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表: 等级得分 (0,1] (1,2] (2,3] (3,4] (4,5] (5,6] 人数 3173030173(1)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率.(2)统计方法中,同一组数据常用该组区间的中点值(例如区间(1,2]的中点值为1.5)作为代表:①据此,计算这100名学生数理学习能力等级分数的期望μ及标准差σ(精确到0.1); ②若总体服从正态分布,以样本估计总体,估计该市这10 000名学生中数理学习能力等级在(1.9,4.1)X 围内的人数.(3)从这10 000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:x (数学学习能力) 2 3 4 5 6 y (物理学习能力)1.534.556①请画出上表数据的散点图;②请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^(附参考数据:129≈11.4).解:(1)样本中学生为良好的人数为20人.故从样本中任意抽取2名学生,则仅有1名学生为良好的概率为C 120×C 180C 2100=3299.word 11 / 11 (2)①总体数据的期望约为:μ=0.5×0.03+1.5×0.17+2.5×0.30+3.5×0.30+4.5×0.17+5.5×0.03=3.0,标准差σ=[(0.5-3)2×0.03+(1.5-3)2×0.17+(2.5-3)2×0.3+(3.5-3)2×0.3+(4.5-3)2×0.17+(5.5-3)2×0.03]12= 1.29≈1.1, ②由于μ=3,σ=1.1当x ∈(1.9,4.1)时,即x ∈(μ-σ,μ+σ),故数理学习能力等级分数在(1.9,4.1)X 围中的概率约为0.682 7.数理习能力等级分数在(1.9,4.1)X 围中的学生的人数约为10 000×0.682 7=6 827人.(3)①数据的散点图如图:②设线性回归方程为y ^=b ^x +a ^,则x =4,y =4.b ^=∑i =15(x i -x )(y i -y)∑i =15(x i -x)2=1.1,a ^=y -b ^x =-0.4. 故回归直线方程为y ^=1.1x -0.4.。
推荐学习2018-2019学年高中数学人教A版选修2-3:课时跟踪检测(六)组合的综合应用-含解析

课时跟踪检测(六) 组合的综合应用层级一 学业水平达标1.200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有( ) A .C 32197·C 23B .C 33C 2197+C 23C 3197 C .C 5200-C 5197D .C 5200-C 13C 4197解析:选B 至少2件次品包含两类:(1)2件次品,3件正品,共C 23C 3197种,(2)3件次品,2件正品,共C 33C 2197种,由分类加法计数原理得抽法共有C 23C 3197+C 33C 2197,故选B .2.某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为( )A .2B .3C .4D .5解析:选A 设男生人数为x ,则女生有(6-x )人.依题意:C 36-C 3x =16.即x (x -1)(x -2)=6×5×4-16×6=4×3×2.∴x =4,即女生有2人.3.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( )A .C 25C 26种B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种解析:选B 分两步进行:第一步:选出两名男选手,有C 25种方法;第2步,从6名女生中选出2名且与已选好的男生配对,有A 26种.故有C 25A 26种.4.将5本不同的书分给4人,每人至少1本,不同的分法种数有( ) A .120 B .5 C .240D .180解析:选C 先从5本中选出2本,有C 25种选法,再与其他三本一起分给4人,有A 44种分法,故共有C 25·A 44=240种不同的分法.5.(四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( ) A .144个 B .120个 C .96个D .72个解析:选B 当万位数字为4时,个位数字从0,2中任选一个,共有2A 34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C 13A 34个偶数.故符合条件的偶数共有2A 34+C 13A 34=120(个).6.2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有________种.解析:先分医生有A 22种,再分护士有C 24种(因为只要一个学校选2人,剩下的2人一定去另一学校),故共有A 22C 24=2×4×32=12种. 答案:127.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有________种不同送法.解析:每校先各得一台,再将剩余6台分成3份,用插板法解,共有C 25=10种.答案:108.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有________个.解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有C14·C25种方法;第二类:从直线a上任取两个点,从直线b上任取一个点共有C24·C15种方法.∴满足条件的三角形共有C14·C25+C24·C15=70个.答案:709.(1)以正方体的顶点为顶点,可以确定多少个四面体?(2)以正方体的顶点为顶点,可以确定多少个四棱锥?解:(1)正方体8个顶点可构成C48个四点组,其中共面的四点组有正方体的6个表面及正方体6组相对棱分别所在的6个平面的四个顶点.故可以确定四面体C48-12=58个.(2)由(1)知,正方体共面的四点组有12个,以这每一个四点组构成的四边形为底面,以其余的四个点中任意一点为顶点都可以确定一个四棱锥,故可以确定四棱锥12C14=48个.10.7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?(1)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;(2)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.解:(1)第一步,将最高的安排在中间只有1种方法;第二步,从剩下的6人中选取3人安排在一侧有C36种选法,对于每一种选法只有一种安排方法,第三步,将剩下3人安排在另一侧,只有一种安排方法,∴共有不同安排方案C36=20种.(2)第一步从7人中选取6人,有C67种选法;第二步从6人中选2人排一列有C26种排法,第三步,从剩下的4人中选2人排第二列有C24种排法,最后将剩下2人排在第三列,只有一种排法,故共有不同排法C67·C26·C24=630种.层级二应试能力达标1.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.C28A23B.C28A66C.C28A26D.C28A25解析:选C从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C28A26,故选C.2.以圆x2+y2-2x-2y-1=0内横坐标与纵坐标均为整数的点为顶点的三角形个数为()A.76 B.78C.81 D.84解析:选A如图,首先求出圆内的整数点个数,然后求组合数,圆的方程为(x-1)2+(y-1)2=3,圆内共有9个整数点,组成的三角形的个数为C39-8=76.故选A.3.某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有()A.140种B.120种C.35种D.34种解析:选D若选1男3女有C14C33=4种;若选2男2女有C24C23=18种;若选3男1女有C34C13=12种,所以共有4+18+12=34种不同的选法.4.编号为1,2,3,4,5的五个人,分别坐在编号为1,2,3,4,5的座位上,则至多有两个号码一致的坐法种数为() A.120 B.119C.110 D.109解析:选D5个人坐在5个座位上,共有不同坐法A55种,其中3个号码一致的坐法有C35种,有4个号码一致时必定5个号码全一致,只有1种,故所求种数为A55-C35-1=109.5.将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有________种放法(用数字作答).解析:设有A,B两个笔筒,放入A笔筒有四种情况,分别为2支,3支,4支,5支,一旦A笔筒的放法确定,B笔筒的放法随之确定,且对同一笔筒内的笔没有顺序要求,故为组合问题,总的放法为C27+C37+C47+C57=112.答案:1126.已知集合A={4},B={1,2},C={1,3,5},从这三个集合中各取一个元素构成空间直角坐标系中的点的坐标,则确定的不同点的个数为________.解析:不考虑限定条件确定的不同点的个数为C11C12C13A33=36,但集合B,C中有相同元素1,由4,1,1三个数确定的不同点只有3个,故所求的个数为36-3=33.答案:337.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种不同的分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本.解:(1)甲得4本,乙得3本,丙得2本,这件事分三步完成.第一步:从9本不同的书中,任取4本分给甲,有C49种方法;第二步:从余下的5本书中,任取3本分给乙,有C35种方法;第三步:把剩下的2本书给丙,有C22种方法.根据分步乘法计数原理知,共有不同的分法C49·C35·C22=1 260(种).所以甲得4本,乙得3本,丙得2本的分法共有1 260种.(2)一人得4本,一人得3本,一人得2本,这件事分两步完成.第一步:按4本、3本、2本分成三组,有C49C35C22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A33种方法.根据分步乘法计数原理知,共有不同的分法C49C35C22A33=7 560(种).所以一人得4本,一人得3本,一人得2本的分法共有7 560种.8.有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?解:法一:(直接法)从0与1两个特殊值着眼,可分三类:(1)取0不取1,可先从另四张卡片中选一张作百位,有C14种方法;0可在后两位,有C12种方法;最后需从剩下的三张中任取一张,有C13种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有C14C12C13·22个.(2)取1不取0,同上分析可得不同的三位数C24·22·A33个.(3)0和1都不取,有不同的三位数C34·23·A33个.综上所述,共有不同的三位数:C14·C12·C13·22+C24·22·A33+C34·23·A33=432(个).法二:(间接法)任取三张卡片可以组成不同的三位数C35·23·A33个,其中0在百位的有C24·22·A22个,这是不合题意的,故共有不同的三位数:C35·23·A33-C24·22·A22=432(个).。
新苏教版高中数学选修2-3课时跟踪检测试题(全册附答案)

新苏教版⾼中数学选修2-3课时跟踪检测试题(全册附答案)新苏教版⾼中数学选修2-3课时跟踪检测试题(全册附答案)课时跟踪训练(⼀)分类计数原理与分步计数原理⼀、填空题1.⼀项⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这项⼯作,不同选法有________.2.有4位教师在同⼀年级的4个班中各教⼀个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的⽅法有________种.3.3名学⽣报名参加艺术体操、美术、计算机、游泳课外兴趣⼩组,每⼈选报⼀种,则不同的报名种数有________种.4.某地奥运⽕炬接⼒传递路线共分6段,传递活动分别由6名⽕炬⼿完成.如果第⼀棒⽕炬⼿只能从甲、⼄、丙三⼈中产⽣,最后⼀棒⽕炬⼿只能从甲、⼄两⼈中产⽣,则不同的传递⽅案共有________种.(⽤数字作答)5.从集合A={1,2,3,4}中任取2个数作为⼆次函数y=x2+bx+c的系数b,c,且b≠c,则可构成________个不同的⼆次函数.⼆、解答题6.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等⽐数列,这样的等⽐数列有多少个?7.已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则⽅程(x-a)2+(y-b)2=r2可表⽰多少个不同的圆?8.书架上层放有6本不同的数学书,下层放有5本不同的语⽂书.(1)从中任取⼀本,有多少种不同的取法?(2)从中任取数学书与语⽂书各⼀本,有多少种不同的取法?答案1.解析:由分类计数原理知,有3+5=8种不同的选法.答案:82.解析:分四步完成:第⼀步:第1位教师有3种选法;第⼆步:由第⼀步教师监考班的数学⽼师选有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法.共有3×3×1×1=9种监考的⽅法.答案:93.解析:第1名学⽣有4种选报⽅法;第2、3名学⽣也各有4种选报⽅法,因此,根据分步计数原理,不同的报名种数有4×4×4=64.答案:644.解析:分两类,第⼀棒是丙有1×2×4×3×2×1=48(种);第⼀棒是甲、⼄中⼀⼈有2×1×4×3×2×1=48(种),根据分类计数原理得:共有⽅案48+48=96(种).