高等数学:11-9多重积分应用

合集下载

高等数学定积分及重积分的方法与技巧

高等数学定积分及重积分的方法与技巧

高等数学定积分及重积分的方法与技巧第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限. )0(21lim 1>++++∞→a nn a a a a n . 解 原式=∫∑=⋅=∞→1011lim a ani n x n n i dx =aa x a +=++11111. 例2 求极限 ∫+∞→121lim xx n n dx .解法1 由10≤≤x ,知nn x x x ≤+≤210,于是∫+≤1210x x n ∫≤1n x dx dx .而∫10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得∫+∞→1021lim xx n n dx =0. 解法2 利用广义积分中值定理()()x g x f ba ∫()()∫=b ax g f dx x dx (其中()x g 在区间[]b a ,上不变号), ().1011112102≤≤+=+∫∫n n nn dx x dx xx x x由于11102≤+≤nx,即211nx+有界,()∞→→+=∫n n dx x n01110,故∫+∞→1021lim x x n n dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R −型可作相应变换.如对积分()∫++3122112xxdx,可设t x tan =;对积分()02202>−∫a dx x ax x a,由于()2222a x a x ax −−=−,可设t a a x sin =−.对积分dx e x ∫−−2ln 021,可设.sin t e x =−(2)()0,cos sin cos sin 2≠++=∫d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]′,可求出22dc bdac A ++=,22dc adbc B +−=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+′++=∫.ln2dc B A +=π例3 求定积分()dx x x x ∫−1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ∫−1211arcsin 2tx x t ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==−∫∫.1632π=解法2 ()dx x x x∫−1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=∫u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)∫+=2031cos sin sin πx x xdx I , dx xx xI ∫+=2032cos sin cos π;(2).1cos 226dx e xx ∫−−+ππ解 (1)∫+=2031cos sin sin πxx xdx I)(sin cos cos 2023du u u uu x −+−=∫ππ=.sin cos cos 223∫=+πI dx xx x故dx xx xx I I ∫++==203321cos sin cos sin 21π=()41cos cos sin sin 212022−=+−∫ππdx x x x x . (2)=I .1cos 226dx e x x ∫−−+ππ()dxe xdu e uu x x u ∫∫−−+=−+−=2262261cos 1cos ππππ+++=∫∫−−2222661cos 1cos 21ππππdx e x dx e x e I x x x.3252214365cos cos 21206226πππππ=×××===∫∫−xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n∫∫=2020cos sin ππ()()()()()()=⋅×−×−−=×−×−−=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。

高等数学-重积分PPT课件

高等数学-重积分PPT课件

重积分的性质
线性性质
若α、β为常数,则∫[αf+βg]=α∫f+β∫g。
积分区域的可加性
若D1、D2是两个不相交的区域,则∫[D1∪D2]f=∫[D1]f+∫[D2]f。
保序性
若在D上,f(x,y)≤g(x,y),则∫[D]f≤∫[D]g。
绝对可积性
若f在D上可积,则|f|在D上也可积,且|∫[D]f|≤∫[D]|f|。
课件内容与结构
课件内容
本课件主要介绍重积分的基本概念、性质、计算方法和应用实例,包括二重积分和三重积分的定义、性质、计算 方法和应用等。
课件结构
课件按照“概念引入-性质探讨-计算方法-应用实例”的逻辑顺序进行编排,层次分明,条理清晰,便于学生理解 和掌握。
02
重积分的定义与性质
重积分的定义
二重积分的定义
计算消费者剩余和生产者剩余
02 重积分可用于计算消费者剩余和生产者剩余,通过对
需求函数和供给函数进行积分得到。
计算社会福利
03
重积分可用于计算社会福利,通过对消费者剩余和生
产者剩余进行加总得到。
06
重积分的数值计算方法
矩形法则与梯形法则
矩形法则
将积分区间划分为若干个小矩形,每个小矩形的面积近似等于其底边长度与高的乘积,将所有小矩形 的面积相加得到积分的近似值。
计算转动惯量
重积分可用于计算物体绕某轴的 转动惯量,通过对物体质量分布 和到轴距离的平方进行积分得到。
计算引力
重积分可用于计算两个物体之间 的引力,通过对两物体间的质量 分布和距离进行积分得到。
在工程学中的应用
计算面积和体积
重积分可用于计算平面图形或立体图形的面积和体积,通过对图形 的边界函数进行积分得到。

