第五章向量代数一解几习题
考研数学复习教程答案详解高数部分

第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。
3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。
12.13.提示:由1 未定式结果可得。
14.提示:分子有理化,再同除以n即可。
15.提示:分子、分母利用等价无穷小代换处理即可。
16.17.提示:先指数对数化,再利用洛必达法则。
18.19.解因()2000122(1cos )22cos 2lim lim lim lim lim 1x x x x x x x xx f x x xxx -----→→→→→⋅---=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。
20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。
三、 解答题 21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。
(3)(4)(5)提示:先指数对数化,再用洛必达法则。
(6)提示:请参照“例1.2.14(3)”求解。
22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。
24.提示:先指数对数化,再由导数定义可得。
25.26.28.提示:利用皮亚诺型余项泰勒公式求解。
高等数学 向量代数与空间解析几何题【精选文档】

第五章向量代数与空间解析几何5。
1。
1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。
因为=-,所以(a+b)。
图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。
(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。
从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。
2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。
解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。
5.2。
2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。
解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。
《线性代数》同济大学版 课后习题答案详解

|2A1|(2)3|A1|8|A|18216
17设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*
证明由 得A*|A|A1所以当A可逆时有
|A*||A|n|A1||A|n10
从而A*也可逆
因为A*|A|A1所以
(A*)1|A|1A
又 所以
(A*)1|A|1A|A|1|A|(A1)*(A1)*
5设 问
(1)ABBA吗?
解ABBA
因为 所以ABBA
(2)(AB)2A22ABB2吗?
解(AB)2A22ABB2
因为
但
所以(AB)2A22ABB2
(3)(AB)(AB)A2B2吗?
解(AB)(AB)A2B2
因为
而
故(AB)(AB)A2B2
6举反列说明下列命题是错误的
(1)若A20则A0
解取 则A20但A0
解 令
则
故
29设n阶矩阵A及s阶矩阵B都可逆求
(1)
解设 则
由此得
所以
(2)
解设 则
由此得
所以
30求下列矩阵的逆阵
(1)
解设 则
于是
(2)
解设 则
第三章 矩阵的初等变换与线性方程组
1把下列矩阵化为行最简形矩阵
(1)
解 (下一步r2(2)r1r3(3)r1)
~ (下一步r2(1)r3(2))
~ (下一步r3r2)
(3)
解 (下一步r12r4r22r4r33r4)
~ (下一步r23r1r32r1)
~ (下一步r216r4r316r2)
~
~
矩阵的秩为3 是一个最高阶非零子式
10设A、B都是mn矩阵证明A~B的充分必要条件是R(A)R(B)
线性代数第五章释疑解难

例题二:矩阵的逆与行列式的计算
问题描述
给定一个矩阵,如何计算其逆矩阵和行列式值?
解题思路
首先,利用行列式的性质计算行列式的值。然后,利用逆矩阵的定义和性质求解。
例题二:矩阵的逆与行列式的计算
解题步骤
1
2
1. 利用行列式的性质,计算给定矩阵的行列式值。
3
2. 利用逆矩阵的定义和性质,求解给定矩阵的逆 矩阵。
线性代数第五章释疑 解难
目录
CONTENTS
• 第五章基本概念回顾 • 第五章中的难点解析 • 常见错误解析与纠正 • 习题解答与解析 • 综合例题解析
01
第五章基本概念回
顾
向量与矩阵的定义
向量
由n个实数组成的有序数列称为n维 向量。
矩阵
由m×n个数按m行n列排列成的数表称 为m行n列矩阵。
向量与矩阵的运算
根据二阶行列式的定义,行列式等于 主对角线上的元素乘积减去副对角线 上的元素乘积。
习题二解答与解析
问题
判断矩阵A是否为正定矩阵。
解答
矩阵A为正定矩阵当且仅当其所有特征值都大于0。
解析
正定矩阵的定义是其所有特征值都大于0,因 此判断矩阵是否为正定矩阵,需要计算其所有 特征值并比较。
习题三解答与解析
向量数乘
标量与向量的每个 分量相乘。
矩阵数乘
标量与矩阵的每个 元素相乘。
向量加法
对应分量相加。
Байду номын сангаас
矩阵加法
对应元素相加。
矩阵乘法
前矩阵的列数等于 后矩阵的行数,按 元素相乘并求和。
线性方程组与矩阵的关系
01
《高等代数与解析几何》教学大纲