答案:965.解析:分成两个步骤完成:第⼀步选出b ,有4种⽅法;第⼆步选出c ,由于b ≠c ,则有3种⽅法.根据分步计数原理得:共有4×3=12个不同的⼆次函数.答案:126.解:当公⽐为2时,等⽐数列可为1,2,4;2,4,8;当公⽐为3时,等⽐数列可为1,3,9;当公⽐为32时,等⽐数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等⽐数列,共8个. 7.解:按a ,b ,r 取值顺序分步考虑:第⼀步:a 从3,4,6中任取⼀个数,有3种取法;第⼆步:b 从1,2,7,8中任取⼀个数,有4种取法;第三步:r 从8、9中任取⼀个数,有2种取法;由分步计数原理知,表⽰的不同圆有N =3×4×2=24(个).8.解:(1)从书架上任取⼀本书,有两类⽅法:第⼀类⽅法是从上层取⼀本数学书,有6种⽅法;第⼆类⽅法是从下层取⼀本语⽂书,有5种⽅法.根据分类计数原理,得到不同的取法的种数是6+5=11.答:从书架上任取⼀本书,有11种不同的取法.(2)从书架上任取数学书与语⽂书各⼀本,可以分成两个步骤完成:第⼀步取⼀本数学书,有6种取法;第⼆步取⼀本语⽂书,有5种取法.根据分步计数原理,得到不同的取法的种数是6×5=30.答:从书架上取数学书与语⽂书各⼀本,有30种不同的取法.课时跟踪训练(⼆) 分类计数原理与分步计数原理的应⽤⼀、填空题1.⽤1,2,3,4可组成________个三位数.2.若在登录某⽹站时弹出⼀个4位的验证码:XXXX(如2a 8t ),第⼀位和第三位分别为0到9这10个数字中的⼀个,第⼆位和第四位分别为a 到z 这26个英⽂字母中的⼀个,则这样的验证码共有________个.3.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ?Q .把满⾜上述条件的⼀对有序整数对(x ,y )作为⼀个点的坐标,则这样的点的个数是________.4.某⼈有3个不同的电⼦邮箱,他要发5封电⼦邮件,不同发送⽅法的种数为________.5.如图,⽤6种不同的颜⾊把图中A ,B ,C ,D 四块区域分开,若相邻区域不能涂同⼀种颜⾊,则不同的涂法共有________种.⼆、解答题6.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中⼀⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委成员,有多少种不同的选法?(3)若要选出不同年级的两⼈分别参加市⾥组织的两项活动,有多少种不同的选法?7.⽤0,1,…,9这⼗个数字,可以组成多少个(1)三位整数?(2)⽆重复数字的三位整数?(3)⼩于500的⽆重复数字的三位整数?8.编号为A,B,C,D,E的五个⼩球放在如图所⽰的五个盒⼦⾥,要求每个盒⼦只能放⼀个⼩球,且A球不能放在1,2号,B球必须放在与A球相邻(有公共边)的盒⼦中,求不同的放法有多少种.答案1.解析:组成三位数这件事可分为三步完成:第⼀步,确定百位,共有4种选择⽅法;第⼆步,确定⼗位,共有4种选择⽅法;第三步,确定个位,共有4种选择⽅法,由分步计数原理可知,可组成4×4×4=64个三位数.答案:642.解析:要完成这件事可分四步:第⼀步,确定验证码的第⼀位,共有10种⽅法;第⼆步,确定验证码的第⼆位,共有26种⽅法;第三步,确定验证码的第三位,共有10种⽅法;第四步,确定验证码的第四位,共有26种⽅法.由分步计数原理可得,这样的验证码共有10×26×10×26=67 600个.答案:67 6003.解析:当x=2时,x≠y,点的个数为1×7=7;当x≠2时,x=y,点的个数为7×1=7,则共有14个点.答案:144.解析:每封电⼦邮件都有3种不同的发法,由分类计数原理可得,共有35种不同的发送⽅法.答案:355.解析:从A开始,有6种⽅法,B有5种,C有4种,D,A同⾊1种,D,A不同⾊3种,故不同涂法有6×5×4×(1+3)=480(种).答案:4806.解:(1)分三类:第⼀类,从⾼⼀年级选⼀⼈,有5种选择;第⼆类,从⾼⼆年级选⼀⼈,有6种选择;第三类,从⾼三年级选⼀⼈,有4种选择.由分类计数原理,共有5+6+4=15种选法.(2)分三步完成:第⼀步,从⾼⼀年级选⼀⼈,有5种选择;第⼆步,从⾼⼆年级选⼀⼈,有6种选择;第三步,从⾼三年级选⼀⼈,有4种选择.由分步计数原理,共有5×6×4=120种选法.(3)分三类:⾼⼀、⾼⼆各⼀⼈,共有5×6=30种选法;⾼⼀、⾼三各⼀⼈,共有5×4=20种选法;⾼⼆、⾼三各⼀⼈,共有6×4=24种选法;由分类计数原理,共有30+20+24=74种选法.7.解:由于0不可在最⾼位,因此应对它进⾏单独考虑.(1)百位的数字有9种选择,⼗位和个位的数字都各有10种选择,由分步计数原理知,适合题意的三位数共有9×10×10=900个.(2)由于数字不可重复,可知百位的数字有9种选择,⼗位的数字也有9种选择,但个位数字仅有8种选择,由分步计数原理知,适合题意的三位数共有9×9×8=648个.(3)百位只有4种选择,⼗位可有9种选择,个位数字有8种选择,由分步计数原理知,适合题意的三位数共有4×9×8=288个.8.解:根据A球所在位置分三类:(1)若A球放在3号盒⼦内,则B球只能放在4号盒⼦内,余下的三个盒⼦放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;(2)若A球放在5号盒⼦内,则B球只能放在4号盒⼦内,余下的三个盒⼦放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;(3)若A球放在4号盒⼦内,则B球可以放在2号、3号、5号盒⼦中的任何⼀个,余下的三个盒⼦放球C,D,E,有6种不同的放法,根据分步计数原理得,有3×3×2×1=18种不同的放法.综上所述,由分类计数原理得不同的放法共有6+6+18=30种.课时跟踪训练(三)排列与排列数公式⼀、填空题1.下列问题中:①10本不同的书分给10名同学,每⼈⼀本;②10位同学互通⼀次电话;③10位同学互通⼀封信;④10个没有任何三点共线的点构成的线段.其中属于排列问题的是________.(将正确序号填上)2.从甲、⼄、丙三⼈中选两⼈站成⼀排的所有站法为________.(填序号)①甲⼄,⼄甲,甲丙,丙甲;②甲⼄丙,⼄丙甲;③甲⼄,甲丙,⼄甲,⼄丙,丙甲,丙⼄;④甲⼄,甲丙,⼄丙.3.已知A 2n =132,则n =________.4.从5个⼈中选出3⼈站成⼀排,则不同的排法有________种.5.记S =1!+2!+3!+…+99!,则S 的个位数字是________.⼆、解答题6.计算:(1)2A 47-4A 56;(2)A 316-A 56A 35.7.解⽅程A 42x +1=140A 3x .8.⽤1,2,3,4四个数字排成三位数,并把这些三位数从⼩到⼤排成⼀个数列{a n }.(1)写出这个数列的前11项;(2)求这个数列共有多少项.答案1.解析:①和③中两个元素交换顺序,结果发⽣变化,所以①和③是排列问题.答案:①③2.解析:这是⼀个排列问题,与顺序有关,任意两⼈对应的是两种站法,故③正确.答案:③3.解析:A 2n =n (n -1)=132,即n 2-n -132=0,⼜因为n ∈N *,所以n =12.答案:124.解析:从5个⼈中选出3⼈站成⼀排,共有A 35=5×4×3=60种不同的排法.答案:60 5.解析:1!=1,2!=2,3!=6,4!=24,5!=120,⽽6!=6×5!,7!=7×6×5!,…,99!=99×98×…×6×5!,所以从5!开始到99!,个位数字均为0,所以S 的个位数字为3.答案:36.解:(1)原式=2×7×6×5×4-4×6×5×4×3×2=6×5×4(2×7-4×6)=120(14-24)=-1 200.(2)原式=16×15×14-6×5×4×3×25×4×3=4×14-12=44. 7.解:由题意得2x +1≥4,x ≥3,∴x ≥3. 根据排列数公式,原⽅程化为(2x +1)·2x ·(2x -1)(2x -2)=140x ·(x -1)·(x -2),x ≥3,两边同除以4x (x -1),得(2x +1)(2x -1)=35(x -2),即4x 2-35x +69=0.解得x =3或x =534(因为x 为整数,故应舍去).所以x =3.8.解:(1)111,112,113,114,121,122,123,124,131,132,133.(2)这个数列的项数就是⽤1,2,3,4排成三位数的个数,每⼀位都有4种排法,则根据分步计数原理共有4×4×4=64项.课时跟踪训练(四) 排列的应⽤⼀、填空题1.由1,2,3,4,5,6,7,8⼋个数字,组成⽆重复数字的两位数的个数为________.(⽤数字作答)2.5个⼈站成⼀排,其中甲、⼄两⼈不相邻的排法有________种.(⽤数字作答)3.A,B,C,D,E五⼈并排站成⼀排,如果A,B必须相邻且B在A的右边,那么不同的排法有________种.4.由数字1,2,3与符号“+”和“-”五个元素的所有全排列中,任意两个数字都不相邻的全排列的个数是________.5.将数字1,2,3,4,5,6按第⼀⾏1个数,第⼆⾏2个数,第三⾏3个数的形式随机排列,设N i(i=1,2,3)表⽰第i⾏中最⼤的数,则满⾜N1⼆、解答题6.7名同学排队照相,(1)若分成两排照,前排3⼈,后排4⼈,有多少种不同的排法?(2)若排成两排照,前排3⼈,后排4⼈,但其中甲必须在前排,⼄必须在后排,有多少种不同的排法?7.从-3,-2,-1,0,1,2,3,4⼋个数字中任取3个不同的数字作为⼆次函数y=ax2+bx +c的系数a,b,c,问:(1)共能组成多少个不同的⼆次函数?(2)在这些⼆次函数中,图像关于y轴对称的有多少个?8.⽤0,1,2,3,4,5这六个数字,(1)能组成多少个⽆重复数字且为5的倍数的五位数?(2)能组成多少个⽐1 325⼤的四位数?答案1.解析:A28=8×7=56个.答案:562.解析:先排甲、⼄之外的3⼈,有A33种排法,然后将甲、⼄两⼈插⼊形成的4个空中,有A24种排法,故共有A33·A24=72(种)排法.答案:723.解析:根据题⽬的条件可知,A,B必须相邻且B在A的右边,所以先将A,B两⼈捆起来看成⼀个⼈参加排列,即是4个⼈在4个位置上作排列,故不同的排法有A44=4×3×2×1=24(种).答案:244.解析:符号“+”和“-”只能在两个数之间,这是间隔排列,排法共有A33A22=12种.答案:125.解析:由题意知数字6⼀定在第三⾏,第三⾏的排法种数为A13A25=60;剩余的三个数字中最⼤的⼀定排在第⼆⾏,第⼆⾏的排法种数为A12A12=4,由分步计数原理知满⾜条件的排列个数是240.答案:2406.解:(1)分两步,先排前排,有A37种排法,再排后排,有A44种排法,符合要求的排。
高中数学课时跟踪检测五组合与组合数公式新人教A版选修2-3

课时跟踪检测五一、题组对点训练 对点练一 组合概念的理解1.下列问题中是组合问题的个数是( ) ①从全班50人中选出5名组成班委会;②从全班50人中选出5名分别担任班长、副班长、团支部书记、学习委员、生活委员; ③从1,2,3,…,9中任取出两个数求积; ④从1,2,3,…,9中任取出两个数求差或商. A .1 B .2 C .3D .4解析:选 B ①③与顺序无关,属于组合问题;②④与顺序有关,属于排列问题,故选B.2.下列各事件是组合问题的有________.①8个朋友聚会,每两人握手一次,一共握手多少次? ②8个朋友相互写一封信,一共写了多少封信?③从1,2,3,…,9这九个数字中任取3个,组成一个三位数,这样的三位数共有多少个? ④从1,2,3,…,9这九个数字中任取3个,组成一个集合,这样的集合有多少个? 解析:①每两人握手一次,无顺序之分,是组合问题.②每两人相互写一封信,是排列问题,因为发信人与收信人是有顺序区别的.③是排列问题,因为取出3个数字后,如果改变这3个数字的顺序,便会得到不同的三位数.④是组合问题,因为取出3个数字后,无论怎样改变这3个数字的顺序,其构成的集合都不变.答案:①④对点练二 组合数公式3.下列计算结果为28的是( ) A .A 24+A 26 B .C 77 C .A 28D .C 28解析:选D C 28=8×72=4×7=28.4.若C 2n =36,则n 的值为( ) A .7 B .8 C .9D .10解析:选C ∵C 2n =36,∴12n (n -1)=36,即n 2-n -72=0,∴(n -9)(n +8)=0.∵n ∈N *,∴n =9.5.C 26+C 57=________.解析:C 26+C 57=6!4!×2!+7!2!×5!=6×52+7×62=15+21=36.答案:366.已知A 2n =4C 2n -1,则n =________.解析:因为A 2n =4C 2n -1,所以n (n -1)=4×(n -1)(n -2)2,解得n =4(n =1舍去).答案:47.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 解:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14,要求C 12n 的值,故n ≥12,所以n =14, 于是C 1214=C 214=14×132×1=91.对点练三 简单的组合应用题8.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建造“村村通”工程,共需建公路的条数为( )A .4B .8C .28D .64解析:选C 由于公路的修建问题是组合问题.故共需要建C 28=28条公路.9.某施工小组有男工7名,女工3名,现要选1名女工和2名男工去支援另一施工小组,不同的选法有( )A .C 310种 B .A 310种 C .A 13A 27种D .C 13C 27种解析:选D 每个被选的人都无顺序差别,是组合问题.分两步完成:第一步,选女工,有C 13种选法;第二步,选男工,有C 27种选法.故共有C 13C 27种不同的选法.10.若x ∈A ,则1x ∈A ,就称集合A 具有伙伴关系.集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 将集合M 中除0,4外的元素分为四组,即-1;1;12,2;13,3.