高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析例1 填空(1)根据二重积分的几何意义,⎰⎰--Dy x y x d d R222= 。

(其中{}222),(Ry x y x D ≤+=)(2)累次积分⎰⎰x xy y x f x d ),(d 10交换积分次序后,得到的积分为 。

(3)已知积分区域D x y x y =≤+≤{(,),}111,二重积分f x y x y D(,)d d ⎰⎰在直角坐标系下化为累次积分的结果是 。

解(1)由二重积分的几何意义,⎰⎰--Dy x y x d d R222表示球心在圆点,半径为R 的上半球体的体积,故为332R π。

应该填写:332R π。

(2)由已知的累次积分,得积分区域为⎩⎨⎧≤≤≤≤xy x x 10,若变换积分次序,即先积x 后积y ,则积分变量y 的上、下限必须是常量,而积分变量x 的积分上、下限必须是常量或是y 的函数,因此积分区域应表为⎩⎨⎧≤≤≤≤102y y x y ,于是交换后的积分为⎰⎰yyx y x f y 2d ),(d 10。

应该填写:⎰⎰y yx y x f y 2d ),(d 10。

(3)由已知的积分区域为D x y x y =≤+≤{(,),}111可知区域D 满足联立不等式组⎩⎨⎧≤+≤-≤≤-11111y x ,即而解得⎩⎨⎧≤≤-≤≤-0211y x ,因为两个积分变量的上、下限都是常量,所以可随意选择积分的顺序,若先积x 后积y ,则应填⎰⎰--0211d ),(d x y x f y ,反之应填d d x f x y y (,)--⎰⎰2011。

应该填写:d d x f x y y (,)--⎰⎰2011或⎰⎰--0211d ),(d x y x f y例2 单项选择 (1)二重积分xx y x y 2d d 1422≤+≤⎰⎰可表达为累次积分( )。

A. d d θθπr r 321202cos ⎰⎰; B.r r 321202d d cos θθπ⎰⎰;C.d d 2x x y xx ----⎰⎰442222; D.d d 2y x x yy ----⎰⎰111122(2)由曲面z x y =--422和z =0及柱面x y221+=所围的体积是( )。

高等数学 课件 PPT 第九章 重积分

高等数学 课件 PPT 第九章  重积分
分析
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4

高等数学重庆大学版教材答案

高等数学重庆大学版教材答案

高等数学重庆大学版教材答案第一章:极限与连续1.1 极限的概念与性质1.2 极限存在准则及常用极限第二章:函数与导数2.1 函数的概念与性质2.2 一次函数与多项式函数2.3 指数函数与对数函数2.4 三角函数与反三角函数2.5 导数的概念及其几何意义第三章:微分学应用3.1 微分学中的中值定理3.2 泰勒公式与函数的凹凸性3.3 曲线的渐近线与曲率第四章:不定积分与定积分4.1 不定积分的概念与性质4.2 基本积分公式及其应用4.3 定积分的概念与性质4.4 定积分的计算方法第五章:常微分方程5.1 常微分方程的基本概念与解法5.2 一阶线性常微分方程5.3 高阶常系数线性微分方程第六章:多元函数微分学6.1 多元函数的概念与性质6.2 多元函数的偏导数6.3 多元函数的全微分与全导数第七章:多元函数积分学7.1 二重积分及其计算方法7.2 三重积分及其计算方法7.3 曲线与曲面的面积与曲线积分第八章:无穷级数与幂级数8.1 数项级数的概念与性质8.2 收敛级数判别法8.3 幂级数及其收敛半径第九章:向量代数与空间解析几何9.1 向量的概念与性质9.2 空间几何与平面方程第十章:连续性与一元函数微积分应用10.1 函数连续性与间断点10.2 一元函数微积分应用第十一章:二重积分与曲线积分应用11.1 二重积分应用11.2 曲线积分应用第十二章:无穷级数与多元函数微积分应用12.1 数项级数的应用12.2 多元函数微积分的应用总结:以上为高等数学重庆大学版教材的答案提纲。

