高等数学第六章定积分的应用

合集下载

高等数学(同济大学第五版)第六章 定积分的应用

高等数学(同济大学第五版)第六章 定积分的应用

习题6−21. 求图6−21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]12[)(12231=−=−=x x dx x x A . 2300∫ 解法一x 轴上的投影区间为[0, 1]. 所求的面积为0 画斜线部分在y 轴上的区间为[1, e ]. 所求的面积为(2)画斜线部分在 1|)()(11=−=−=∫x x e ex dx e e A ,0 解法二投影 1)1(|ln ln =−−=−==∫∫e e dy y y ydy A e e e . 111(3)解 画斜线部分在x 轴上的投影区间为[−3, 1]. 所求的面积为332]2)3[(132=−−=∫−dx x x A . (4)解 [−1, 3]. 所求的面积为画斜线部分在x 轴上的投影区间为 332|)313()32(3132312=−+=−+=−−∫x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)21222228(2020020221−−=−−=−−=∫∫∫∫dx x dx x dx x dx x x A 323cos 16402+=−=∫πtdt . 48π346)212−=−ππS . 2(2=A (2)xy =1与直线y =x 及x =2; 解:所求的面积为∫=A −=−202ln 23)1(dx x x . e x , y =e −x 与直线x =1;解:所求的 (3) y =面积为∫−+=−=−1021)(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y −===∫ln ln ln ln3. 求抛物线y =−x 2+4x −3及其在点(0, −3)和(3, 0)处的切线所围成的图形的面积. 解: 过点(0, −3)处的切线的斜率为4, 切线方程为y =4(x −3)., 切线方程为y =−2x +6.y ′=−2 x +4.过点(3, 0)处的切线的斜率为−2两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[2302332=−+−−+−+−+−−−=∫∫dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y ′=2p .在点处, 1),2(==′p p y p y ,),2(p p 法线的斜率k =−1, 法线的方程为)2(p x p y −−=−, 即y p x −=23.),2(p p 求得法线与抛物线的两个交点为和)3,29(p p −. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =−−=−−=−−∫. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为∫∫==2221πθθ −202cos 4)cos 2(2ππθθd a d a A =πa 2. a cos 3t , y =a sin 3t ;解2(2)x =所求的面积为∫∫∫===204220330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=−=∫∫.(3)ρ=2 解所求的面积为a (2+cos θ ) 2202220218)cos cos 44(2)]cos 2(221a d a d a A πθθθθθππ=++=+=∫∫. 6. 求由摆线x =a (t −sin t ), y =a (1−cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为∫∫∫−=−−==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++−=∫. 7. 求对数螺线ρ=ae θ(−π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(42)(2ππ−−∫∫e d e a d ae 11222222πππθπθθθ−−===e a . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为A)3,23(πA , )3,23(π−B . 由对称性, 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=∫∫d d A . (2)θρsin 2=及解θρ2cos 2=.6,22(π.曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M 所求的面积为 2316]2cos 21)sin 2(21[24602−+=+=∫∫πθθθθπππd d A .于曲线e x 下方, 9. 求位y =该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有x y e y kx y x x 00)(0000, , y 0=e , k =e .所求面 ⎪⎩⎪⎨⎧==′==ke 求得x 0=1积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+−=−∫∫. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=. 显然当2πα=时1=0; 当, A 2πα1因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 <时, A >0. 20300383822a x a dx ax A a a ===∫. 1. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算得旋转体的体积.1所 解 所得旋转体的体积为20022224000x a axdx dx y V xx x πππ====∫ 00x a π∫. 12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得转所得旋转体的体积为两个旋转体的体积.解 绕x 轴旋πππ712871207206202====∫∫x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为∫∫−=−⋅⋅=803280223282dy y dy x V y ππππ ππ56453328035=−=y . 所围成的图形, 绕x 轴旋, 计算所得旋转体的体积. 解 由对称性, 所求旋转体的体积为13. 把星形线转3/23/23/2a y x =+ dx x a dx y V a a ∫=2222π∫−=0333)(2π 0 3024224210532)33(2a dx x x a x a a a π=−+−=∫.14. 用积分方法证明图中球缺的体积为)(2H R H V −=π.3证明 ∫∫−−−==R H R RH R dy y R dy y x V )()(222ππ)3()1(32y y R R H R =−=−ππ 32H R H −.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的体积:(1的旋转体)2x y =,2y x =, 绕y 轴; πππ)(22=−=∫∫dy y ydy V 解 103)5121(10521010=−y y . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ∫∫∫===102ch udu 302202 ch )(a x dx a x a dx x y V a aπππ令 au1022)()2(u u u du e e −=++=∫2231032122144u e u e a a −−+ππ )2sh 2(43+a π= . (3)216)5(2=−y , 绕x 轴.