高分子材料思考题答案讲课稿
材料化学第八章高分子材料思考题及答案

第八章高分子材料8-1.名词解释1)高聚物: 一般是指分子量在1500以上,分子长度超过5 nm的有机大分子材料。
2)低聚物: 又叫寡聚物或齐聚物。
一般是指分子量在1500以下,分子长度不超过5纳米,重复单元数只有几个到十几个的聚合物。
3)聚合度: 指聚合物大分子中重复结构单元的数目,亦称链节数,用n表示。
)4)热固性:指高分子材料在加热时不能软化和反复塑制,也不在溶剂中溶解的性能。
5)热塑性: 指高分子材料加工固化冷却以后,再次加热仍可反复加工成型的性质。
6)等规立构:指高分子侧链上取代基全部处在主链平面一侧或高分子全部由一种旋光异构单元键接而成的高分子结构。
7)间规立构: 是指取代基交替地处于平面两侧或者由两种旋光异构单元交替键接而成的高分子结构。
8)光刻胶: 又叫光致刻蚀剂,指当受到光照后即发生交联或分解反应,溶解性发生改变的一种聚合物光子材料。
9)光引发剂: 是指在紫外光区间(250~450nm)或可见光区间(400~800nm)有一定吸光能力,吸收光能后,分子从基态跃迁到活泼的激发态,经历单分子或双分子化学作用后,产生能够引发单体聚合的活性碎片,可以是自由基、阳离子、阴离子或离子自由基。
8-2.聚合物的分子量概念如何理解?一般有多少种平均分子量?它们的大小关系如何?答:聚合物的分子量大,具有多分散性的特点。
大多数聚合物的分子量都有一定的分布,是分子量不等的同系物的混合物,其分子量只是一个平均值,只有统计意义。
一般有四种平均分子量,数均分子量、重均分子量、粘均分子量和z均分子量。
其大小关系为。
8-3.聚合物分子量的多分散性含义是什么?通常如何表达分子量多分散性?, 答:聚合物分子量的多分散性的含义是指聚合物的分子量都有一定的分布,其中最大和最小的分子占少数,中间大小的分子占多数。
聚合物中高分子大小的多分散性是用分子量分布的宽窄来表示,分子量分布宽表示分子大小很不均一。
采用凝胶色谱分析,可以同时获得和,以及分子量的分布DP=/, DP 为多分散系数或分散度,一般为1.5~3。
高分子材料改性书中部分思考题参考答案

书中部分思考题参考答案第二章高分子材料共混改性1.什么是相容性,以什么作为判断依据?是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。
2.反应性共混体系的概念以及反应机理是什么?是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。
3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。
(1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。
如:天然橡胶-丁苯橡胶。
(2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。
如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。
(3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。
(4)UCST和LCST相互交叠,形成封闭的两相区(5)多重UCST和LCST4.什么是相逆转,它与旋节分离的区别表现在哪些方面?相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。
(1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。
(2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围(3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴,5.相容性的表征方法有哪些,试举例加以说明。
玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。
玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,完全不溶,就有两个玻璃化温度,部分相容介于前两者之间。
《高分子材料》课后习题参考

1绪论Q1.总结高分子材料(塑料和橡胶)在发展过程中的标志性事件:(1)最早被应用的塑料(2)第一种人工合成树脂(3)是谁最早提出了高分子的概念(4)HDPE和PP的合成方法是谁发明的(5)是什么发现导致了近现代意义橡胶工业的诞生?1.(1)19世纪中叶,以天然纤维素为原料,经硝酸硝化樟脑丸增塑,制得了赛璐珞塑料,被用来制作台球。
(2)1907年比利时人雷奥·比克兰德应用苯酚和甲醛制备了第一种人工合成树脂—酚醛树脂(PF),俗称电木。
(3)1920年,德国化学家Dr.Herman.Staudinger首先提出了高分子的概念(4)1953年,德国K.Ziegler以TiCl4-Al(C2H5)3做引发剂,在60~90℃,0.2~1.5MPa条件下,合成了HDPE;1954年,意大利G.Natta以TiCl3-AlEt3做引发剂,合成了等规聚丙烯。
两人因此获得了诺贝尔奖。
(5)1839年美国人Goodyear发明了橡胶的硫化,1826年英国人汉考克发明了双辊开炼机,这两项发明使橡胶的应用得到了突破性的进展,奠定了现代橡胶加工业的基础。
Q2.树脂、通用塑料、工程塑料的定义。
化工辞典中的树脂定义: 为半固态、固态或假固态的不定型有机物质, 一般是高分子物质, 透明或不透明。
无固定熔点, 有软化点和熔融范围, 在应力作用下有流动趋向。
受热、变软并渐渐熔化, 熔化时发粘, 不导电, 大多不溶于水, 可溶于有机溶剂如乙醇、乙醚等, 根据来源可分成天然树脂、合成树脂、人造树脂, 根据受热后的饿性能变化可分成热定型树脂、热固性树脂, 此外还可根据溶解度分成水溶性树脂、醇溶性树脂、油溶性树脂。
通用塑料: 按塑料的使用范围和用途分类, 具有产量大、用途广、价格低、性能一般的特点, 主要用于非结构材料。
常见的有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)。
工程塑料:具有较高的力学性能, 能够经受较宽的温度变化范围和较苛刻的环境条件, 并在此条件下长时间使用的塑料, 可作为结构材料。
第七章 高分子的结构 习题与思考题讲解学习