它们能组成具有伙伴关系的非空集合的个数为C 14+C 24+C 34+C 44=15,故选A.11.某单位需同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法有________种.解析:从10人中选派4人有C 410种方法,对选出的4人具体安排会议有C 24C 12种方法,由分步乘法计数原理知,不同的选派方法种数为C 410C 24C 12=2 520.答案:2 52012.一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案?(2)在选出11名上场队员时,还要确定其中一人为守门员,那么教练员有多少种方法做这件事情?解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案有C 1117=12 376(种). (2)教练员可以分两步完成这件事情.第1步, 从17名学员中选出11人组成上场小组,共有C 1117种选法;第2步,从选出的11人中再选出1名守门员,共有C 111种选法.所以教练员做这件事情的方法数有C 1117×C 111=136 136(种).二、综合过关训练1.(C 2100+C 97100)÷A 3101的值为( ) A .6 B .101 C.16D.1101解析:选C (C 2100+C 97100)÷A 3101=(C 2100+C 3100)÷A 3101=C 3101÷(C 3101A 33)=1A 33=16.2.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有( ) A .C 23C 2198种 B .(C 23C 3197+C 33C 2197)种 C .(C 3200-C 4197)种D .(C 5200-C 13C 4197)种解析:选B 分为两类:第一类,取出的5件产品有2件次品3件合格品,有C 23C 3197种抽法;第二类,取出的5件产品有3件次品2件合格品,有C 33C 2197种抽法.因此共有(C 23C 3197+C 33C 2197)种抽法.3.从进入决赛的6名选手中决出1名一等奖、2名二等奖、3名三等奖,则可能的决赛结果共有________种.解析:根据题意,知所有可能的决赛结果有C 16C 25C 33=6×5×42×1=60(种).答案:604.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路网(图中黑线表示道路),则从西南角A 地到东北角B 地的最短路线共有________条.解析:要使路线最短,只能向右或向上走,途中不能向左或向下走.因此,从A 地到B 地归结为走完5条横线段和4条纵线段.设每走一段横线段或纵线段为一个行走时段,从9个行走时段中任取4个时段走纵线段,其余5个时段走横线段,共有C 49C 55=126种走法,故从A 地到B 地的最短路线共有126条.答案:1265.若C 4n >C 6n ,则n 的集合是________.解析:∵C4n>C6n,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6,⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6,⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9.∴n 的集合为{6,7,8,9}. 答案:{6,7,8,9}6.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?解:从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的数的个数为C 36=6×5×43×2×1=20.7.(1)在桥牌比赛中,发给4名参赛者每人一手由52张牌的四分之一(即13张牌)组成的牌.一名参赛者可能得到多少手不同的牌(用排列数或组合数表示)?(2)某人决定投资8种股票和4种债券,经纪人向他推荐了12种股票和7种债券.问:此人有多少种不同的投资方式?解:(1)本题实质上是从52个元素中任选13个元素作为一组的组合问题,共有C 1352种不同的可能.即一名参赛者可能得到C 1352手不同的牌.(2)需分两步:第1步,根据经纪人的推荐在12种股票中选8种,共有C 812种选法; 第2步,根据经纪人的推荐在7种债券中选4种,共有C 47种选法. 根据分步乘法计数原理,此人有C 812·C 47=17 325种不同的投资方式.。
2018高中数学人教a版选修2-3:课时跟踪检测(五) 组合与组合数公式 含解析

课时跟踪检测(五) 组合与组合数公式层级一 学业水平达标1.C 58+C 68的值为( )A .36B .84C .88D .504解析:选A C 58+C 68=C 69=C 39=9×8×73×2×1=84. 2.以下四个命题,属于组合问题的是( )A .从3个不同的小球中,取出2个排成一列B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开两辆车从甲地到乙地解析:选C 选项A 是排列问题,因为2个小球有顺序;选项B 是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C 是组合问题,因为2位观众无顺序;选项D 是排列问题,因为两位司机开哪一辆车是不同的.选C .3.方程C x 14=C 2x -414的解集为( )A .4B .14C .4或6D .14或2解析:选C 由题意知⎩⎪⎨⎪⎧ x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧ x =14-(2x -4),2x -4≤14,x ≤14,解得x =4或6.4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆( )A.220个B.210个C.200个D.1 320个解析:选A C312=220,故选A.5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A.60种B.48种C.30种D.10种解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C25种方法,再从剩下的3人中选派2人参加星期日的公益活动有C23种方法,由分步乘法计数原理可得不同的选派方法共有C25·C23=30种.故选C.6.C03+C14+C25+…+C1821的值等于________.解析:原式=C04+C14+C25+…+C1821=C15+C25+…+C1821=C1721+C1821=C1822=C422=7 315.答案:7 3157.若已知集合P={1,2,3,4,5,6},则集合P的子集中含有3个元素的子集数为________.解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C36=20种.答案:208.不等式C 2n -n<5的解集为________.解析:由C 2n -n<5,得n (n -1)2-n<5,∴n 2-3n -10<0. 解得-2<n<5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}.答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ;(2)解不等式:C x -18>3C x 8.解:(1)原方程等价于m(m -1)(m -2)=6×m (m -1)(m -2)(m -3)4×3×2×1,∴4=m -3,m =7. (2)由已知得:⎩⎪⎨⎪⎧ x -1≤8,x ≤8,∴x ≤8,且x ∈N *, ∵C x -18>3C x 8,∴8!(x -1)!(9-x )!>3×8!x !(8-x )!. 即19-x >3x ,∴x>3(9-x),解得x>274, ∴x =7,8.∴原不等式的解集为{7,8}.10.某区有7条南北向街道,5条东西向街道.(如图)。
【配套K12】2018-2019学年高中数学苏教版选修2-3教学案:1.3 第二课时 组合的应用-缺

第二课时组合的应用[对应学生用书P15][例1]队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;(2)两名队长当选;(3)至少有1名队长当选.[思路点拨]特殊元素特殊对待,特殊位置优先安排.[精解详析](1)1名女生,4名男生,故共有C15·C48=350种.(2)将两名队长作为一类,其他11人作为一类,故共有C22·C311=165种.(3)至少有1名队长含有两类:只有1名队长;2名队长,故共有选法C12·C411+C22·C311=825种,或采用间接法共有C513-C511=825种.[一点通]解答组合应用题的总体思路:(1)整体分类:从集合的意义讲,分类要做到各类的并集等于全集,即“不漏”,任意两类的交集等于空集,即“不重”,计算结果时使用分类计数原理.(2)局部分步:整体分类以后,对每类进行局部分步,分步要做到步骤连续,保证分步不遗漏,同时步骤要独立.1.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有________种.解析:法一:选出3名志愿者中含有1名女生2名男生或2名女生1名男生,共有C12C26+C22C16=2×15+6=36(种)选法;法二:从8名学生中选出3名,减去全部是男生的情况,共有C38-C36=56-20=36(种)选法.答案:362.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有________种.解析:从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种.答案:753.设集合I={1,2,3,4,5}.选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有多少种?解:从5个元素中选出2个元素,小的给集合A,大的给集合B,有C25=10种选择方法;从5个元素中选出3个元素,有C35=10种选择方法,再把这3个元素从小到大排列,中间有2个空,用一个隔板将其隔开,一边给集合A、一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C45=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A、一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C55=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类计数原理,总计为10+20+15+4=49种选择方法.[例2](1)经过这9个点,可确定多少条直线?(2)以这9个点为顶点,可以确定多少个三角形?(3)以这9个点为顶点,可以确定多少个四边形?[思路点拨]解答本题可用直接法或间接法进行.[精解详析]法一:(直接法)(1)可确定直线C44+C14C15+C25=31条.(2)可确定三角形C24C15+C14C25+C35=80个.(3)可确定四边形C24C25+C14C35+C45=105个.法二:(间接法)(1)可确定直线C29-C24+1=31条.(2)可确定三角形C39-C34=80个.(3)可确定四边形C49-C44-C34C15=105个.[一点通]解答几何组合应用题的思考方法与一般的组合应用题基本一样,只要把图形隐含的条件视为组合应用题的限制条件即可.计算时可用直接法,也可用间接法,要注意在限制条件较多的情况下,需要分类计算符合题意的组合数.4.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有________个.解析:C37-3=32.答案:325.平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成__________个平行四边形.解析:第一步,从m条中任选2条,C2m;第二步,从n条中任选2条C2n.由分步计数原理,得C2m·C2n.答案:C2m·C2n6.已知平面α∥β,在α内有4个点,在β内有6个点.(1)过这10个点中的任意3点作一平面,最多可作多少个不同的平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?解:(1)所作出的平面有三类:①α内1点,β内2点确定的平面,有C14·C26个;②α内2点,β内1点确定的平面,有C24·C16个;③α,β本身.所以所作的不同平面最多有C14·C26+C24·C16+2=98(个).(2)所作的三棱锥有三类:①α内1点,β内3点确定的三棱锥,有C14·C36个;②α内2点,β内2点确定的三棱锥,有C24·C26个;③α内3点,β内1点确定的三棱锥,有C34·C16个.所以最多可作出的三棱锥有C14·C36+C24·C26+C34·C16=194(个).(3)因为当等底面积、等高的情况下三棱锥的体积相等,又平面α∥β,所以体积不相同的三棱锥最多有C36+C34+C26·C24=114(个).解有限制条件的组合应用题的基本方法是“直接法”和“间接法”(排除法).(1)用直接法求解时,则应坚持“特殊元素优先选取”、“特殊位置优先安排”的原则.(2)选择间接法的原则是“正难则反”,也就是若正面问题分的类较多、较复杂或计算量较大,不妨从反面问题入手,试一试看是否简捷些,特别是涉及“至多”“至少”等组合问题时更是如此,此时,正确理解“都不是”“不都是”“至多”“至少”等词语的确切含义是解决这些组合问题的关键.[对应课时跟踪训练(六)]一、填空题1.某施工小组有男工7人,女工3人,现要选1名女工和2名男工去支援另一施工队,不同的选法有________种.解析:每个被选的人都无角色差异,是组合问题,分2步完成:第1步,选女工,有C13种选法;第2步,选男工,有C27种选法.故有C13·C27=3×21=63种不同选法.