八年级数学《两角差的余弦公式》的说课稿

合集下载

两角差的余弦公式 说课稿 教案

两角差的余弦公式 说课稿  教案

两角差的余弦公式一、概述本节课选自人教版必修四,第三章第一节,其中心任务是通过已知的《平面向量》和《三角函数》的知识,探索推导出两角差的余弦公式。

并通过简单的运用,使学生初步理解公式的由来,结构,功能及其运用,分一课时完成。

三角恒等变换处于三角函数与数学变换的结合点和交汇点上,两角差的余弦公式是《三角恒等变换》这一章的基础和出发点,是前面所学三角函数知识的继续与发展,是培养学生推理能力和运算能力的重要素材。

所以,从知识的结构和内容上看都具有承上启下的作用。

二、教学目标分析由于新课程要求要让学生经历数学知识的形成与应用过程,要鼓励学生自主探索合作交流,因此三维目标主要体现在:知识与技能目标:1、理解两角差余弦公式的推导过程;2、掌握两角差的余弦公式并能用之解决某些简单的问题。

过程与方法目标:1、通过对公式的推导,让学生体会所蕴含的类比思想和分类讨论的思想;2、通过对公式的推导提高学生分析问题,解决问题的能力,让学生从公式探索中体会认知新事物时从一般到特殊的思想和规律;情感态度与价值观目标:通过对公式的推导与简单应用,使学生经历数学知识的发现、认知的过程,体验成功探索新知的乐趣,激发学生的求知欲,鼓励学生大胆尝试,从而提高学生的学习兴趣。

(二)教学重、难点重点:两角差的余弦公式及公式的灵活应用;[设计意图]:课标要求要让学生经历数学知识的形成与应用过程;难点:余弦公式的探索,推导和证明;[设计意图]:高一学生逻辑思维能力还比较薄弱,对于公式的证明还存在很大的问题。

三、学习者特征分析1从学生已有的知识与方法看:高一学生已经学习了《平面向量》和《三角函数》的知识,从日常教学所反应的学生特点来看,学生对类比和分类讨论的思想有所体会,但是还是只停留在体会阶段,没有办法真正灵活的运用。

具有了一定归纳总结的能力,但对于一般结论的原因,还是没能用严格的定义证明;2从学生的情感,态度看:高一学生已经厌倦老师的单独说教,希望老师创设便于他们进行观察的环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,小组交流,使他们获得施展自己创造才能的空间。

两角差的余弦公式教学设计()

两角差的余弦公式教学设计()

课题:两角差的余弦公式(第一课时)说课稿运城市盐化中学景锦各位评委老师好:我说课的题目是《两角差的余弦公式》。

下面阐述我对本节课的教学设计。

一、教材内容分析1、介绍内容:《两角差的余弦公式》是新课标教材人教A版数学必修4第三章第一节内容,主要研究两角差的余弦公式的推导及其简单应用。

2、内容分析:两角差的余弦公式是在学生学习了三角函数及平面向量的基础上引入的,同时又是《三角恒等变换》的起始课。

三角恒等变换位于三角函数与数学变换的结合点,是发展学生推理能力和运算能力的重要载体。

在同角关系式的部分,学生初步学习了恒等变换。

在这节对两角差的余弦公式的研究,一方面是对上述知识的应用,同时又是对它的拓展和延伸;另一方面它也为以后学习两角和的余弦,两角和与差的正弦、正切,从而进一步学习二倍角的正弦、余弦、正切等奠定良好基础。