第七章高分子的结构习题与思考题第七章高分子的结构习题与思考题1.高分子的结构有何特点?高分子结构可以分为哪些结构层次?各结构层次包括哪些内容?它们对聚合物的性能会产生什么影响?特点:①链式结构:结构单元103-105数量级②链的柔顺性:内旋转产生非常多的构象③多分散性,不均一性,长短不一。
④结构单元间的相互作用对其聚集态结构和物理性能有着十分重要的影响。
⑤凝聚态结构的复杂性:包括晶态、非晶态,球晶、串晶、单晶、伸直链晶等。
⑥可填加其它物质改性。
分为:链结构和聚集态结构。
内容:链结构分为近程结构和远程结构。
近程结构主要涉及分子链化学组成、构型、构造;远程结构主要涉及分子链的大小以及它们在空间的几何形态。
聚集态结构包括晶态、非晶态、液晶态、取向态结构及织态结构等。
影响:高分子结构中各个结构层次不是孤立的,低结构层次对搞结构层次的形成具有较大影响,近程结构决定了高分子的基本性能,而聚集态结构直接影响高分子的使用性能。
2.写出线型聚异戊二烯的各种可能构型。
顺式1,4-加成反式1,4-加成 1,2-加成全同立构 1,2-加成间同立构1,2-加成无规立构 3,4-加成全同立构 3,4-加成间同立构 3,4-加成无规立构3.名词解释(1)构型:是指分子中由化学键所固定的原子在空间的几何排列。
(2)构象:由于分子中的单键内旋转而产生的分子在空间的不同形态(3)链柔性:高分子链能够通过内旋转作用改变其构象的性能(4)内聚能密度::单位体积的内聚能,CED = ∆E/Vm。
内聚能是克服分子间作用力,把1mol液体或固体分子移至分子引力范围之外所需的能量(5)结晶形态:试样中结晶部分所占的质量分数(质量结晶度xcm)或者体积分数(体积结晶度xcv)。
(6)取向:聚合物取向是指在某种外力作用下分子链或其他结构单元沿着外力作用方向择优排列(7)液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上虽然变成了具有流动性的液体物质,但结构上仍然保持着晶体结构特有的一维或二维有序排列,形成一种兼有部分晶体和液体性质的过渡状态4.聚合物的构型和构象有何区别?假若聚丙烯的等规度不高,能否通过改变构象的方法来提高其等规度?全同立构聚丙烯有无旋光性?构型是指分子中由化学键所固定的原子在空间的几何排列。
《高分子材料成形工艺学》各章复习思考题汇总