答案:632.上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为________.解析:若3人中有一人来自甲企业,则共有C12C24种情况,若3人中没有甲企业的,则共有C34种情况,由分类计数原理可得,这3人来自3家不同企业的可能情况共有C12C24+C34=16(种).答案:163.圆周上有20个点,过任意两点连结一条弦,这些弦在圆内的交点最多有________个.解析:在圆内的交点最多,相当于从圆周上的20个点,任意选4个点得到的,故最多有C420=20×19×18×17=4 845个.4×3×2×1答案:4 8454.如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12种不同的涂法.答案:125.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数为________.解析:先在编号为2,3的盒内放入1,2个球,还剩17个小球,三个盒内每个至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120种方法.答案:120二、解答题6.一个口袋里装有7个白球和2个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)恰有1个为红球,共有多少种取法?解:(1)从口袋里的9个球中任取5个球,不同的取法为C59=126(种).(2)可分两步完成,首先从7个白球中任取4个白球,有C47种取法,然后从2个红球中任取1个红球共有C12种取法.所以,共有C12·C47=70种取法.7.某医科大学的学生中,有男生12名,女生8名,在某市人民医院实习,现从中选派5名参加青年志愿者医疗队.(1)某男生甲与某女生乙必须参加,共有多少种不同的选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?解:(1)只需从其他18人中选3人即可,共有C318=816种.(2)只需从其他18人中选5 人即可,共有C518=8 568(种).(3)分两类:甲、乙两人中只有一人参加,则有C12·C418种选法;甲、乙两人都参加,则有C318种选法.故共有C12·C418+C318=6 936种选法.8.甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程,有C38种选法;乙公司从甲公司挑选后余下的5项工程中选出1项工程有C15种选法;丙公司从甲、乙两公司挑选后余下的4项工程中选出2项工程有C24种选法;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程有C22种选法.根据分步计数原理可得不同的承包方式有C38×C15×C24×C22=1 680(种).。
2019-2020学年高中数学 课时跟踪检测(十六)排列的应用 苏教版选修2-3
课时跟踪检测(十六)排列的应用[课下梯度提能]一、基本能力达标1.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共四名“双语”志愿者分配到这三个展台,每个展台至少一人,其中甲、乙两人被分配到同一展台的分配方法有()A.12种B.10种C.8种D.6种解析:选D 将甲、乙看作一个“元素”与另外两个组成三个“元素",分配到三个展台,共有A错误!=6种不同的分配方法.2.用0到9这十个数字,可以组成没有重复数字的三位数共有( )A.900个B.720个C.648个D.504个解析:选C 由于百位数字不能是0,所以百位数字的取法有A错误!种,其余两位上的数字取法有A错误!种,所以三位数字有A错误!·A错误!=648(个).3.某班级从A,B,C,D,E,F六名学生中选四人参加4×100 m接力比赛,其中第一棒只能在A,B中选一人,第四棒只能在A,C中选一人,则不同的选派方法共有()A.24种B.36种C.48种D.72种解析:选B 若第一棒选A,则有A24种选派方法;若第一棒选B,则有2A错误!种选派方法.由分类计数原理知,共有3A错误!=36种选派方法.4.数列{a n}共有6项,其中4项为1,其余两项各不相同,则满足上述条件的数列{a n}共有( )A.30个B.31个C.60个D.61个解析:选A 在数列的6项中,只要考虑两个非1的项的位置,即可得不同数列共有A错误!=30个.5.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种解析:选B 当最左端排甲时,不同的排法共有A错误!种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有4A错误!种.故不同的排法共有A5,5+4A错误!=120+4×24=216种.6.由1,2,3,4,5,6,7,8八个数字,组成无重复数字的两位数的个数为________.(用数字作答)解析:A错误!=8×7=56个.答案:567.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有________种.解析:根据题目的条件可知,A,B必须相邻且B在A的右边,所以先将A,B两人捆起来看成一个人参加排列,即是4个人在4个位置上作排列,故不同的排法有A错误!=4×3×2×1=24(种).答案:248.由数字1,2,3与符号“+"和“-"五个元素的所有全排列中,任意两个数字都不相邻的全排列的个数是________.解析:符号“+"和“-"只能在两个数之间,这是间隔排列,排法共有A错误!A错误!=12种.答案:129.7名同学排队照相,(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?解:(1)分两步,先排前排,有A错误!种排法,再排后排,有A错误!种排法,符合要求的排法共有A错误!·A错误!=5 040种;(2)第一步安排甲,有A1,3种排法;第二步安排乙,有A错误!种排法;第三步将余下的5人排在剩下的5个位置上,有A错误!种排法.由分步计数原理得,符合要求的排法共有A错误!·A错误!·A错误!=1 440种.10.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?解:(1)先从5个演唱节目中选两个排在首尾两个位置有A错误!种排法,再将剩余的3个演唱节目、3个舞蹈节目排在中间6个位置上有A错误!种排法,故共有不同排法A25A6,6=14 400种.(2)先不考虑排列要求,有A8,8种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A错误!A错误!种排法,所以前四个节目要有舞蹈节目的排法有(A错误!-A错误!A错误!)=37 440种.二、综合能力提升1.航天员在进行一项太空实验时,先后要实施6个程序,其中程序B和C都与程序D不相邻,则实验顺序的编排方法共有( )A.216种B.288种C.180种D.144种解析:选B 当B,C相邻,且与D不相邻时,有A错误!A错误!A错误!=144种方法;当B,C不相邻,且都与D不相邻时,有A错误!A错误!=144种方法,故共有288种编排方法.2.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有________个七位数符合条件.解析:满足条件的七位数有错误!=210(个).答案:2103.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号?解:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A2,3种不同方法;第3类,挂3面旗表示信号,有A错误!种不同方法.根据分类计数原理,可以表示的信号共有A错误!+A错误!+A错误!=3+3×2+3×2×1=15种.4.用0,1,2,3,4,5这六个数字,(1)能组成多少个无重复数字且为5的倍数的五位数?(2)能组成多少个比1 325大的四位数?解:(1)五位数中为5的倍数的数可分两类:第1类:个位上是0的五位数有A错误!个;第2类:个位上是5的五位数有A1,4A错误!个.所以满足条件的五位数有A45+A错误!A错误!=216(个).(2)比1 325大的四位数可分三类:第1类:千位上是2,3,4,5时,共有A错误!A错误!个;第2类:千位上是1,百位上是4,5时,共有A错误!A错误!个;第3类:千位上是1,百位上是3,十位上是4,5时,共有A12A13个.由分类计数原理得,比1 325大的四位数共有A错误!A错误!+A错误!A错误!+A错误!A错误!=270(个).。
【苏教版】2018-2019学年高二数学选修2-1课时跟踪训练全集(含答案)
课时跟踪训练(一) 四 种 命 题1.给出下列语句:①空集是任何集合的真子集;②三角函数是周期函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x ∈R ,则x 2+4x +5>0.其中为命题的序号是________,为真命题的序号是________.2.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是________________________.3.命题“对于正数a ,若a >1,则lg a >0”及其逆命题、否命题、逆否命题四个命题中真命题的个数为________.4.命题“若α=π4,则tan α=1”的逆否命题是__________. 5.给出下列命题:①“若x 2+y 2≠0,则x ,y 不全为零”的否命题;②“若{a n }既是等差数列,又是等比数列,则a n =a n +1(n ∈N *)”的逆命题;③“若m >1,则不等式x 2+2x +m >0的解集为R ”的逆否命题.其中所有真命题的序号是________.6.把下列命题写成“若p ,则q ”的形式,并判断真假.(1)奇函数的图像关于原点对称;(2)当x 2-2x -3=0时,x =-3或x =1;(3)a <0时,函数y =ax +b 的值随x 值的增大而增大.7.证明:若m 2+n 2=2,则m +n ≤2.8.判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,并判断其真假.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若在二次函数y =ax 2+bx +c 中,b 2-4ac <0,则该函数图像与x 轴有交点.答 案1.解析:①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x 2+4x +5=(x +2)2+1>0恒成立,所以是真命题.答案:①③⑤ ⑤2.若|a |=|b |,则a =-b3.解析:逆命题:对于正数a ,若lg a >0,则a >1.否命题:对于正数a ,若a ≤1,则lg a ≤0.逆否命题:对于正数a ,若lg a ≤0,则a ≤1.根据对数的性质可知都是真命题.答案:44.解析:将条件与结论分别否定,再交换即可.答案:若tan α≠1,则α≠π45.解析:①的否命题为“若x 2+y 2=0,则x ,y 全为零”是真命题;②的逆命题为“数列{a n }中,若a n =a n +1(n ∈N *),则数列{a n }既是等差数列,又是等比数列”是假命题,如0,0,0……;对于③当m >1时,Δ=4-4m <0恒成立,x 2+2x +m >0的解集为R 是真命题.因此逆否命题是真命题.答案:①③6.解:(1)若一个函数是奇函数,则它的图像关于原点对称,是真命题.(2)若x 2-2x -3=0,则x =-3或x =1,是假命题.(3)若a <0,则函数y =ax +b 的值随着x 值的增大而增大,是假命题.7.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2, 所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.8.解:(1)该命题为真.逆命题:若四边形是圆的内接四边形,则四边形的对角互补,为真.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形,为真.逆否命题:若四边形不是圆的内接四边形,则四边形的对角不互补,为真.(2)该命题为假.逆命题:若二次函数y=ax2+bx+c的图像与x轴有交点,则b2-4ac<0,为假.否命题:若二次函数y=ax2+bx+c中b2-4ac≥0,则函数图像与x轴无交点,为假.逆否命题:若二次函数y=ax2+bx+c的图像与x轴无交点,则b2-4ac≥0,为假.课时跟踪训练(二)充分条件和必要条件1.(安徽高考改编)“(2x-1)x=0”是“x=0”的________条件.2.已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,则l1∥l2的充要条件是a=________.3.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a>b”是“a2>b2”的充分条件;③“a<5”是“a<3”的必要条件;④“a+5是无理数”是“a是无理数”的充要条件.其中真命题的序号为________.4.(北京高考改编)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的____________条件.5.若p:x(x-3)<0是q:2x-3<m的充分不必要条件,则实数m的取值范围是________.6.求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.7.求直线l:ax-y+b=0经过两直线l1:2x-2y-3=0和l2:3x-5y+1=0交点的充要条件.8.已知p:-6≤x-4≤6,q:x2-2x+1-m2≤0(m>0),若q是p的充分不必要条件,求实数m 的取值范围.答 案1.解析:由(2x -1)x =0可得x =12或x =0,因为“x =12或x =0”是“x =0”的必要不充分条件,所以“(2x -1)x =0”是“x =0”的必要不充分条件.