同时又有了三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富,因此本节内容起到承上启下的作用。

3、教学重难点:重点:通过探索得到两角差的余弦公式。

难点:探索过程的组织和适当引导,两角差余弦公式的探究思路的发展。

二、教学目标解析1、能借助单位圆,运用向量的方法,推导出两角差的余弦公式。

2、理解两角差的余弦公式,并能初步应用它们解决简单的三角函数求值问题。

3、经历两角差的余弦公式的的推导过程,体验由简单到复杂的变换思想方法。

进一步体现了向量是近代数学中重要和基本数学概念之一。

4、通过探究两角差的余弦公式,培养学生逻辑推理能力,树立创新意识和应用意识,提高数学素质。

三、教学问题诊断分析:两角差的余弦公式是所有恒等变换公式的核心,是最基本的公式,由它可以推导出所有其它公式。

因此深刻理解两角差的余弦公式的推导是非常重要的。

对两角差的余弦公式的推导,需要良好的三角函数基础,即会作三角函数线。

也需一定的向量基础。

这两点大部分学生已经具备。

但学生正处于初中到高中的过渡阶段,代数运算和推理本身存在着先天不足,因此在第一种方法中分析如何利用几何直观得到()-的值与角α,β的三角函数值的关系时,学生很难想到cosαβ把它们和三角函数线联系起来,为了解决这个问题我在此设计了两个过渡问题: 1、如何构造角α,β,αβ-?2:如何做出角αβ-的余弦线,角α、β的正弦线、余弦线?这样通过这两个具有层次感的问题,学生的思维之门会被悄然打开,不知不觉就从解决旧知中探求到了新知。

《两角差的余弦公式》说课稿

《两角差的余弦公式》说课稿

《两角差的余弦公式》说课稿单位:汕头市潮阳区金玉中学姓名:黄晓武(高中数学)一、教材分析1、教材的地位和作用:《两角差的余弦公式》选自高一数学新教材必修4第3章第1节。

两角差的余弦公式是继本教材第一章《三角函数》和第二章《平面向量》相关知识的延续和拓展,也是本章中用来推导其他公式的基础,对后续内容三角变换、三角函数式的化简、求值等三角函数问题的解决有重要的支撑作用,可以说它在教材中起着承前启后的重要作用。

通过本节课的学习,可以让学生再次感受到数学知识的相互联系,培养逻辑推理的能力,树立创新意识,提高数学素质。

2、教学目标:根据上述教材结构和内容分析,考虑到学生已有的认知心理特征,制定以下教学目标:(一)知识与技能(1)理解两角差的余弦公式的推导;(2)掌握两角差的余弦公式的简单应用。

(二)过程与方法在两角差的余弦公式的推导过程中,进一步体会向量方法的作用、体会分类讨论思想和数形结合思想的应用。

(三)情感、态度与价值观通过主动探究、合作交流,让学生感受到探索的乐趣,在解题中体会数学的严谨性,逐渐形成理性思维。

3、教学重点:本节课的教学重点是两角差的余弦公式的推导以及两角差的余弦公式的简单应用。

4、教学难点:本节课的教学难点是两角差的余弦公式的推导。

下面,为了讲清重点、难点,使学生达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法分析教学过程是师生共同参与的过程,教师要善于启发学生的自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。

根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。

1、从基础出发:利用初中学习过的特殊角的余弦值来展开新课学习,有利于学生在轻松的状态下进入新课的学习。

2、探究法:利用刚学习过的向量知识来推导两角差的余弦公式,让学生在探究的过程中再次感受到学过的知识是很有价值的,可以辅助我们解决未知的问题,也让学生在探究的过程中得到成就感,从而再次增加学生对数学的兴趣。

两角和与差的正弦、余弦、正切公式说课稿 教案

两角和与差的正弦、余弦、正切公式说课稿 教案

两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+.()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手) ()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-. 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 解:因为3sin ,5αα=-是第四象限角,得4cos 5α===, 3sin 35tan 4cos 45ααα-===- , 于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=⨯--= ⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭ 两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值:(1)、sin 72cos 42cos72sin 42-;(2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象. (1)、()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==; (2)、()cos 20cos70sin 20sin 70cos 2070cos900-=+==;(3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.例3x x -解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 3022x x x x x x x ⎫-=-=-=-⎪⎪⎭思考:是怎么得到的?=分别等于12和2的.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.。

两角差的余弦公式 说课稿 教案

两角差的余弦公式 说课稿  教案

两角差的余弦公式教学设计说明一、教材地位及其作用恒等变换在数学中扮演着重要的角色,它的主要作用是化简.在数学中通过恒等变换,可以把复杂的关系用简单的形式表示出来.三角恒等变换在后续学习中具有重要的作用.而以本节课为起始课的第三章内容需要学习三角函数运算中蕴涵的恒等关系.由于和、差、倍之间存在的联系,和角、差角、倍角的三角函数之间必然存在紧密的内在联系,因而需要推出一个公式作为基础。

由于三角恒等变换的内容与三角函数没有直接的关系,因此现行的课改教材(人教A 版)安排学生学完三角函数后,先学习了平面向量,因此选择了运用向量方法推导公式βαβαβαsin sin cos cos )cos(+=-作为建立其它公式的基础,使得公式的得出成为一个纯粹的代数运算过程,降低了思考难度。