《咼等代数与解析几何》课程教学大纲一、课程基本信息1、课程名称:高等代数与解析几何(上、下)2、课程编号:03030001/23、课程类别:学科基础课4、总学时/学分:160/105、适用专业:信息与计算科学6、开课学期:第一、二学期二、课程与人才培养标准实现矩阵说明掌握自然科学基础知识和数学专业所需的技术基础及专业知识,掌握分析问题、解决问题的科学方法;通过所学专业基础知识,获取数学专业知识的能力,更新知识和应用知识的能力。
三、课程的地位性质与目的本课程是数学与应用数学专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
高等代数与解析几何最突出的特点就是代数与几何在知识与理论上的有机结合,在思想和方法上的融会贯通。
主要目的是掌握本门课程的基本理论和基本方法;同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生分析问题和解决问题的能力,培养学生创新能力,提高学生的数学素养。
四、学时分配表五、课程教学内容和基本要求总的目标:通过本课程的学习要求学生对高等代数与解析几何的基本概念、基本定理有比较全面、系统认识,能把几何的观点与代数的方法结合起来,“代数为几何提供研究方法,几何为代数提供直观背景”,逐步培养学生运用几何与代数相结合的方法分析问题、解决问题的能力,培养学生抽象的思维能力及空间想象能力。
本课程各章的教学内容和基本要求如下:第一章向量代数【教学内容】1、向量的线性运算2、向量的共线与共面3、用坐标表示向量4、线性相关性与线性方程组5、n维向量空间6、几何空间向量的内积7、几何空间向量的外积8、几何空间向量的混合积【基本要求】理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
【教学重点及难点】重点:向量的概念,向量的线性运算、内积、外积、混合积运算;用坐标进行向量的运算。
难点:向量间垂直、共线、共面的条件。
第二章行列式【教学内容】1、映射与变换2、置换的奇偶性3、矩阵4、行列式的定义理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克拉默法则。
线代习题

<向量代数与空间解析几何>习题1. 求点),,(c b a 的关于(1)各坐标面;(2)各坐标轴的对称点的坐标.2. 设(3,,2)B(124)A x --与,,点间的距离为29,试求x .3. 在yoz 平面上,求与三个已知点(3,1,2)B(422)051A C --、,,和(,,)等距离的点.4. 求平行于向量}6,7,6{-的单位向量.5. 已知两点(1,3,3)B(421)A --与,,,求向量AB 的模与方向余弦.6. 已知||122||,10||βαβαβα⨯=⋅==,求,.7. 求与)1,0,1(M 110M )0,1,1(M 321)、,,(、三点所在平面垂直的单位向量.8. 求过点012-5z 7y -3x (3,0,-1)=+且与平面平行的平面方程.9. 一平面过点(2,-1,3)4,1,5),x 2y 3z 50+++=和(且垂直于平面,求此平面方程.10. 将平面的一般式方程012-3z y -2x =+化为截距式方程.11.指出下列各平面的特殊位置:(1)04-2y =(2)0z -2y 3x =+(3)4y -2x =(4)02z 3y =+12. 求平面0D Cz By Ax 1=+++与平面0D Cz By Ax 2=+++的距离.13. 一平面过z 轴且与平面07-z 5-y 2x =+成3π角,求此平面方程.14. 已知点,121-xA(5,1,4)zy L ==:及直线求: (1)求过A 且与L 平行的直线;(2)求过点A 且与L 及向量}1,4,3{--=AB 垂直的直线;(3)求过点A 且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩平行的直线.15.求直线123121-x -+=+=z y 与平面0z y 23x =++的交点.16.求直线3211-x zy ==在平面01-z y 4x =+-上的投影直线方程.17.求下列旋转曲面方程:(1)平面z x o 内抛物线x =2z 绕x 轴旋转;(2)平面y x o 内双曲线164x 22=-y 分别绕x 轴及y 轴旋转.18.判断11462x 222=-+-++z y x z y 是否表示球面方程,若是,求出球心坐标及球半径.19.指出下面方程所表示的曲面的名称,并作出草图:(1);1941x 222=++z y (2)04x 222=-+z y ;(3)22x 20y z -+=.20.指出下列方程所表示的曲线:(1)⎩⎨⎧==++325222x z y x (2)⎩⎨⎧==++13694222y z y x21.求曲线C :)0(,0,222222>⎩⎨⎧=-+=++a ax y x a z y x 在y x o 平面和z x o 平面上的投影曲线方程.<矩阵及其初等变换>习题1. 当。
高数书题目重点目录整理