答案:必要不充分2.解析:由1×3-a ×(a -2)=0,得a =3或-1,而a =3时,两条直线重合,所以a =-1.答案:-13.解析:①“a =b ”是ac =bc 的充分不必要条件,故①错,②a >b 是a 2>b 2的既不充分也不必要条件,故②错.③④正确.答案:③④4.解析:由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分不必要条件.答案:充分不必要5.解析:p :0<x <3,q :x <3+m 2, 若p 是q 的充分不必要条件,则3+m 2≥3,即m ≥3. 答案:[3,+∞)6.证明:(1)必要性:因为方程ax 2+bx +c =0有一正根和一负根,所以Δ=b 2-4ac >0,x 1x 2=c a<0(x 1,x 2为方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=c a<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.7.解:由⎩⎪⎨⎪⎧2x -2y -3=0,3x -5y +1=0,得交点P (174,114). 若直线l :ax -y +b =0经过点P ,则a ×174-114+b =0.∴17a +4b =11.设a ,b 满足17a +4b =11,则b =11-17a 4, 代入方程ax -y +b =0,得ax -y +11-17a 4=0, 整理,得⎝⎛⎭⎫y -114-a ⎝⎛⎭⎫x -174=0. ∴直线l :ax -y +b =0恒过点⎝⎛⎭⎫174,114,此点即为l 1与l 2的交点.综上,直线l :ax -y +b =0经过两直线l 1:2x -2y -3=0和l 2:3x -5y +1=0交点的充要条件为17a +4b =11.8.解:p :-6≤x -4≤6⇔-2≤x ≤10.q :x 2-2x +1-m 2≤0⇔[x -(1-m )][x -(1+m )]≤0(m >0)⇔1-m ≤x ≤1+m (m >0).因为q 是p 的充分不必要条件.即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},如图,故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10,或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3. 又m >0,所以实数m 的范围为{m |0<m ≤3}.课时跟踪训练(三) “且”“或”“非”1.命题“正方形的两条对角线互相垂直平分”的构成形式是________.2.如果原命题是“p 或q ”的形式,那么它的否定形式是________________________.3.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是 _________________________________________________________________________, “p 且q ”形式的命题是____________________________________________________, “非p ”形式的命题是______________________________________________________.4.“末位数字是1或3的整数不能被8整除”的否定形式是_____________________, 否命题是__________________________________________________________________.5.分别用“p 或q ”,“p 且q ”,“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式;(2)命题“非空集A∪B中的元素是A中元素或B中的元素”是________的形式;(3)命题“非空集∁U A的元素是U中的元素但不是A中的元素”是________的形式.6.分别指出下列命题的形式及构成它的简单命题:(1)12可以被3或4整除;(2)3是12和15的公约数.7.分别写出由命题p:方程x2-4=0的两根符号不同,q:方程x2-4=0的两根绝对值相等构成的“p或q”“p且q”“非p”形式的命题.8.写出下列各命题的否定形式及否命题:(1)面积相等的三角形是全等三角形;(2)若m2+n2+a2+b2=0,则实数m,n,a,b全为零;(3)若xy=0,则x=0或y=0.答案1.解析:正方形的两条对角线互相垂直并且平分,是p且q的形式.答案:p且q2.綈p且綈q3.6是12或24的约数6是12的约数且是24的约数6不是12的约数4.解析:命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除答案:末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除5.解析:(1)命题可以写为“非空集A ∩B 中的元素是A 中的元素,且是B 中的元素”,故填p 且q ;(2)“是A 中元素或B 中的元素”含有逻辑联结词“或”,故填p 或q ;(3)“不是A 中的元素”暗含逻辑联结词“非”,故填非p .答案:(1)p 且q (2)p 或q (3)非p6.解:(1)这个命题是“p 或q ”的形式,其中p :12可以被3整除;q :12可以被4整除.(2)这个命题是“p 且q ”的形式,其中p :3是12的约数;q :3是15的约数.7.解:p 或q :方程x 2-4=0的两根符号不同或绝对值相等.p 且q :方程x 2-4=0的两根符号不同且绝对值相等.非p :方程x 2-4=0的两根符号相同.8.解:(1)否定形式:面积相等的三角形不一定是全等三角形;否命题:面积不相等的三角形不是全等三角形.(2)否定形式:若m 2+n 2+a 2+b 2=0,则实数m ,n ,a ,b 不全为零;否命题:若m 2+n 2+a 2+b 2≠0,则实数m ,n ,a ,b 不全为零.(3)否定形式:若xy =0,则x ≠0且y ≠0;否命题:若xy ≠0,则x ≠0且y ≠0.课时跟踪训练(四) 含逻辑联结词的命题的真假判断1.若p 是真命题,q 是假命题,则下列说法错误的是________.①p ∧q 是真命题 ②p ∨q 是假命题 ③綈p 是真命题 ④綈q 是真命题2.已知命题p :若a >1,则a x >log a x 恒成立;命题q :在等差数列{a n }中,m +n =p +q 是a m +a n =a p +a q 成立的充分不必要条件(m ,n ,p ,q ∈N *),则下面为真命题的是________.①(綈p )∧(綈q );②(綈p )∨(綈q );③p ∨(綈q );④p ∧q .3.已知命题p :不等式ax +b >0的解集为⎩⎨⎧⎭⎬⎫x | x >-b a ,命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },则“p 或q ”“p 且q ”和“非p ”形式的命题中,真命题为________.4.已知命题p :所有自然数都是正数,命题q :正数的对数都是正数,则下列命题中为真命题的是________.(填序号)①綈p 且q ;②p 或q ;③綈p 且綈q ;④綈p 或綈q5.(湖北高考改编)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为________.①(綈p )∨(綈q );②p ∨(綈q );③(綈p )∧(綈q );④p ∨q .6.写出下列各组命题构成的“p 或q ”、“p 且q ”以及“非p ”形式的命题,并判断它们的真假.(1)p :5是有理数,q :5是整数;(2)p :不等式x 2-2x -3>0的解集是(-∞,-1),q :不等式x 2-2x -3>0的解集是(3,+∞).7.命题p :实数x 满足x 2-4ax +3a 2<0(a >0),命题q :实数x 满足⎩⎪⎨⎪⎧|x -1|≤2,x +3x -2≥0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若q ⇒綈p ,求实数a 的取值范围.8.命题p :关于x 的不等式x 2+(a -1)x +a 2≤0的解集为∅,命题q :函数y =(2a 2-a )x 为增函数,分别求出符合下列条件的实数a 的取值范围.(1)p ∨q 为真命题;(2)“p ∨q ”为真,“p ∧q ”为假.答 案1.解析:p 是真命题,则綈p 是假命题.q 是假命题,则綈q 是真命题.故p ∧q 是假命题,p ∨q 是真命题.答案:①②③2.解析:当a =1.1,x =2时,a x =1.12=1.21,log a x =log 1.12>log 1.11.21=2,此时,a x <log a x ,故p 为假命题.命题q ,由等差数列的性质,当m +n =p +q 时,a n +a m =a p +a q 成立,当公差d =0时,由a m +a n =a p +a q 不能推出m +n =p +q 成立,故q 是真命题. 故綈p 是真命题,綈q 是假命题,所以p ∧q 为假命题,p ∨(綈q )为假命题,(綈p )∧(綈q )为假命题,(綈p )∨((綈q )为真命题.答案:②3.解析:命题p 是假命题,因为当a <0或a =0时解集与已知不同;命题q 也是假命题,因为不知道a ,b 的大小关系.所以只有非p 是真命题.答案:非p4.解析:因为命题p 为假命题,命题q 为假命题,所以綈p 且綈q 为真命题,綈p 或綈q 为真命题.答案:③④5.解析:由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(綈p )∨(綈q ).答案:①6.解:(1)p 或q :5是有理数或5是整数;p 且q :5是有理数且5是整数;非p :5不是有理数.因为p 假,q 假,所以p 或q 为假,p 且q 为假,非p 为真.(2)p 或q :不等式x 2-2x -3>0的解集是(-∞,-1)或不等式x 2-2x -3>0的解集是(3,+∞);p 且q :不等式x 2-2x -3>0的解集是(-∞,-1)且不等式x 2-2x -3>0的解集是(3,+∞);非p :不等式x 2-2x -3>0的解集不是(-∞,-1).因为p 假,q 假,所以p 或q 假,p 且q 假,非p 为真.7.解:(1)由于a =1,则x 2-4ax +3a 2<0⇔x 2-4x +3<0⇔1<x <3.所以p :1<x <3.解不等式组⎩⎪⎨⎪⎧|x -1|≤2,x +3x -2≥0得2<x ≤3,所以q :2<x ≤3.由于p ∧q 为真,所以p ,q 均是真命题,解不等式组⎩⎪⎨⎪⎧1<x <3,2<x ≤3得2<x <3, 所以实数x 的取值范围是(2,3).(2)綈p :x 2-4ax +3a 2≥0,a >0,x 2-4ax +3a 2≥0⇔(x -a )(x -3a )≥0⇔x ≤a 或x ≥3a ,所以綈p :x ≤a 或x ≥3a ,设A ={x |x ≤a 或x ≥3a },由(1)知q :2<x ≤3,设B ={x |2<x ≤3}.由于q ⇒綈p ,所以B A ,所以3≤a 或3a ≤2,即0<a ≤23或a ≥3, 所以实数a 的取值范围是⎝⎛⎦⎤0,23∪[3,+∞). 8.解:命题p 为真时,Δ=(a -1)2-4a 2<0,即a >13或a <-1.① 命题q 为真时,2a 2-a >1,即a >1或a <-12.② (1)当p ∨q 为真时,即p 、q 至少有一个是真命题,即上面两个范围的并集为⎩⎨⎧⎭⎬⎫a |a <-12或a >13; ∴“p ∨q ”为真时,a 的取值范围是⎩⎨⎧⎭⎬⎫a | a <-12或a >13. (2)当“p ∨q ”为真,“p ∧q ”为假,即p ,q 有且只有一个是真命题时,有两种情况:当p 真q 假时,13<a ≤1;当p 假q 真时,-1≤a <-12. ∴“p ∨q ”为真,“p ∧q ”为假时,a 的取值范围是⎩⎨⎧⎭⎬⎫a | 13<a ≤1或-1≤a <-12.课时跟踪训练(五) 量 词1.下列命题:①有的质数是偶数;②与同一平面所成的角相等的两条直线平行;③有的三角形的三个内角成等差数列;④与圆只有一个公共点的直线是圆的切线,其中是全称命题的是________,是存在性命题的是________.(只填序号)2.下列命题中的假命题是________.①∀x ∈R,2x -1>0; ②∀x ∈N *,(x -1)2>0;③∃x ∈R ,lg x <1;④∃x ∈R ,tan x =2.3.用符号“∀”或“∃”表示下面含有量词的命题:(1)实数的平方大于或等于0: _________________________________________________;(2)存在一对实数,使3x -2y +1≥0成立: ________________________________.4.命题“∀x ∈R +,2x +1x>a 成立”是真命题,则a 的取值范围是________. 5.已知“∀x ∈R ,ax 2+2ax +1>0”为真命题,则实数a 的取值范围是________.6.判断下列命题是全称命题还是存在性命题,并判断其真假:(1)对任意x ∈R ,z x >0(z >0);(2)对任意非零实数x 1,x 2,若x 1<x 2,则1x 1>1x 2; (3)∃α∈R ,使得sin(α+π3)=sin α; (4)∃x ∈R ,使得x 2+1=0.7.判断下列命题的真假,并说明理由.(1)∀x ∈R ,都有x 2-x +1>12; (2)∃α,β,使cos(α-β)=cos α-cos β;(3)∀x ,y ∈N ,都有(x -y )∈N ;(4)∃x ,y ∈Z ,使2x +y =3.8.(1)对于任意实数x ,不等式sin x +cos x >m 恒成立,求实数m 的取值范围;(2)存在实数x ,不等式sin x +cos x >m 有解,求实数m 的取值范围.答 案1.解析:根据所含量词可知②④是全称命题,①③是存在性命题.答案:②④ ①③2.解析:对②,x =1时,(1-1)2=0,∴②假.答案:②3.