解 +x ∫∫−−−−−−+=44224422)165()165(dx x dx x Vππ 24021601640π∫=−=dx x .x =(t −sin t ),=a (1−cos t )的一拱, y =0, 绕直线y =2a . 解 a dy y a dx a V02202)2()2( 23237)8πππa t a a =+−=. 16. 求圆盘 (4)摆线a y a 2∫∫−−=ππππ∫−+−=πππ202223)sin (])cos 1([8t t da t a a 0sin cos 1(tdt a ∫232222a y x ≤+绕x =−b (b >a >0)旋转所成旋转体 解 的体积.∫∫−−−−−−+=a a a a dy y a b dy y a b V222222)()(ππ 2202228ππb a dy y a b a=−=∫.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴2a 、2b 和2A 、求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则 易得其长分别为2B , 平面与截锥体的截面为椭圆,长短半轴分别为y h a A A −−, y hb B B −−. 积为π)()(y 截面的面h h B B y a A A −⋅b −−−.于是截锥体的体积为])(2[61)()(b V h=∫0AB a h dy y h b B B y h a A A +++=−−⋅−−π.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角.x 且垂直于x () 件知, 它是边长为bA aB 18. 形的立体体积 解 设过点轴的截面面积为A x ,由已知条xR −2的等边三角形的面积, 其值为)(3)(22x R x A −=, 322334)(3R dx x R VR=−=∫R所以 − a.如图, 在x 处取一宽为dx 的边梯形, 小曲边梯形绕y 积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,y 轴旋转所成的旋转体的体积为==bab dx x xf dx x xf V)(2)(2ππ.用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为=bdx x xf V )(2π∫ 证明 小曲轴旋转所得的旋转体的体于是平面图形绕 ∫a∫ 20. 利2002)sin cos (2cos 2sin 2πππππππ=+−=−==∫∫x x x x xd xdx x V .y =ln x 上相应于83≤≤ 21. 计算曲线x 的一段弧的长度.解 ∫∫∫+=+=′+=82838x32321)1(1)(1dx x x dx dx x y s ,t 12−=t x ,x +21=, 即 则令23ln 211111113223232222322+=−+=t s −=−⋅−=∫∫∫∫dt t dt d t t dt t tt t .)3(x − 22. 计算曲线3弧的长度. x y =上相应于1≤x ≤3的一段 解x x x y 3−=, 1x y 2−=′,x 121x x y 4112+−=′, 214)(12x y +=′+,121x为所求弧长3432)232(21)1(213131−=+=+=∫x x x dx xx s .23. 计算半立方抛物线被抛物线32x y =32)1(32−=x y 截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=−=3)1( 32232x y x y 得两曲线的交点的坐标为36 ,2(, )36 ,2(−. 所求弧长为∫′+=21212dx y s .因为2y x y 2)1(−=′,)1(23)1()134−=−2)1(2−=′y y x ,32()1(242−−==′y x y 所以 x x x . ]1)25[(98)1)1−x 3(13232(231232121−=−=−+=∫∫d x dx x s . 抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.24. 计算∫∫∫+=+=′+=y yydy sy p p dy p y dy y x 02202021)(1)(1 解y y p y p p 2222])2[+++=y p y 02ln(21+p 2y p y py p py 2222ln2++++=.25. 计算星形线t a x 3cos =, 的全长.解 用参数方程的弧长公式.t a y 3sin = dt t y t x s =∫′+′2022)()(4π∫⋅+−⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==∫π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y −=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式∫∫+=′+′=ππ022022)sin ()cos ()]([)]([dtt at t at dt t y t x s 0∫22ππa tdt a ==.cos t )上求分摆线第一拱成1: 3 解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 27. 在摆线x =a (t −sin t ), y =a (1−的点的坐标.∫∫+−=′+′=0220220]sin [)]cos 1([)]t ([)]([)(t t dt t a t a dt y t x t s)2cos 1(42sin 2000ta dt t a t −==∫.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 22cos 1(40=−,32解得0π=t , 因而分点的坐标为:a a x )32()2sin 2(−=−=πππ, 横坐标23 纵坐标33a a y 23)32cos1(=−=π,故所求分点的坐标为)23 ,)2332((a a −π. ρθa e =相应于自θ=0到的一段弧长 28. 求对数螺线θ=ϕ. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d a a ∫∫+=′+=22022)()()()(s )1−θ(11202+=+=∫ϕθθa a e aa d e a .29线1相应于自 . 求曲ρθ=43=θ至34=θ.的一段弧长 极坐标公式可得所求的弧长 解 按∫∫−+=′+=344322234322)1()1()()(θθθθθρθρd d s23ln 1251134322+=+=∫θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ==2 ∫∫−++′+0222022)sin ()cos 1()()(2a d a 82∫cos 4==πθθ.习题6−31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为18216260===∫s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻−马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=−⋅x x P , π−=80800)(x P .