高数书题目重点目录整理2015考研数学高等数学教材导学【注】1导学用书:同济大学《高等数学》(上、下册)(第6版)2 请各位学员认真研读课本内容及完成选择习题,打下一个牢固的基础。
无论是教材上的定理、例题,还是课后的习题,曾作为历年的考研真题出现过。
第1章函数、极限、连续1、映射与函数(一)复习内容P1-16(表示1至16页,下同),双曲函数开始之后的不复习。
(二)选做习题P21-22 第4-12题,第14-16题。
2、数列的极限(一)复习内容P23-30(二)选做习题P30-31 第1、5、6题。
3、函数的极限(一)复习内容P31-37(二)选做习题P37-39 第1-4题,第12题。
4、无穷小与无穷大(一)复习内容P39-41(二)选做习题P42 第4、5、6、7题。
5、极限运算法则(一)复习内容P43-49(二)选做习题P49 第1-5题。
6、极限存在准则两个重要极限(一)复习内容P50-55(除Cauchy极限存在准则)(二)选做习题P56-57 第1、2、4题。
7、无穷小的比较(一)复习内容P57-59(二)选做习题P59-60 第1-4题。
8、函数的连续性与间断点(一)复习内容P60-64(二)选做习题P64-65 第1-5题,第7-8题。
9、连续函数的运算与初等函数的连续性(一)复习内容P66-69(二)选做习题P69-70 习题1-9全做P74 总习题一第1-13题。
第2章函数、极限、连续1、导数概念(一)复习内容P77-86(二)选做习题P86-88 习题2-1全做。
2、函数的求导法则(一)复习内容P88-96(例17不学)(二)选做习题P97-99 第1、5题,第5-11题,第13、14题。
3、高阶导数(一)复习内容P99-102(二)选做习题P103 习题2-3除第5题全做。
4、隐函数及由参数方程所确定的函数的导数相关变化率(一)复习内容P104-111(二)选做习题P111-113 习题2-4除第9题全做。
考研数学之高等数学讲义第五章(考点知识点+概念定理总结)