(1)∀x ∈R ,x 2≥0(2)∃x ∈R ,y ∈R,3x -2y +1≥04.解析:∵x ∈R +,∴2x +1x≥22,∵命题为真,∴a <2 2. 答案:(-∞,22)5.解析:当a =0时,不等式为1>0,对∀x ∈R,1>0成立.当a ≠0时,若∀x ∈R ,ax 2+2ax +1>0,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a <0,解得0<a <1.综上,a 的取值范围为[0,1). 答案:[0,1)6.解:(1)(2)是全称命题,(3)(4)是存在性命题.(1)∵z x >0(z >0)恒成立,∴命题(1)是真命题.(2)存在x 1=-1,x 2=1,x 1<x 2,但1x 1<1x 2, ∴命题(2)是假命题.(3)当α=π3时,sin(α+π3)=sin α成立, ∴命题(3)为真命题.(4)对任意x ∈R ,x 2+1>0,∴命题(4)是假命题.7.解:(1)法一:当x ∈R 时,x 2-x +1=⎝⎛⎭⎫x -122+34≥34>12,所以该命题是真命题.法二:x 2-x +1>12⇔x 2-x +12>0,由于Δ=1-4×12=-1<0,所以不等式x 2-x +1>12的解集是R ,所以该命题是真命题.(2)当α=π4,β=π2时,cos(α-β)=cos ⎝⎛⎭⎫π4-π2=cos ⎝⎛⎭⎫-π4=cos π4=22,cos α-cos β=cos π4-cos π2=22-0=22,此时cos (α-β)=cos α-cos β,所以该命题是真命题. (3)当x =2,y =4时,x -y =-2∉N ,所以该命题是假命题.(4)当x =0,y =3时,2x +y =3,即∃x ,y ∈Z ,使2x +y =3,所以该命题是真命题.8.解:(1)令y =sin x +cos x ,x ∈R .∵y =sin x +cos x =2sin(x +π4)≥- 2. 又∵∀x ∈R ,sin x +cos x >m 恒成立.∴只要m <-2即可.∴所求m 的取值范围是(-∞,-2).(1)令y =sin x +cos x ,x ∈R .∵y =sin x +cos x =2sin(x +π4)∈[-2, 2 ], 又∵∃x ∈R ,sin x +cos x >m 有解.∴只要m <2即可.∴所求m 的取值范围是(-∞,2).课时跟踪训练(六) 含有一个量词的命题的否定1.(重庆高考改编)命题“对任意x ∈R ,都有x 2≥0”的否定是______________.2.命题“∃x ∈∁R Q ,x 3∈Q ”的否定是________________.3.命题“∀x ∈R ,x 2-x +3>0”的否定是_________________________________.4.命题“所有能被2整除的整数都是偶数”的否定是___________________.5.若命题“∃x ∈R ,使得x 2+(a -1)x +1≤0”为假命题,则实数a 的取值范围是________.6.设语句q (x ):cos ⎝⎛⎭⎫x -π2=sin x : (1)写出q ⎝⎛⎭⎫π2,并判定它是不是真命题;(2)写出“∀a ∈R ,q (a )”,并判断它是不是真命题.7.写出下列命题的否定,并判断其真假:(1)p:不论m取何实数,方程x2+x-m=0必有实数根;(2)q:存在一个实数x,使得x2+x+1≤0;(3)r:等圆的面积相等,周长相等.8.∀x∈[-1,2],使4x-2x+1+2-a<0恒成立,求实数a的取值范围.答案1.解析:因为“∀x∈M,p(x)”的否定是“∃x∈M,綈p(x)”故“对任意x∈R,都有x2≥0”的否定是“存在x∈R,使得x2<0”.答案:存在x∈R,使得x2<02.解析:存在性命题的否定是全称命题.答案:∀x∈∁R Q,x3∉Q3.解析:全称命题的否定是存在性命题.答案:∃x∈R,x2-x+3≤04.解析:此命题是一个全称命题,全称命题的否定是存在性命题.故该命题的否定是:“存在能被2整除的整数不是偶数”.答案:存在能被2整除的整数不是偶数5.解析:该命题p的否定是綈p:“∀x∈R,x2+(a-1)x+1>0”,即关于x的一元二次不等式x2+(a-1)x+1>0的解集为R,由于命题p是假命题,所以綈p是真命题,所以Δ=(a -1)2-4<0,解得-1<a <3,所以实数a 的取值范围是(-1,3).答案:(-1,3)6.解:(1)q ⎝⎛⎭⎫π2:cos ⎝⎛⎭⎫π2-π2=sin π2, 因为cos 0=1,sin π2=1, 所以q ⎝⎛⎭⎫π2是真命题.(2)∀a ∈R ,q (a ):cos ⎝⎛⎭⎫a -π2=sin a , 因为cos ⎝⎛⎭⎫a -π2=cos ⎝⎛⎭⎫π2-a =sin a , 所以“∀a ∈R ,q (a )”是真命题.7.解:(1)这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.当Δ=1+4m <0,即m <-14时,一元二次方程没有实数根,所以綈p 是真命题. (2)这一命题的否定形式是綈q :对所有实数x ,都有x 2+x +1>0.利用配方法可以验证綈q 是一个真命题.(3)这一命题的否定形式是綈r :存在一对等圆,其面积不相等或周长不相等,由平面几何知识知綈r 是一个假命题.8.解:已知不等式化为22x -2·2x +2-a <0.①令t =2x ,∵x ∈[-1,2],∴t ∈⎣⎡⎦⎤12,4,则不等式①化为:t 2-2t +2-a <0,即a >t 2-2t +2,原命题等价于:∀t ∈⎣⎡⎦⎤12,4,a >t 2-2t +2恒成立,令y =t 2-2t +2=(t -1)2+1,当t∈⎣⎡⎦⎤12,4时,y max =10.所以只须a >10即可.即所求实数a 的取值范围是(10,+∞).课时跟踪训练(七) 圆锥曲线1.平面内到一定点F 和到一定直线l (F 在l 上)的距离相等的点的轨迹是________________________.2.设F 1、F 2为定点,PF 1-PF 2=5,F 1F 2=8,则动点P 的轨迹是________.3.以F 1、F 2为焦点作椭圆,椭圆上一点P 1到F 1、F 2的距离之和为10,椭圆上另一点P 2满足P 2F 1=P 2F 2,则P 2F 1=________.4.平面内动点P 到两定点F 1(-2,0),F 2(2,0)的距离之差为m ,若动点P 的轨迹是双曲线,则m 的取值范围是________.5.已知椭圆上一点P 到两焦点F 1、F 2的距离之和为20,则PF 1·PF 2的最大值为________.6.已知抛物线的焦点为F ,准线为l ,过F 作直线与抛物线相交于A 、B 两点,试判断以AB 为直径的圆与l 的位置关系.7.动点P (x ,y )的坐标满足(x -2)2+y 2+(x +2)2+y 2=8.试确定点P 的轨迹.8.在相距1 600 m 的两个哨所A ,B ,听远处传来的炮弹爆炸声,已知当时的声速是340 m/s ,在A 哨所听到爆炸声的时间比在B 哨所听到时间早3 s .试判断爆炸点在怎样的曲线上?答 案1.过点F 且垂直于l 的直线2.解析:∵5<8,满足双曲线的定义,∴轨迹是双曲线.答案:双曲线3.解析:∵P 2在椭圆上,∴P 2F 1+P 2F 2=10,又∵P 2F 1=P 2F 2,∴P 2F 1=5.答案:54.解析:由题意可知,|m |<4,且m ≠0,∴-4<m <4,且m ≠0.答案:(-4,0)∪(0,4)5.解析:∵PF 1+PF 2=20,∴PF 1·PF 2≤(PF 1+PF 22)2=(202)2=100.答案:1006.解:如图,取AB 的中点O2,过A 、B 、O 2分别作AA 1⊥l ,BB 1⊥l ,O 2O 1⊥l ,根据抛物线的定义,知AA 1=AF ,BB 1=BF ,∴O 2O 1=AA 1+BB 12=AF +BF 2=AB 2=R (R 为圆的半径), ∴以AB 为直径的圆与l 相切.7.解:设A (2,0),B (-2,0), 则(x -2)2+y 2表示P A ,(x +2)2+y 2表示PB ,又AB =4,∴P A +PB =8>4,∴点P 的轨迹是以A 、B 为焦点的椭圆.8.解:由题意可知点P 离B 比离A 远,且PB -P A =340×3=1 020 m ,而AB =1 600 m >1 020 m ,满足双曲线的定义,∴爆炸点应在以A ,B 为焦点的双曲线的靠近A 的一支上.课时跟踪训练(八) 椭圆的标准方程1.若椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为________.2.椭圆25x 2+16y 2=1的焦点坐标是________.3.已知方程(k 2-1)x 2+3y 2=1是焦点在y 轴上的椭圆,则k 的取值范围是________.4.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.5.已知P 为椭圆x 225+4y 275=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,则△F 1PF 2的面积为________.6.求适合下列条件的椭圆的标准方程:(1)以(0,5)和(0,-5)为焦点,且椭圆上一点P 到两焦点的距离之和为26;(2)以椭圆9x 2+5y 2=45的焦点为焦点,且经过M (2,6).7.如图,设点P 是圆x 2+y 2=25上的动点,点D 是点P 在x 轴上的投影,M 为PD 上一点,且MD =45PD ,当P 在圆上运动时,求点M 的轨迹C 的方程.8.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.答 案1.解析:由椭圆定义知,a =5,P 到两个焦点的距离之和为2a =10,因此,到另一个焦点的距离为5.答案:52.解析:椭圆的标准方程为x 2125+y 2116=1,故焦点在y 轴上,其中a 2=116,b 2=125,所以c 2=a 2-b 2=116-125=9400,故c =320.所以该椭圆的焦点坐标为⎝⎛⎭⎫0,±320. 答案:⎝⎛⎭⎫0,±320 3.解析:方程(k 2-1)x 2+3y 2=1可化为x 21k 2-1+y 213=1. 由椭圆焦点在y 轴上,得⎩⎪⎨⎪⎧k 2-1>0,1k 2-1<13.解之得k >2或k <-2. 答案:(-∞,-2)∪(2,+∞)4.解析:由题意,知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8.答案:85.解析:在△F 1PF 2中,F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°, 即25=PF 21+PF 22-PF 1·PF 2.① 由椭圆的定义,得10=PF 1+PF 2.②由①②,得PF 1·PF 2=25,∴S △F 1PF 2=12PF 1·PF 2sin 60°=25 34. 答案:25 346.解:(1)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b2=1(a >b >0). ∵2a =26,2c =10,∴a =13,c =5.∴b 2=a 2-c 2=144.∴所求椭圆的标准方程为y 2169+x 2144=1. (2)法一:由9x 2+5y 2=45,得y 29+x 25=1,c 2=9-5=4, 所以其焦点坐标为F 1(0,2),F 2(0,-2).设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0). 由点M (2,6)在椭圆上,所以MF 1+MF 2=2a ,即2a =(2-0)2+(6-2)2+(2-0)2+(6+2)2=43,所以a =23,又c =2,所以b 2=a 2-c 2=8,所以所求椭圆的标准方程为y 212+x 28=1. 法二:由法一知,椭圆9x 2+5y 2=45的焦点坐标为F 1(0,2),F 2(0,-2),则设所求椭圆方程为y 2λ+4+x 2λ=1(λ>0), 将M (2,6)代入,得6λ+4+4λ=1(λ>0), 解得λ=8或λ=-2(舍去).所以所求椭圆的标准方程为y 212+x 28=1.7.解:设M 点的坐标为(x ,y ),P 点的坐标为(x P ,y P ),由已知易得⎩⎪⎨⎪⎧ x P=x ,y P =54y . ∵P 在圆上,∴x 2+(54y )2=25. 即轨迹C 的方程为x 225+y 216=1. 8.解:设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.课时跟踪训练(九) 椭圆的几何性质1.(新课标全国卷Ⅱ改编)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.2.(广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________________________________________________________________________.3.曲线x 225+y 29=1与曲线x 225-k +y 29-k=1(k <9)的________相等.(填“长轴长”或“短轴长”或“离心率”或“焦距”)4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为________.5.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率是________.6.已知焦点在x 轴上的椭圆的离心率e =35,经过点A (5 32,-2),求椭圆的标准方程.7.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.8.若椭圆的中心在原点,焦点在x 轴上,点P 是椭圆上的一点,P 在x 轴上的射影恰为椭圆的左焦点,P 与中心O 的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于10-5,试求椭圆的离心率及其方程.答 案1.