功元素为dx x P dW )()10(2⋅=π,所求功为 2ln 8008018000080800)10(400402πππππ=−=−⋅⋅=∫∫dx dx W(J).3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=,其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy ykMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==∫+.(2)533324111075.910)6306370(106370106301098.51731067.6×=×+×××××⋅×=−W (kJ).4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cxt x v =′=, 阻力4229t kc kv f −=−=. 而32)(cx t =, 所以34323429)(9)(x kc cx kc x f −=−=. 功元素dW =−f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f Wa aa ===−=∫∫∫. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==∫,击第二次作功为 )2(212112h h k kxdx W h+==∫+.因为, 所以有 21W W =)2(21212h h k k +=, 解得12−=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210−=, 功元素为dx x x dx r x dW 22)3210(−=⋅=ππ,所求功为 ∫−=1502)3210(dx x x Wπ∫+−=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力. 解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===∫x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+−y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21−−⋅=⋅⋅=,所求压力为∫∫−⋅⋅+=−−⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==∫tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=−)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015−=,压力元素为dx x x dx x y x dP )5110()(21−⋅=⋅⋅=,所求压力为1467)5110(200=−⋅=∫dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=∫x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF r a dF x −=, dF rydF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +−=++−=+⋅−=∫∫μμμ,)11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +−=++=+⋅=∫∫μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd R Gm R Rd Gm cos cos )(2=⋅=,θθμϕϕd R Gm F x ∫−=2cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==∫. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足∫∫+=+300112111dt t dt t x.因为212]12[110−+=+=+∫x t dt t x x, 112[2111213030=+=+∫t dt t ,所以1212=−+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解∫++⋅=43222)sin (cos 21)2(21ππθθθπd a a S24322241)2sin 1(28a d a a −=++=∫πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线与直线x =1, y =0所围图形的面积为c bx ax y ++=294,且使该图形绕x 轴旋转而成的旋转体的体积最小.y c bx ax +=+ 解 因为抛物线2y 通过点(0, 0), 所以c =0, 从而 bx ax +=2.bx ax y +=2与直线x =1, y =0所围图形的面积为抛物线23)(102b a dx bx ax S +=+=∫. 令9423=+b a , 得968a b −=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(221022ab b a dx bx ax V ++=+=∫ππ)]968(2)968(315[22a a a a −+−+=π. 令0)]128(181********[=−+−⋅+2=a a a ddV π, 得35−=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ751272224027403=⋅=⋅=∫x dx x x V . 5. 求圆盘1)2(22≤+−y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312∫−−⋅⋅=dx x x Vπ 2224cos )sin 2(4 sin 2ππππ=+=−∫−tdt t t x 令.6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长. 解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(−, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=∫ )32ln(6++=.,解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x ,在水上上升的高度为r −x . 在水下对薄片所做的功为零,在水上对薄片所做的功为dx x r x r g dW ))((22−−=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=−−=∫−. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为 上端点与原点对应. 长边dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=∫. 9. 设星形线t a x 3cos =,t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力. 解 取弧微分ds 为质点, 则其质量为ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323=′+′=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有∫+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, ∫+⋅++⋅⋅=22222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, 所以)53 ,53(22Ga Ga =F .。