82 第五章 向量代数与空间解析几何§5.1 向量代数(甲)内容要点内容要点一、空间直角坐标系一、空间直角坐标系 二、向量概念二、向量概念®a =®i x +®j y +®k z坐标()z y x ,,模®a =222z y x ++ 方向角g b a ,,方向余弦g b a cos ,cos ,cosa cos =222zy x x ++ ;b cos =222zy x y ++ ;g cos =222zy x z ++三、向量运算三、向量运算设®a ()11,1,z y x ;®b ()22,2,z y x ;®c ()33,3,z y x 1. 加(减)法加(减)法®a ±®b =()2121,21,z z y y x x ±±± 2. 数乘数乘 ()111,,z y x a l l l l =®3. 数量积(点乘)(ⅰ)定义®a ·®b =®a®b ÷øöçèæ®®Ðb a ,cos (ⅱ)坐标公式®a ·®b =21x x +21y y +21z z (ⅲ)重要应用®a ·®b =0Û®a ^®b4.向量积(叉乘)(ⅰ)定义®a ´®b =®®ba ÷øöçèæ®®Ðb a ,sin ®a ´®b 与®a 和®b 皆垂直,且®a ,®b ,®a ´®b 构成右手系构成右手系83(ⅱ)坐标公式®a ´®b =222111z y x z y x k j i®®®(ⅲ)重要应用®a ´®b =®0Û®a ,®b 共线共线5、混合积、混合积 (ⅰ)定义(ⅰ)定义(®a ,®b ,®c )=(®a ´®b )·®c (ⅱ)坐标公式(®a ,®b ,®c )=333222111z y x z y x z y x (ⅲ)÷øöçèæ®®®c b a ,,表示以®a ,®b ,®c 为棱的平行六面体的体积为棱的平行六面体的体积§5.2 平面与直线(甲)内容要点(甲)内容要点一、一、 空间解析几何空间解析几何1 空间解析几何研究的基本问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各分点与点A连接,试以AB c, BC a表示D1A,
D2 A,D3 A和D4 A.
解
1 D1 A AD1 ( AB BD1 ) (c 5 a),
D2 A
AD2
(c
2 5
a),
A
3
D3 A
AD3
(c
a ), 5
D4 A
AD4
(c
4 5
a).
c
B
D 1
a D2 D3
D4
C
3.设a {3,5,8},b {2,4,7},c {5,1,4},
2.在Oz轴上与点A(4,1,7), B(3,5, 2)等距离的
点是
14 (0,0, )
.
9
解 设所求点的坐标为(0,0, z),则
42 12 (z 7)2 32 52 (z 2)2,
z 14 ,所求点为(0,0, 14).
9
9
3.与三坐标轴正向成等角的单位向量是 1 (1,1,1) . 3
第五章向量代数与空间解析几 何
§5.1向量及其运算p.1
一.填空题
1.点M (4, 3,5)到Ox轴,Oy轴,Oz轴及原点O的距离分别是 d(M, x) 34 d(M, y) 41 , d(M,z) 5 , d(M,O) 5 2 .
解 d(M , x) (3)2 52 34. d(M , y) 42 52 41. d(M , z) 42 (3)2 5. d(M ,O) 42 (3)2 52 5 2.
A r1
r3
G
D
B r2
OG OC CG r3 CG, O
1
1
OG
3 (r1
r2
r3 )
( AG 3
BG
CG ),
G是ABC的重心, AG BG CG 0,
1 OG 3 (r1 r2 r3 ).
§5.1向量及其运算p.1完
§5.2向量的乘法运算p.3
一.填空题
1.与a (2,1,2)共线且满足a x 18的向量 x 2a (,|
b
|
8,
且(aˆ,
b)
3
,
则
||
a
b
||
7
.
6.已知a (1,1,4),b (1,2,2),则Pr j a b
3 .
(aˆ, b)
3 .
4
7.设a (3,5,2),b (2,1,4),又a b与z轴垂直,则
, 满足关系式 2
.
二.计算题p3
1.a (2,3,1),b (1,1,3),c (1,2,0),计算 : (1) (a b)c (a c)b; (2) (a b) (b c); (3) (a b) c. 解 (1) (a b)c (a c)b
(1)求 4a 3b c; (2)求 Pr jx; (3)求在y轴上的分量; (4)求的方向余弦; (5)求与平行的单位向量.
解 (1) 4a 3b c
4{3,5,8} 3{2,4,7} {5,1,4}, {13,7,15}.
(2)求 Pr jx 13;
(3) 在y轴上的分量为7 j; (4) 的方向余弦为 13 , 7 , 15 ;
(3)用 0 , 0 , 0表示 , , . 解 (1) || || 3, || || 38, || || 3;
(2) 0 1 (1,1,2), 0
3
0 1 (2, 1, 2);
3
1 (2, 3,5), 38
(3) 3 0, 38 0 , 3 0 .
2.ABC的边BC五等分,分点依次为D1, D2, D3, D4,再把
cos 1 ,cos 2 ,cos 1 ,
2
2
2
, ,cos .
34
3
6.已知向量a i 5 j k与b 3i j k共线,则
15, 1
5
.
解
5 1 , 15, 1 .
31
5
7.设M1(3,5, 3), M2(3, 3,5),且点M使M1M 3MM2,
, 和 ,则a (3,3,3 2).
.
33 4
解 a 6(cos ,cos ,cos ) (3,3,3 2).
334
二.计算题(p1)
二.计算题
1.设 {1,1,1}, {2,3,5}, {2,1,2},
(1)求 || ||,|| ||,|| ||; (2)求 , ,的单位向量 0 , 0 , 0;
解 设A( x, y, z),则AB (2,1,7) ( x, y, z) (4, 4,7),
( x, y, z) (2,1,7) (4,4,7) (2,3,0).
5.向量a i 2 j k与各坐标轴的夹角分别
是
,,
.
343
解 a i 2 j k 2( 1 i 2 j 1 k), 22 2
443 443 443
(5)求与平行的单位向量为 ( 13 , 7 , 15 ).
443 443 443
三.证明题p2
三.设ABC的重心为G,O是坐标原点,OA r1,OB r2,
OC
r3 ,求证:OG
1 3 (r1
r2
r3 ).
C
证明 OG OA AG r1 AG,
OG OB BG r2 BG,
2.同时垂直于a (2,2,1)与b (4,5,3)的单位向量是
1 (1, 2,2) 3
.
3.以a (1,3,1)和b (2,1,3)为两边的平行四边形
的面积S 3 10 .
4.已知a (2,1,1),b=(3,0,1),
则sin(aˆ, b)
1 11 165 2 15 30
.
5.已知
解 设所求向量为 (cosa,cosb,cosc),则
cosa cosb cosc, cos2 a cos2 b cos2 c 1, cosa cosb cosc 1 ,
3
1 (1,1,1).
3
4.向量AB的终点为B(2,1,7),且在x轴, y轴, z轴上的 投影依次为4,4,7,则起点A的坐标是 (2,3,0) .
则OM
(3, 1, 3)
.
解
设M ( x, y, z),则由M1M
3
MM
得
2
( x, y, z) (3,5,3) 3[(3,3,5) ( x, y, z)],
4( x, y, z) (3,5,3) 3(3, 3,5) (12, 4,12),
( x, y, z) (3,1,3).
8.设 || a || 6,且a与x轴, y轴, z轴正向的夹角依次为