本节课的作用承前启后,非常重要。

二、学情分析与教学目标学生在前两章已经学习了同角三角函数的基本关系、诱导公式及平面向量,为探究两角差的余弦公式建立了良好的基础。

但学生的逻辑推理能力有限,要发现并证明公式C (α-β)有一定的难度,教师可引导学生通过合作交流,体会向量法的作用,探索两角差的余弦公式。

由于学生初次使用恒等变换去推理解答问题,分析问题的能力和逻辑推理的能力都有所欠缺,并且面对新问题如何运用已学知识和方法去解决存有困惑.但同时学生在学习新的一章知识时又都会充满好奇心,这对教学是非常有利的。

根据学生的认知结构和心理特点,我制定了本课的学习目标如下:1.知识与技能(1)通过对两角差的余弦公式的推导,使学生体会应用向量解决数学问题的技能。

(2)通过公式的灵活应用,使学生掌握两角差的余弦公式的作用。

2.过程与方法(1)利用两角差的余弦公式推导过程,使学生体会向量在代数几何方面运用的方式方法。

(2)在公式的灵活运用过程中进一步培养学生分类讨论思想、转化和化归思想、数形结合思想。

3.情感态度与价值观通过引导学生主动参与、大胆猜想独立探索、激发学生学习兴趣,形成探究、证明、应用的获取知识的方式。

《两角和与差的余弦》 说课稿

《两角和与差的余弦》 说课稿

《两角和与差的余弦》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《两角和与差的余弦》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析1、教材的地位和作用“两角和与差的余弦”是三角函数中的重要内容,它是后续学习两角和与差的正弦、正切以及二倍角公式的基础,在三角函数的化简、求值、证明中有着广泛的应用。

通过对这一内容的学习,能够进一步加深学生对三角函数的理解,提高学生的运算能力和逻辑推理能力。

2、教材内容的处理教材通过单位圆中的三角函数线以及向量的数量积两种方法来推导两角和与差的余弦公式。

在教学过程中,我将引导学生从不同的角度去思考问题,体会数学知识之间的内在联系,培养学生的创新意识和探究精神。

二、学情分析1、知识基础学生已经掌握了三角函数的基本定义、诱导公式以及向量的基本运算等知识,具备了一定的数学思维能力和运算能力。

2、学习能力高二的学生已经具备了一定的自主学习能力和探究能力,但对于抽象的数学公式的推导和理解还存在一定的困难。

3、心理特点学生对新鲜事物充满好奇心,喜欢探索未知的领域,但在学习过程中容易出现畏难情绪,需要教师给予适当的引导和鼓励。

三、教学目标1、知识与技能目标(1)理解两角和与差的余弦公式的推导过程。

(2)掌握两角和与差的余弦公式,并能熟练运用公式进行化简、求值和证明。

2、过程与方法目标(1)通过对公式的推导,培养学生的逻辑推理能力和创新意识。

(2)通过公式的应用,提高学生的运算能力和分析问题、解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的信心。

(2)培养学生严谨的治学态度和勇于探索的精神。

四、教学重难点1、教学重点两角和与差的余弦公式的推导和应用。

2、教学难点两角和与差的余弦公式的推导过程,特别是向量法的推导。

五、教法与学法1、教法根据本节课的教学内容和学生的实际情况,我将采用启发式教学法、探究式教学法和讲练结合法相结合的教学方法。

《两角差的余弦公式教案》及说明

《两角差的余弦公式教案》及说明
cos 120 cos 30 sin 120 sin 30
依据特殊情 况进行猜想往往 是人们探索问题
1 2
3 2
3 2
1 2
的第一步.
学生再举特例进行验证. (各抒己见) 利用几何画板,对更多的情况加以验证。 三、提出猜想: cos( ) cos cos sin sin 师:要让猜想更有说服力,我们还要进行理论证明. 四、理论证明: 引导探究:研究三角函数问题,我们常用的一种方法就是利用单位圆, 在单位圆中,角的余弦值可用余弦线来表示. 我们先来讨论最简单的情况: 鼓励学生对 各种可能的情况 进行探索,培养 他们的交流合作 意识,在探索的 过程中获得成就 感.