希望这个提纲能够帮助你更好地学习和理解高等数学的知识。

在实际讲授过程中,还请参考教材详细内容和课堂教学,确保准确性和全面性。

祝你学习进步!。

高等数学-重积分的 计算 及应用

高等数学-重积分的 计算 及应用

D
例如计算: I x2d
D:
D
I y2d
D
I 1
(x2 y2 )d
a4
2D
4
14
x2 y2 a2
例6
d
D (a2 x2 y2 )3/ 2
其中 D : 0 x a ; 0 y a
y yx
a
解:如图D是关于直线 y x 对称。
D2
D1
r a
cos
原式 2
D1
o 4
D1 D2 D
x
连续, 所以
6
D (x y) d D2 (x y) d D1 (x y) d
4
dy
6
12 y
y2 (x y)d x
2
dy
4
4 y
y2 (x y)d x
2
2
54311 15
9
例2. 计算 x2 y2 4 d , 其中 D : x2 y2 9
F(0) 0
利用洛必达法则与导数定义,得
lim
t0
F
(t ) t4
lim
t 0
4 f (t) 4 t3
t
2
lim
t 0
f (t) t
f
(0)
f (0)
33
f (x, y, z) d v
x
D
z2 (x, y) f (x, y, z)dz dxdy
z1( x, y)
记作 dxdy z2 (x, y) f (x, y, z)dz
D
z1( x, y)
20
y D
dxd y
微元线密度≈
f (x, y, z) dxdy
方法2. 截面法 (“先二后一”)

高等数学重积分总结

高等数学重积分总结

高等数学重积分总结重积分是高等数学中的一个重要章节,包括了二重积分和三重积分。

本文将对重积分的相关概念、性质、计算方法等进行总结。

一、重积分的定义和性质重积分可以看作是对多元函数在一个区域内的积分,其中二重积分和三重积分分别对应了二元函数和三元函数。

对于一个区域D,其可以用极限值对角线的方法划分成n个微小的小区域Di,其中i的取值范围为1到n。

设函数f(x,y)在小区域Di上的面积为S,且S趋近于0,则重积分可以表示为:$$\iint_D f(x,y)dxdy=\lim_{\substack{n,m\to \infty}} \sum_{i=1}^n\sum_{j=1}^m f(x_{ij},y_{ij})\Delta S$$其中$\Delta S$为小区域Di的面积,$(x_{ij},y_{ij})$为小区域Di的任意一点。

与一元函数的积分类似,重积分也具有线性性、可加性、区间可减性和保号性等数学特征。

同时,由于重积分的定义,其也满足如下性质:1.积分与被积函数与积分区域的连续性,即对于在区域D上连续的函数f(x,y),有:2.积分与区域的可加性,即对于一个区域D可以分割成两个没有公共点的子区间,则:同时还有极坐标和柱面坐标下的重积分公式:对于极坐标,有:$$\iint_D f(x,y)dxdy=\iint_D f(rcos\theta,rsin\theta)rdrd\theta$$$$\iiint_W f(x,y,z)dxdydz=\int_a^b\int_{\varphi_1}^{\varphi_2}\int_{\rho_1}^{\rho_2} f(\rho cos\varphi,\rho sin\varphi, z)\rho d\rho d\varphi dz$$其中W为三维区域,$(\rho,\varphi,z)$为柱面坐标系。

三、重积分的计算方法对于重积分的具体计算,常用的有以下几种方法:1.累次积分法累次积分法就是将多重积分化为多个一元积分,以二重积分为例,若:$$\iint_D f(x,y)dxdy$$其中D为一个平面区域,那么可以先将y作为常数,对x进行积分,再将x作为常数,对y积分,即可得到:其中a、b、c、d为D中x、y坐标的极值。