高等数学(同济第六版)课件 第六章 6.3定积分物理应用

高等数学(同济第六版)课件  第六章 6.3定积分物理应用
第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20

W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.

第六章 定积分的应用

第六章 定积分的应用

解:方法一,
如图,曲线的参数方程为
⎧ ⎨ ⎩
x y
= =
4 5
cos t + 4sin
t
,
0 ≤ t ≤ 2π ,那么
∫ ∫ 所求旋转体的体积为V =

−4

y12 ( x)dx


−4

y22 ( x)dx
∫ ∫ = 4π 0 (4sin t + 5)2d cos t − 4π 2π (4sin t + 5)2d cos t
解:如图,
∫ ∫ A =
2π a
ydx =
2π a2 (1− cos t )2 dt
0
0
= 3a2π
3、在[0,1] 上给定函数 y = x 2 ,问 t 取何值时,图中曲边三角形 OACO 与 ADBA 的面积之和最小?
何时最大?
解:设 A(t, t 2 ), (0 ≤ t ≤ 1) ,记曲边三角形 OACO 与 ADBA 的面积 y
这一小块闸门所受压力即压力元素为 dP = ρ gx 50 − x dx ,于是所求压力为 5
∫ P = 20 ρ gx 50 − x dx = 14373 (KN)
0
5
5、设有一长度为 l 、线密度为 μ 的均匀细直棒,在与棒的一端平行距离为 a 单位处有一质量为 m 的质点 M ,试求这细棒对质点的引力。 解:如图,去 y 轴经过细直棒,棒的一端为原点,质点 M 位于 x 轴上,取 y 为积分变量,其变化
62
∫ ∫ S = 2[
π 6
1(
02
2 sinθ )2 dθ +
π 4 π 6
1 2

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

高等数学 第六章定积分

高等数学 第六章定积分

把区间[a,b] 分成 n个 y 小区间[ xi1, xi ],长度为
y f (x)
xi xi xi1;
(2) 取近似
Ai
在每个小区间[ xi1, xi ] O a x1 xi1i xi xnb1 x
上任取一点i,以 [ xi1, xi ]为底,f (i )为高的小矩形,
面积近似代替 Ai , 有Ai f (i )xi , i 1, 2,L n
极限I, 称这个极限I为函数f(x)在区间[a,b]上的
定积分.记为
积分上限
积分和
b
n
a
f ( x)dx
I
lim
0
i 1
f (i )xi
积分下限 被 积 被
[a,b]积分区间
积 函
分积 变表
数 量达


n
(1) S f (i )xi是与[a, b]的分法及在[ xi1 , xi ]
i 1
一点 i (i xi ), 作乘积 f (i )xi (i 1,2, , n)
(3)
n
并作和 S f (i )xi
(4)
i 1
记 max{ x1, x2 , , xn },如果不论对 [a,b]
怎样的分法,也不论在小区间[ xi1 , xi ]上点 i
怎样的取法,只要当 0时,和S总趋于确定的
lim na sin xdx lim sinn a 0
n n
x
n n
证明 求证 lim 4 sin nx sinn x dx 0 n 0

当x
0,
4
时,
|
s in nx
sinn
x
|
sin

高等数学(第三版)课件:定积分的应用

高等数学(第三版)课件:定积分的应用

线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,

面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)

所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

一、微分元素法)( 或称为积分元素法法数学建模中的微分元素 ,当把非均匀变化的问题实际中在物理、几何以及工程 , ,则通积达形式能表示为某两个量的乘看作是均匀变化时. 分问题来处理常可将问题归结为定积 . 具有对区间的可加性要求量运用定积分处理问题时A取极限”—求和—近似“分划—,局利用整体上变化的量在局部问题的步骤将整体问题化成 , ,替“变”在局部上以“不变”代关系部上近似于不变的辩证,采用按照定积分的概念]. ,[ )( 111i i i ni i i ni i x x x f A A −==∈∆≈∆=∑∑ξξ便有关系式, ,个将具有代表性的第略去下标为简便和醒目起见i i, , ]d ,[ ] ,[ 1且取称之为典型小区间表示为小区间x x x x x i i +−, 则有为区间的左端点x i ξ. d )(x x f A ≈∆, )( d )( 记为或积分元素的微分元素为量通常称A x x f. d )(d x x f A =( 0d , 相当于取极限过程对区间的可加性由量→x A ] ,[ d , 0)||||上“无限累加”起来在区间将微分元素b a A x →∆] ,[ )(上的值:在区间就得到量即作定积分b a A. d )(d ∫∫==babax x f A A. ,加解为微分元素的无限累我们在这里将定积分理简言之一、平面图形的面积1解解解解y2解3解二、旋转体的体积一轴旋转一周所生成的将平面图形绕平面上某 . ,该轴称为旋转轴几何体称为旋转体 . , 间的可加性旋转体的体积具有对区上在区间I:旋转体的特点 ,截旋转体所得的的平面任何一个垂直于旋转轴. 图形均为圆截口1 y1 y2解Oaa b解解2πy三、平行截面面积为已知的几何体的体积解解。

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示为
定积分定义
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
近的似值
微分表达式
dU f (x) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的
精确值
积分表达式
b
U a f (x) dx
这种分析方法称为元素法 (或微元分析法 )
元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, ຫໍສະໝຸດ 等bπ[f
(
x)]2
dx
a
y
y f (x)
当考虑连续曲线段
O ax b x
绕 y 轴旋转一周围成的立体体积时,