解析:法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a ,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). 答案:332.解析:依题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =12,c 2=a 2-b 2,解得a 2=4,b 2=3.答案:x 24+y 23=13.解析:c 2=25-k -(9-k )=16,c =4.故两条曲线有相同的焦距. 答案:焦距4.解析:设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 21=b 2-b 2x 21a2.所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 21x 2-x 21=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案:-135.解析:设直线x =3a2与x 轴交于点M ,则∠PF 2M =60°.由题意知,F 1F 2=PF 2=2c ,F 2M =3a 2-c .在Rt △PF 2M 中,F 2M =12PF 2,即3a 2-c =c .∴e =c a =34.答案:346.解:设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0),则754a 2+4b 2=1.① 由已知e =35,∴c a =35,∴c =35a .∴b 2=a 2-c 2=a 2-(35a )2,即b 2=1625a 2.②把②代入①,得754a 2+4×2516a 2=1,解得a 2=25,∴b 2=16,∴所求方程为x 225+y 216=1.7.解:椭圆方程可化为x 2m +y 2mm +3=1,由m >0,易知m >mm +3,∴a 2=m ,b 2=mm +3.∴c =a 2-b 2=m (m +2)m +3. 由e =32,得 m +2m +3=32,解得m =1, ∴椭圆的标准方程为x 2+y 214=1.∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1, 两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0,顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 8.解:令x =-c ,代入x 2a 2+y 2b 2=1(a >b >0),得y 2=b 2(1-c 2a 2)=b 4a 2,∴y =±b 2a.设P (-c ,b 2a ),椭圆的右顶点A (a,0),上顶点B (0,b ).∵OP ∥AB ,∴k OP =k AB ,∴-b 2ac =-ba,∴b =c .而a 2=b 2+c 2=2c 2,∴a =2c ,∴e =c a =22.又∵a -c =10-5,解得a =10,c =5,∴b =5, ∴所求椭圆的标准方程为x 210+y 25=1.课时跟踪训练(十) 双曲线的标准方程1.双曲线x 225-y 224=1上的点P 到一个焦点的距离为11,则它到另一个焦点的距离为________.2.已知点F 1,F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF2=S △IPF 1-λS △IF 1F 2,则λ=________.3.若方程x 2k -3+y 2k +3=1(k ∈R )表示双曲线,则k 的范围是________.4.已知椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则实数a =________.5.已知双曲线的两个焦点为F 1(-10,0),F 2=(10,0),M 是此双曲线上的一点,且满足1MF ·2MF =0,|1MF |·|2MF |=2,则该双曲线的方程是__________. 6.求适合下列条件的双曲线的标准方程:(1)以椭圆x 225+y 29=1的长轴端点为焦点,且经过点P (5,94);(2)过点P 1(3,-4 2),P 2(94,5).7.设F 1,F 2为双曲线x 24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=120°.求△F 1PF 2的面积.8.如图,在△ABC 中,已知|AB |=4 2,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.答 案1.解析:设双曲线的左、右焦点分别为F 1,F 2,不妨设PF 1=11,根据双曲线的定义知|PF 1-PF 2|=2a =10,∴PF 2=1或PF 2=21,而F 1F 2=14,∴当PF 2=1时,1+11<14(舍去),∴PF 2=21.答案:212.解析:设△PF 1F 2内切圆的半径为r ,则由S △IPF 2=S △IPF 1-λS △IF1F 2⇒12×PF 2×r=12×PF 1×r -12λ×F 1F 2×r ⇒PF 1-PF 2=λF 1F 2,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45. 答案:453.解析:依题意可知:(k -3)(k +3)<0,求得-3<k <3.答案:-3<k <34.解析:由双曲线x 2a -y 22=1可知a >0,且焦点在x 轴上,根据题意知4-a 2=a +2,即a 2+a -2=0,解得a =1或a =-2(舍去).故实数a =1.答案:15.解析:∵1MF ·2MF =0,∴1MF ⊥2MF .∴|1MF |2+|2MF |2=40.∴(|1MF |-|2MF |)2=|1MF |2-2|1MF |·|2MF |+|2MF |2=40-2×2=36.∴||1MF |-|2MF ||=6=2a ,a =3.又c =10,∴b 2=c 2-a 2=1,∴双曲线方程为x 29-y 2=1.答案:x 29-y 2=16.解:(1)因为椭圆x 225+y 29=1的长轴端点为A 1(-5,0),A 2(5,0),所以所求双曲线的焦点为F 1(-5,0),F 2(5,0).由双曲线的定义知,|PF 1-PF 2| =⎪⎪⎪⎪(5+5)2+(94-0)2-(5-5)2+(94-0)2 =⎪⎪⎪⎪(414)2- (94)2=8,即2a =8,则a =4. 又c =5,所以b 2=c 2-a 2=9. 故所求双曲线的标准方程为x 216-y 29=1.(2)设双曲线的方程为Ax 2+By 2=1(AB <0),分别将点P 1(3,-4 2),P 2(94,5)代入,得⎩⎪⎨⎪⎧9A +32B =1,8116A +25B =1,解得⎩⎨⎧A =-19,B =116,故所求双曲线的标准方程为y 216-x 29=1.7.解:由已知得a =2,b =1;c = a 2+b 2=5,由余弦定理得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 120° 即(2 5)2=(PF 1-PF 2)2+3PF 1·PF 2 ∵|PF 1-PF 2|=4.∴PF 1·PF 2=43.∴S △F 1PF 2=12PF 1·PF 2·sin 120°=12×43×32=33.8.解:以AB 边所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示).则A (-2 2,0),B (2 2,0).设边BC 、AC 、AB 的长分别为a 、b 、c ,由正弦定理得sin A =a 2R ,sin B =b2R ,sinC =c2R(R 为△ABC 外接圆的半径).∵2sin A +sin C =2sin B ,∴2a +c =2b ,即b -a =c2.从而有|CA |-|CB |=12|AB |=2 2<|AB |.由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).∵a =2,c =2 2,∴b 2=6.∴顶点C 的轨迹方程为x 22-y 26=1(x >2).课时跟踪训练(十一) 双曲线的几何性质1.(陕西高考)双曲线x 216-y 2m =1的离心率为54.则m =________.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),两条渐近线的夹角为60°,则双曲线的离心率为________.3.焦点为(0,6),且与双曲线x 22-y 2=1有相同的渐近线的双曲线方程是___________.4.(新课标全国卷Ⅰ改编)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为____________________.5.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点分别为F 1、F 2,P 为双曲线上一点,且|PF 1|=3|PF 2|,则该双曲线离心率e 的取值范围是________.6.根据下列条件求双曲线的标准方程:(1)经过点(154,3),且一条渐近线方程为4x +3y =0.(2)P (0,6)与两个焦点的连线互相垂直,与两个顶点连线的夹角为π3.7.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.8.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上; (3)求△F 1MF 2的面积.答 案1.解析:∵a =4,b =m ,∴c 2=16+m ,e =ca =16+m 4=54,∴m =9.答案:92.解析:根据题意,由于双曲线x 2a 2-y 2b 2=1(a >0,b >0),两条渐近线的夹角为60°,则可知b a =3或b a =33,那么可知双曲线的离心率为e =1+⎝⎛⎭⎫b a 2,所以结果为2或233. 答案:2或2333.解析:由x 22-y 2=1,得双曲线的渐近线为y =±22x .设双曲线方程为:x 22-y 2=λ(λ<0),∴x 22λ-y 2λ=1.∴-λ-2λ=36,∴λ=-12.故双曲线方程为y 212-x 224=1. 答案:y 212-x 224=14.解析:∵e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,∴b 2a 2=14,∴b a =12,∴y =±12x .答案:y =±12x5.解析:依题意得⎩⎪⎨⎪⎧|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,由此解得|PF 2|=a ,|PF 1|=3a ,∵|PF 1|+|PF 2|≥|F 1F 2|,即c ≤2a ,e =ca≤2.又e >1,∴离心率e 的取值范围是(1,2].答案:(1,2]6.解:(1)∵双曲线的一条渐近线方程为4x +3y =0, ∴可设双曲线方程为x 29-y 216=λ(λ≠0).∵双曲线经过点⎝⎛⎭⎫154,3,∴19×15216-3216=λ.即λ=1. ∴所求双曲线的标准方程为x 29-y 216=1.(2)设F 1、F 2为双曲线的两个焦点,依题意,它的焦点在x 轴上, ∵PF 1⊥PF 2,且OP =6, ∴2c =F 1F 2=2OP =12,∴c =6. 又P 与两顶点连线夹角为π3,∴a =|OP |·tan π6=2 3,∴b 2=c 2-a 2=24.故所求双曲线的标准方程为x 212-y 224=1.7.解:设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a .由PF 2=QF 2,∠PF 2Q =90°,知|PF 1|=|F 1F 2|, ∴b 2a =2c ,∴b 2=2ac . 由a 2+b 2=c 2, 得c 2-2ac -a 2=0, ∴⎝⎛⎭⎫c a 2-2×c a -1=0. 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.8.解:(1)∵离心率e =2,∴设所求双曲线方程为x 2-y 2=λ(λ≠0),则由点(4,-10)在双曲线上,知λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6,即x 26-y 26=1.(2)若点M (3,m )在双曲线上,则32-m 2=6,∴m 2=3. 由双曲线x 2-y 2=6知,F 1(2 3,0),F 2(-2 3,0), ∴MF 1―→·MF 2―→=(2 3-3,-m )·(-2 3-3,-m ) =9-(2 3)2+m 2=0.∴MF 1―→⊥MF 2―→,∴点M 在以F 1F 2为直径的圆上. (3)S △F 1MF 2=12×2c ×|m |=c |m |=2 3×3=6.课时跟踪训练(十二) 抛物线的标准方程1.抛物线x 2=8y 的焦点坐标是________.2.已知抛物线的顶点在原点,焦点在x 轴上,其上的点P (-3,m )到焦点的距离为5,则抛物线方程为________.3.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.4.抛物线x 2=-ay 的准线方程是y =2,则实数a 的值是________.5.双曲线x 2m -y 2n =1(mn ≠0)的离心率为2,有一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为________.6.根据下列条件,分别求抛物线的标准方程: (1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,AF =5.7.设抛物线y 2=mx (m ≠0)的准线与直线x =1的距离为3,求抛物线的方程.。
2018-2019学年高中数学 课时跟踪训练(二)充分条件和必要条件(含解析)苏教版选修2-1