多重积分的应用和计算方法

多重积分的应用和计算方法

多重积分的应用和计算方法多重积分是高等数学中的一个重要分支,它的应用范围涵盖了众多学科领域。

多重积分的计算方法和应用十分重要,下面我们就来详细讲述多重积分的应用和计算方法。

一、多重积分的应用1.立体几何多重积分能够用来解决与立体几何相关的问题,如体积、质心、惯性矩、转移积分等问题。

例如,当我们要求一个不规则物体的体积时,就需要对该物体进行三重积分。

2.统计多重积分在统计中也有广泛应用,如求解双变量统计分布函数中的相关系数,以及用于分析双变量分布密度函数等问题。

3.物理学多重积分在物理学中的应用也十分广泛,例如计算含密度分布的碰撞情形、电场和磁场的建模等。

4.金融学多重积分在金融学中的应用主要集中在随机过程建模中,如模拟股票价格、债券价格等,解决了很多股票价格计算的问题。

二、多重积分的计算方法1.重积分的概念在高维空间中,重积分的概念是对于一个有限的函数f(x1,x2,...,xn),我们可以定义在一个n维矩形区域R上的积分,那么该积分的值就是重积分。

重积分可以看作是多个积分的组合,其中x1到xn表示积分变量,而dx1、dx2等则代表积分变量相应的微元。

这样,通过多个积分的嵌套计算,我们就能算出具体的重积分值。

2.变换积分公式变换积分公式是计算多重积分的重要工具。

它被用来处理一个积分区域的坐标系的变换。

假设F(u1,u2)是一个单变量函数,而(x,y)和(u,v)分别是两种坐标系中的坐标,那么对于某个区域R,它可以被写成一对(u,v)值的函数:x = x(u,v) y = y(u,v)在这种情况下,我们可以把在(x,y)坐标系下的积分转化为在(u,v)坐标系下的积分,具体而言,计算过程如下:$\int\int_Rf(x,y)dxdy = \int\int_Df(x(u,v),y(u,v))|J(u,v)|dudv$在这里,J(u,v)被称为Jacobi矩阵,它是变换的导数。

这个公式就是变换积分公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常数时, 得D 的形心坐标:
M x — 对 x 轴的
静矩
M y — 对 y 轴的
静矩
x D x dxdy , y D ydxdy (A 为 D 的面积)
A
A
上页 下页 返回 结束
例1. 求位于两圆

的质心.
解: 利用对称性可知 x 0

y
1 A
D
yd xd y
1
3
D
r2
sin
drd
之间均匀薄片
例. 求半径为R 的均匀半球壳 的重心.
解: 设 的方程为
利用对称性可知重心的坐标 x y 0 ,而
用球坐标
z R cos d S R2 sin d d
R3
2
d
2 sin cos d
0
0
2
R d
2 sin d
0
0
上页 下页 返回 结束
二、物体的转动惯量
因质点系的转动惯量等于各质点的转动惯量之和, 故
0
sin
2
d 0ar3 d r
半圆薄片的质量 M 1 a2
2 1 M a2
4
y
D o ax
上页 下页 返回 结束
例4.求均匀球体对于过球心的一条轴 l 的转动惯量.
解: 取球心为原点, z 轴为 l 轴, 设球
z
所占域为