V d π[( y)]2dy c
y
d
y x (y)
c
O
x
例13. 计算由椭圆
令 x r( )cos , y r( )sin , 则得
弧长元素(弧微分) :
ds [x( )]2 [ y( )]2 d r 2 ( ) r2 ( ) d (自己验证)
因此所求弧长
s r 2 ( ) r2 ( ) d
例11. 计算摆线
一拱
的弧长 .
y
解:
ds
(
d d
xt )2

(
d d
y t
)
2
d
t
O
a2 (1 cos t)2 a2 sin2 t d t
a 2(1 cos t) d t
2a sin t dt 2

s
2π 0
2a sin
t 2
d
t

2a

2
cos
t 2

2π 0

8a
2πa x
y y f1(x) y f2 (x)
右下图所示图形面积为
b
A a f1(x) f2 (x) dx
O axxdx b x
例1. 计算两条抛物线 图形的面积 .
解: 由
得交点 (0, 0) , (1, 1)
d A ( x x2)dx
1 3
在第一象限所围
y
y2 x (1,1) y x2
b
a
1 f 2(x) dx
y
y f (x)
ds
O a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长

s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
n
s lim 0
M i1M i
i1
并称此曲线弧为可求长的.
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
1 y2 dx
因此所求弧长
s b 1 y2 dx a
例12. 求阿基米德螺线 r a (a 0)相应于 0≤≤2
一段的弧长 .
解: ds r2( ) r2( ) d a2 2 a2 d
a 1 2 d
2πa
O
r
r a


sa
1 2 d
0
a2
1 2 1 ln

O
x
例5. 计算阿基米德螺线 到 2 所围图形面积 .
解: A 2π 1 (a )2 d 02
a2 2

1
3
3

2π 0
4 π3 a2 3
对应 从 0 变
2πa
O
x
d
例6. 计算心形线
面积 . 解:
1 a2 (1 cos )2 d
2
a2
第六章 定积分的应用
利用元素法解决: 定积分在几何上的应用 定积分在物理上的应用
第一节
第六章
定积分的元素法
一、什么问题可以用定积分解决 ? 二 、如何应用定积分解决问题 ?
一、什么问题可以用定积分解决 ?
1) 所求量 U 是与区间[a , b]上的某分布 f (x) 有关的 一个整体量 ;
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
2
1 2
2π 0
三、已知平行截面面积函数的立体体积
设所给立体垂直于x 轴的截面面积为A(x),
上连续, 则对应于小区间
的体积元素为
dV A(x) d x
因此所求立体体积为
b
V a A(x) d x
A(x)
ax
bx
特别 , 当考虑连续曲线段
轴旋转一周围成的立体体积时, 有
V
(2, 2)
18
例3. 求椭圆
所围图形的面积 .
解: 利用对称性 , 有 d A y dx
a
A 40 y d x
利用椭圆的参数方程
x a cos t y bsin t
(0 t 2 π)
y
b
O xxdxa x
应用定积分换元法得

4
ab

1 2

π 2
π ab
π
4ab 2 sin2 t dt 0
当 a = b 时得圆面积公式
2. 极坐标情形
求由曲线

围成的曲边扇形的面积 .
在区间
上任取小区间
则对应该小区间上曲边扇形面积的近似值为
dA 1 ( )2 d
2
所求曲边扇形的面积为
r ( ) d
A 1 2 ( ) d 2
O xx d x1 x
例2. 计算抛物线 y2 2x 与直线 y x 4 所围图形
的面积 .
解: 由
得交点
(2, 2) , (8, 4)
y
ydy y
y2 2x (8, 4)
为简便计算, 选取 y 作积分变量,
则有

A
d
A 4
2
(
y

4

1 2
y
2
)
dy
O
yx4 x
第二节
第六章
定积分在几何学上的应用
一、 平面图形的面积
二、 平面曲线的弧长
三、已知平行截面面积函数的 立体体积
一、平面图形的面积
1. 直角坐标情形
设曲线
与直线
y y f (x)
及 x 轴所围曲 边梯形面积为 A , 则
Oa x bx x dx
dA f (x) dx
b
A a f (x) dx
π
4
cos 4

d
0
2

t


2
π
8a2 2 cos4t dt 0
3π a2 2
所围图形的
(利用对称性)
d

O
2a x
二、平面曲线的弧长
定义: 若在弧 AB 上任意作内接折线 , 当折线段的最大
边长 →0 时, 折线的长度趋向于一个确定的极限 , 则称
此极限为曲线弧 AB 的弧长 , 即
相关文档
最新文档