课时跟踪训练(二) 充分条件和必要条件1.(安徽高考改编)“(2x-1)x=0”是“x=0”的________条件.2.已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,则l1∥l2的充要条件是a=________.3.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a>b”是“a2>b2”的充分条件;③“a<5”是“a<3”的必要条件;④“a+5是无理数”是“a是无理数”的充要条件.其中真命题的序号为________.4.(北京高考改编)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的____________条件.5.若p:x(x-3)<0是q:2x-3<m的充分不必要条件,则实数m的取值范围是________.6.求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.7.求直线l:ax-y+b=0经过两直线l1:2x-2y-3=0和l2:3x-5y+1=0交点的充要条件.8.已知p:-6≤x-4≤6,q:x2-2x+1-m2≤0(m>0),若q是p的充分不必要条件,求实数m的取值范围.答 案1.解析:由(2x -1)x =0可得x =12或x =0,因为“x =12或x =0”是“x =0”的必要不充分条件,所以“(2x -1)x =0”是“x =0”的必要不充分条件.答案:必要不充分2.解析:由1×3-a ×(a -2)=0,得a =3或-1,而a =3时,两条直线重合,所以a =-1. 答案:-13.解析:①“a =b ”是ac =bc 的充分不必要条件,故①错,②a >b 是a 2>b 2的既不充分也不必要条件,故②错.③④正确.答案:③④4.解析:由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分不必要条件.答案:充分不必要5.解析:p :0<x <3,q :x <3+m 2, 若p 是q 的充分不必要条件,则3+m 2≥3,即m ≥3. 答案:[3,+∞)6.证明:(1)必要性:因为方程ax 2+bx +c =0有一正根和一负根,所以Δ=b 2-4ac >0,x 1x 2=c a <0(x 1,x 2为方程的两根),所以ac <0.(2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=c a <0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.7.解:由⎩⎪⎨⎪⎧ 2x -2y -3=0,3x -5y +1=0,得交点P (174,114). 若直线l :ax -y +b =0经过点P ,则a ×174-114+b =0.∴17a +4b =11. 设a ,b 满足17a +4b =11,则b =11-17a 4,代入方程ax -y +b =0,得ax -y +11-17a 4=0, 整理,得⎝⎛⎭⎪⎫y -114-a ⎝ ⎛⎭⎪⎫x -174=0. ∴直线l :ax -y +b =0恒过点⎝ ⎛⎭⎪⎫174,114,此点即为l 1与l 2的交点. 综上,直线l :ax -y +b =0经过两直线l 1:2x -2y -3=0和l 2:3x -5y +1=0交点的充要条件为17a +4b =11.8.解:p :-6≤x -4≤6⇔-2≤x ≤10.q :x 2-2x +1-m 2≤0⇔[x -(1-m )][x -(1+m )]≤0(m >0) ⇔1-m ≤x ≤1+m (m >0).因为q 是p 的充分不必要条件.即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},如图,故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10,或⎩⎪⎨⎪⎧ 1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的范围为{m |0<m ≤3}.。
高中数学 课时跟踪检测(十九)计数应用题 苏教版选修2-3-苏教版高二选修2-3数学试题
课时跟踪检测(十九)计数应用题[课下梯度提能]一、基本能力达标1.某药品研究所研制了5种消炎药a1,a2,a3,a4,a5,4种退烧药b1,b2,b3,b4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a1,a2两种药必须同时使用,且a3,b4两种药不能同时使用,则不同的实验方案共有( )A.56种B.28种C.21种 D.14种解析:选D 分3类:当取a1,a2时,再取退烧药有C14种方案;取a3时,取另一种消炎药的方法有C12种,再取退烧药有C13种,共有C12C13种方案;取a4,a5时,再取退烧药有C14种方案.故共有C14+C12C13+C14=14(种)不同的实验方案.2.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额,且各校分配的名额互不相等,则不同的分配方法种数为( )A.96 B.114C.128 D.136解析:选B 由题意可得每所学校至少有1个名额的分配方法种数为C217=136,分配名额相等有22种(可以逐个数),则满足题意的方法有136-22=114(种).3.将5名同学分成甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同分组方案的种数为( )A.180 B.120C.80 D.60解析:选C 由题意可得不同的组合方案种数为C25C23A22+C35C12=80.4.我国第一艘航母“某某舰”在某次舰载机起降飞行训练中,有5架歼15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种 B.18种C.24种 D.48种解析:选C 把甲、乙看作1个元素和另一飞机全排列,调整甲、乙,共有A22·A22种方法,再把丙、丁插入到刚才“两个”元素排列产生的3个空位中,有A23种方法,由分步乘法计数原理可得总的方法种数为A22·A22·A23=24.5.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是( )A.C28A23B.C26A66C.C28A25D.C28A26解析:选D 第一步可先从后排8人中选2人共有C28种;第二步可认为前排放6个座位,先选出2个座位让后排的2人坐,由于其他人的顺序不变,所以有A26种坐法.综上知“不同”调整方法的种数为C28A26.6.甲组有男同学5名,女同学3名,乙组有6名男同学,2名女同学,从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法有________种.解析:第一类,选出的1名女生出自甲组,选法为C15C13C26=225(种);第二类,1名女生出自乙组,选法为C25C16C12=120(种).共有225+120=345(种).答案:3457.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有________个.解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有C14·C25种方法;第二类:从直线a上任取两个点,从直线b上任取一个点共有C24·C15种方法.∴满足条件的三角形共有C14·C25+C24·C15=70个.答案:708.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________种.解析:根据题意,每级台阶最多站2人,所以,分两类:第一类,有2人站在同一级台阶,共有C23A27种不同的站法;第二类,一级台阶站1人,共有A37种不同的站法.根据分类计数原理,得共有C23A27+A37=336种不同的站法.答案:3369.有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?解:因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯办法.然后分步确定每个二极管发光颜色有2×2×2=8(种)方法,所以这排二极管能表示的信息种数共有C36×2×2×2=160(种).10.已知抛物线y=ax2+bx+c的系数a,b,c是在集合{-3,-2,-1,0,1,2,3,4}中选取的3个不同的元素,求坐标原点在抛物线内部的抛物线有多少条?解:由图形特征分析得知,若a>0,开口向上,坐标原点在抛物线内部⇔f(0)=c<0,若a<0,开口向下,坐标原点在抛物线内部⇔f(0)=c>0;所以对于抛物线y=ax2+bx+c 来讲,坐标原在其内部⇔af(0)=ac<0.确定抛物线时,可先定一正一负的a和c,再确定b.故满足题设的抛物线共有C13C14A22C16=144条.二、综合能力提升1.某校举办了“祖国,你好”诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名学生中至少有1人参加,且当这3名学生都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( )A.720 B.768C.810 D.816解析:选B 根据题意,在7名学生中选派4名学生参加诗歌朗诵比赛,有A47=840(种)情况,其中甲、乙、丙都没有参加,即选派其他四人参加的情况有A44=24(种),则甲、乙、丙这3名学生中至少有1人参加的情况有840-24=816(种);其中当甲、乙、丙都参加且甲和乙相邻的情况有C14A22A33=48(种),则满足题意的朗诵顺序有816-48=768(种).故选B.2.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有________种.解析:先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步计数原理可知共有不同的安排方法C16A25=120种.答案:1203.某种产品有5件不同的正品,4件不同的次品,现在一件件地进行检测,直到4件次品全部测出为止.若次品恰好在第6次检测时被全部选出,则这样的检测方案有多少种?解:问题相当于从9件产品中取出6件的一个排列,第6位为次品,前五位有其余3件次品. 可分三步,先从4件产品中留出1件次品排第6位,有4种方法,再从5件正品中取2件,有C25种方法,再把另3件次品和取出的2件正品排在前5位有A55种方法,所以检测方案种数为4×C25·A55=4 800.4.把n个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数;(2)试求任意5个正整数(可相同)的再生数的个数.解:(1)1,2,3,4的再生数的个数为A44=24,其中最大再生数为4 321,最小再生数为1 234.(2)需要考查5个数中相同数的个数.若5个数各不相同,有A55=120(个);若有2个数相同,则有A 55A 22=60(个); 若有3个数相同,则有A 55A 33=20(个); 若有4个数相同,则有A 55A 44=5(个); 若5个数全相同,则有1个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练(五)组合与组合数公式
一、填空题
1.给出下面几个问题,其中是组合问题的是________.
(1)从1,2,3,4中选出2个构成的集合;
(2)由1,2,3组成两位数的不同方法;
(3)由1,2,3组成无重复数字的两位数.
2.已知C2n=10,则n=________.
3.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.
4.若C x28=C3x-8
,则x=________.
28
5.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则m∶n=________.
二、解答题
6.列出从5个元素A,B,C,D,E中取出2个元素的所有组合.
7.计算:A23+A24+A25+…+A2100.
8.现有10名教师,其中男教师6名,女教师4名.
(1)现要从中选2名去参加会议,有多少种不同的选法?
(2)选出2名男教师或2名女教师去外地学习的选法有多少种?
(3)现要从中选出男、女老师各2名去参加会议,有多少种不同的选法?
答案
1.解析:由题意知:(1)与顺序没有关系;(2)(3)与顺序有关,故是排列问题.答案:(1)
2.解析:C2n=n(n-1)
2×1
=10,解之得n=5.
答案:5
3.解析:设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n =6,代入验证,可知女生有2人或3人.
答案:2或3
4.解析:∵C x28=C3x-8
28
,
∴x=3x-8或x+(3x-8)=28,
即x=4或x=9.
答案:4或9
5.解析:∵m=C24,n=A24,∴m∶n=1 2.
答案:1 2
6.解:从5个元素A,B,C,D,E中取出2个元素的所有组合有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个.
7.解:原式=C23A22+C24A22+C25·A22+…+C2100·A22
=(C23+C24+C25+…+C2100)·A22
=(C33+C23+C24+C25+…+C2100-C33)·A22
=(C34+C24+C25+…+C2100-C33)·A22
=(C35+C25+…+C2100-C33)·A22
=(C3101-C33)·A22
=2C3101-2=333 298.
8.解:(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出
2个元素的组合数,即有C210=10×9
2×1
=45种选法.
(2)可把问题分两类情况:
第一类,选出的2名是男教师有C26种方法;
第二类,选出的2名是女教师有C24种方法.
根据分类计数原理,共有C26+C24=15+6=21种不同的选法.
(3)分步:首先从6名男教师中任选2名,有C26种选法;再从4名女教师中任选2名,有C24种选法;根据分步计数原理,所以共有C26·C24=90种不同的选法.。