l
(x2 y2 ) dxdydz (用球坐标) x o
y
( r 2 sin2 cos2 r 2 sin2 sin2 )
y 4
C2 D
ox
1
sin d
4sin r 2 d r 56 sin4 d
3 0
2 sin
9 0
56 2
9
2 sin 4
0
d
56 2
9
3 4
1
22
7 3
上页 下页 返回 结束
例. L为球面 x2 y2 z2 R2在第一卦限与三个坐标
面的交线 , 求其形心 .
z
解: 如图所示 , 交线长度为
则转动惯量的表达式是二重积分.
y2
y
x2
D
o
Io D (x2 y2 ) (x, y) dxdy
x
上页 下页 返回 结束
例3. 求半径为 a 的均匀半圆薄片对其直径
的转动惯量.
解:
建立坐标系如图,
D
:
x
2
y2
a2
y0
a
I x D y2 d x d y D r3 sin2 d r d
r 2 sin drd d
2
d
sin3 d
ar4 dr
0
0
0
2 2 1 3
球体的质量
M 4a3
3
上页 下页 返回 结束
例. 计算半径为 R ,中心角为 的圆弧 L 对于它的对
称轴的转动惯量I (设线密度 = 1).
解: 建立坐标系如图, 则
y
I y2 ds L
L
:
xy
R cos R sin
V
V
z zd x d y d z V
V d x d y d z为的体积
上页 下页 返回 结束
若物体为占有xoy 面上区域 D 的平面薄片, 其面密度 则它的质心坐标为
x D x (x, y)dxdy M y D (x, y)dxdy M
y D y (x, y)dxdy M x D (x, y)dxdy M
连续体的转动惯量可用积分计算.
设物体占有空间区域 , 有连续分布的密度函数
(x, y, z). 该物体位于(x , y , z) 处的微元
z
对 z 轴的转动惯量为
d I z (x2 y2 ) (x, y, z) d v
因此物体 对 z 轴 的转动惯量:
o
y
I z (x2 y2 ) (x, y, z) dxdydz x
R L2
l 3 ds 3 2 R 3 R
L1
4
2
由对称性 , 形心坐标为
L3 o R
R y
z y x 1
x ds
l L1 L2 L3
x L1
1 x ds x ds x ds 2 x ds
l L1
L2
L3
Байду номын сангаасl L1
2
2
R cos
Rd
4R
l0
3
上页 下页 返回 结束
zk mk

x
k 1 n
,
y
k 1 n
,
z
k 1 n
mk
mk
mk
k 1
k 1
k 1
设物体占有空间域 , 有连续密度函数

采用 “大化小, 常代变, 近似和, 取极限” 可导出其质心
公式 , 即:
上页 下页 返回 结束
将 分成 n 小块, 在第 k 块上任取一点
将第 k 块看作质量集中于点
上页 下页 返回 结束
类似可得: 对 x 轴的转动惯量
I x ( y2 z2 ) (x, y, z) dxdydz
对 y 轴的转动惯量
(x2 z2)
对原点的转动惯量
Io (x2 y2 z2 ) (x, y, z) dxdydz
上页 下页 返回 结束
如果物体是平面薄片, 面密度为 (x, y), (x, y) D
的质点, 此质点
系的质心坐标就近似该物体的质心坐标. 例如,
n
k (k ,k , k )vk
x
k 1 n
(k ,k , k )vk
k 1
令各小区域的最大直径 0,即得
x x (x, y, z) d x d y d z (x, y, z) d x d y d z
上页 下页 返回 结束
d Fy
G
(x, y, r3
z) y dv
d Fz
G
(
x, r
y,
3
z)z
dv
在上积分即得各引力分量:
z dv
dF r y x
r x2 y2 z2
G 为引力常数
上页 下页 返回 结束
Fx
第9节 多元函数积分的物理应用
一、物体的质心 二、物体的转动惯量 三、物体的引力
上页 下页 返回 结束
一、物体的质心
设空间有n个质点, 分别位于 (xk , yk , zk ) , 其质量分别
为 mk ( k 1, 2, , n ) ,由力学知, 该质点系的质心坐标
n
xk mk
n
yk mk
n
同理可得 y y (x, y, z) d x d y d z (x, y, z) d x d y d z
z z (x, y, z) d x d y d z (x, y, z) d x d y d z
当 (x, y, z) 常数时, 则得形心坐标:
x xd x d y d z , y yd x d y d z ,
o ( )
L
Rx
R2 sin2 (R sin )2 (R cos )2 d
R3 sin2
d
2R3
2
sin 2
4
0
R3( sin cos )
上页 下页 返回 结束
三、物体的引力
设物体占有空间区域 , 其密度函数 物体对位于原点的单位质量质点的引力 利用元素法, 引力元素在三坐标轴上的投影分别为
相关文档
最新文档