2
, 则: cos( ) cos(

2
) sin
分析:可见,我们的公式的形式应该与 cos cos 和sin sin 均有关 题、挑战困难的 系?他们之间存在怎样的代数关系呢?会不会是 “+” 、 “-” 、 “” 、 “÷” ? 勇气. 请同学们根据下表中数据,相互交流讨论,提出你的猜想. 用具体值检验猜想的合理性. 令 120, 30 则 cos( ) cos(120 30) cos90 = 0 三角函数 三角函数值
引入:同学们,在第一章我们学习了同角三角函数式的变换,今天我们
将一起探究一种包含两个角的三角函数式的变换: 两角差的余弦公式。 先让 入,体现数学与 我们走入生活,看一个例子: 实际生活的联
例: 如图所示,一个斜坡的高为 6m,斜坡的水平长度为 8m,已知作用在物 系,增强学生的 体上的力 F 与水平方向的夹角为 60°,且大小为 10N ,在力 F 的作用下物体 应用意识,激发 沿斜坡运动了3m,求力 F 作用在物体上的功 W. 解: W = F S F S cos(60 ) = 30 cos(60 ) . 提问:1、解决问题需要求什么? 2、你能找到哪些与 有关的条件?

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式教案教案标题:两角差的余弦公式教案教案目标:1. 学生能够理解和运用两角差的余弦公式。

2. 学生能够解决与两角差的余弦公式相关的问题。

3. 学生能够应用两角差的余弦公式解决实际问题。

教学重点:1. 两角差的余弦公式的推导和理解。

2. 运用两角差的余弦公式计算角度的大小。

3. 运用两角差的余弦公式解决实际问题。

教学准备:1. 教师准备白板、黑板笔、投影仪等教学工具。

2. 学生准备教科书、笔记本和计算器。

教学过程:步骤一:导入(5分钟)教师通过引入一个实际问题,例如“在三角形ABC中,已知边AB和边AC的长度分别为5cm和8cm,夹角BAC为60度,求角度CAB的大小。

”,引发学生对两角差的余弦公式的兴趣。

步骤二:讲解(15分钟)教师通过黑板或投影仪展示两角差的余弦公式的推导过程,并解释每一步的含义和原理。

教师可以使用几何图形和代数表达式相结合的方式进行讲解,以帮助学生更好地理解公式的意义。

步骤三:示范(10分钟)教师通过几个简单的例题演示如何使用两角差的余弦公式计算角度的大小。

教师可以逐步引导学生进行推导和计算过程,注重解题思路和方法的讲解。

步骤四:练习(15分钟)学生进行个人或小组练习,解决与两角差的余弦公式相关的练习题。

教师可以提供一些不同难度的题目,以满足不同学生的需求。

教师在练习过程中积极引导学生,及时纠正他们的错误并解答疑惑。

步骤五:拓展(10分钟)教师提供一些与两角差的余弦公式相关的实际问题,例如航空导航、建筑设计等,鼓励学生应用所学知识解决问题。

教师可以组织学生进行讨论或小组合作,培养学生的解决问题的能力和团队合作精神。

步骤六:总结(5分钟)教师对本节课的内容进行总结,并强调两角差的余弦公式的重要性和应用价值。

教师鼓励学生将所学知识应用到实际生活中,培养他们的数学思维和解决问题的能力。

步骤七:作业布置(5分钟)教师布置相关的作业,要求学生运用两角差的余弦公式解决一些实际问题,并在下节课前完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《两角差的余弦公式》的说课稿
八年级数学《两角差的余弦公式》的说课稿
一、教材分析
“两角差的余弦公式”是课标教材人教版必修4第三章《三角恒等变换》第一节第一课时的内容。

学生已经学习了三角函数的基本关系和诱导公式以及平面向量,在此基础上,本章将学习任意两个角和、差的三角函数式的变换。

作为本章的第一节课,重点是引导学生通过合作、交流,探索两角差的余弦公式,为后续简单的恒等变换的学习打好基础。

由于两角差的余弦公式推导方法有很多,书本上出现两种证明方法——三角函数线法和向量法。

课本中丰富的生活实例为学生用数学的眼光看待生活,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。

二、学情分析
学生在第一章已经学习了三角函数的基本关系和诱导公式以及平面向量,但只对有特殊关系的两个角的三角函数关系通过诱导公式变换有一定的了解。

对任意两角和、差的三角函数知之甚少。

本课时面对的学生是高一年级的学生,学生对探索未知世界有主动意识,对新知识充满探求的渴望,但应用已有知识解决问题的能力还处在初期,需进一步提高。

三、教法学法分析
(一)、说教法
基于新课标的理念中“学生主体性和教师主导性”的原则以及本班学生的实际情况,我采取如下教学方法:
1、通过学生熟悉的实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲,调动学生的主体参与的积极性。

2、突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,在鼓励学生主体参与、乐于探究、勤于思考公式推导的同时,充分发挥教师的主导作用。

3、采用投影仪、多媒体等现代教学手段,增强教学简易性和直观性。

4、通过有梯度的练习、变式训练、分层作业,学生对知识掌握逐步提高。

(二)、说学法
从学生已有的认知水平、认知能力出发,经过观察分析、自主探究、推导证明、归纳总结等环节,理解公式的推导过程,通过有梯度的练习、变式训练、分层作业,学生逐步提高对知识掌握。

四、教学目标
(根据新课程标准和本节知识的特点,以及本班学生的实际情况,确立以下教学目标)
(一)、知识目标
1、理解两角差的余弦公式的推导过程,并会利用两角差的余弦公式解决简单问题。

(二)、能力目标
通过利用同角三角函数变换及向量推导两角差的余弦公式,学生体会利用已有知识解决问题的一般方法,提高学生分析问题和解决问题的能力。

(三)、情感目标
使学生经历数学知识的发现、探索和证明的过程,体验成功探索新知的乐趣,激发学生提出问题的意识以及努力分析问题、解决问题的激情。

五、教学重难点
(由于本节课主要内容是公式的推导,所以教学重难点如下:)
教学重点:两角差的余弦公式的推导过程及简单应用;
教学难点:两角差的余弦公式的推导。

六、教学流程
七、教学过程
(一)创设情境,导入新课
问题1:任意角的三角函数是如何定义的?
旧知,角的终边与单位圆交于是两角差的余弦公式推导的基础)(从实际问题出发,引导学生思考,从任意角的三角函数定义考虑能否求出,,从而引入本节课的课题----两角差的余弦公式)问题2:我们在初中时就知道一些特殊角的三角函数值。

那么大家验证一下,=吗?,下面我们就一起探究两角差的余弦公式。

(引导学生利用特殊角检验,产生认知冲突,从而激发学生探究两角差的余弦公式的.兴趣。


(二)探索公式,建构新知
(由于两角差的余弦公式推导方法有很多,本节课突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,书本上出现三角函数线法留给学生参照书本课下探究。

公式得出后,生成点的动画,让学生进一步感知两角差的余弦公式对任意角均成立,并启发学生观察公式的特征。


方法一(两点间距离公式):如图,角的终边与单位圆交于;角的终边与单位圆交于;角的终边与单位圆交于;则:
所以:。

方法二(向量法):在平面直角坐标系xOy内作单位圆O,,它们的终边与单位圆O的交点分别为A,B,则由向量数量积的坐标表示,有:向量的夹角就是,由数量积的定义,有于是
由于我们前面的推导均是在,且的条件下进行的,因此(1)式还不具备一般性。

若(1)式是否依然成立呢?
当时,设与的夹角为,则
另一方面于是所以
也有
方法三(学生自主探究三角函数线法)
(三)例题讲解,知识迁移
例1化简求值:
(通过例1中有梯度的练习,学生能够实现对公式的正向和逆向的简单应用.求同时求出引例中桥的长度,培养学生应用数学的能力)
(变式的教学中引导学生使用两种方法:
方法一:从公式本身思考
方法二:引导学生发现
提高学生应用知识的能力和逻辑思维能力)
(四)开放小结,归纳提升
小结:本节课你学到了那些知识,有什么样的心得体会?
口诀:余余正正异相连
(引导学生从公式内容和推导方法两个方面进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。

开放式小结,启发灵活,以问促思,能够较全面的帮助学生归纳知识,形成技能。


(五)分层作业,巩固提高(必做题)P127,练习1,3,4
(选做题同学可以思考:能否用直角三角形中的三角函数关系证明两角差的余弦公式?课后作业设置有必做题和选做题,使不同程度的学生都得到能力的提升,符合因材施教的教学规律)
八、板书设计
九、教后反思。

相关文档
最新文档