绪论1.简述塑料、化学纤维和橡胶的分类和主要品种。
2.简述塑料、化学纤维和橡胶所涉及的主要特异性品质指标名称。
3.简要说明化学纤维的线密度和相对强度概念。
4.简述超细纤维的特点和复合纺丝制造方法。
5.简要说明高分子材料成形基本过程和成形过程中的变化。
6.成形制品时选择材料及其成形工艺应遵循哪些基本原则?并简要说明。
第一篇高分子成形基础理论第一章高分子材料的成形品质1. 高分子的可挤出性受哪些因素的影响?通常如何评价高分子的可挤出性?2. 挤出细流类型有哪些类型?什么类型是正常纺丝的细流类型?如何实现?3. 可纺性与哪些因素相关?如何相关?4. 可纺性理论包括哪两种断裂机理?请简要说明。
5. 什么是模塑性?试画图并说明高分子的最佳模塑区域。
6. 评价模塑性通常采用什么方法?请简要说明方法原理。
7. 聚合物的拉伸曲线有哪三种基本类型?哪两种拉伸曲线具有可延性?如何获得该两种拉伸曲线?8. 什么是可延性?高分子为什么具有可延性?如何评价可延性?9. 可延性的影响因素有哪些?如何影响?10. 试分析高分子成形过程中应如何对待高分子的粘弹性。
11. 试说明高分子成形过程中应如何利用高分子的松弛特性?12. 高分子应变硬化的物理基础是什么?高分子成形中哪些工艺利用了应变硬化?13. 合成纤维的成形中经常采用多级拉伸,试问有什么意义?多级拉伸应如何实施?14. 高分子的热膨胀系数随温度的变化表现出什么样的规律?15. 简要说明高分子比热容随温度的变化关系?16. 为什么非晶聚合物的导热系数随温度的变化规律在玻璃态和高弹态不同?第二章高分子成形流变学基础1. 区别三组概念:①剪切流动和拉伸流动;②稳态流动与非稳态流动;③等温流动与非等温流动。
2. 非牛顿流体有几种类型?分别表现出怎样的流动行为?3. 高分子流体在宽剪切速率范围内为什么往往会出现第一牛顿区、非牛顿区和第二牛顿区三个区域的流变特征?4. 什么是宾汉流体?有什么样的流动特征?为什么表现出那样的流动特征?5. 什么是幂律方程?幂律方程的K 和n 有什么特征?6. 时间依赖性流体有哪两种?它们为什么会出现时间依赖性?7. 测得一种热塑性聚合物熔体在注射成形条件下的流体稠度K=64,n=0.65,该熔体通过直径4mm 、长75mm 圆形等截面喷孔时的体积流率为5×10-5m 3·s -1,试计算管壁处的剪应力、剪切速率和整个圆管中的流速分布函数。
高分子材料课后习题答案

高分子材料课后习题答案【篇一:高分子材料成型加工课后习题答案】通过何种物料运动和混合操作来实现?答:?非分散混合在混合中仅增加离子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。
这种混合的运动基本形式是通过对流来实现的,可以通过包括塞形流动和不需要物料连续变形的简单体积排列和置换来达到。
分散混合是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。
分散混合主要是靠剪切应力和拉伸应力作用实现的。
分散混合的目的是把少数组分的固体颗粒和液相滴分散开来,成为最终粒子或允许的更小颗粒或滴,并均匀地分散到多组分中,这就涉及少组分在变形粘性流体中的破裂为题,这是靠强迫混合物通过窄间隙而形成的高剪切区来完成的。
2、在热固性塑料模压成型中,提高压力应相应地降低还是升高模压压力才对模压成型工艺有利?为什么?答:在一定温度范围内,模温升高,物料流动性提高,模压压力可降低,但模温提高也会使塑料的交联反应速率加速,从而导致熔融物料的粘度迅速增高,反而需要更高的模压压力。
3、热固性塑料模压成型中物料的预热温度对模压压力有何影响?为什么?答:对塑料进行预热可以提高流动性,降低模压压力,但如果预热温度过高或预热时间过长会使塑料在预热过程中有部分固化,会抵消预热增大流动性效果,模压是需更高的压力来保证物料充满型腔。
1、什么是聚合物的结晶取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际影响?答:结晶是聚合物分子在三维空间呈周期性重复排列的过程,而取向是取向单元在外力作用下择优排列的过程,取向单元可以是:基团、链段、分子链、晶粒、晶片或变形的球晶等。
结晶是材料自身的性质,只发生在分子、原子、离子这些基础的单元上,取向的产生是外力作用的结果,取向单元也更多样。
结晶可以影响材料的拉伸强度、弹性模量、冲击强度、耐热性、耐候性、吸水性、透明性、透气性、成型收缩性等物性。
功能高分子材料(赵文元)思考题

功能高分子材料(赵文元)思考题
功能高分子材料是一种具有特殊功能的高分子材料,具有很好的应用前景和市场潜力。
在这个领域中,研究人员正在不断探索新的功能材料,以应对各种工业和科技领域的需求。
以下是一些与功能高分子材料相关的思考题:
1. 什么是功能高分子材料?它们与传统材料有何不同之处?
2. 功能高分子材料可以应用于哪些领域?举例说明其具体应用。
3. 某些功能高分子材料具有自修复或自愈合功能,请简述其原理。
4. 具有自组装功能的高分子材料有哪些应用前景?
5. 如何制备具有特殊功能的高分子材料?请简述其制备过程。
6. 现有的功能高分子材料有哪些限制或问题?如何解决这些问题?
7. 未来的功能高分子材料会朝着怎样的方向发展?有哪些新的
应用前景?
8. 功能高分子材料与环保有何关系?如何在制备和应用过程中
更好地保护环境?
9. 功能高分子材料的产业化和商业化面临哪些挑战?如何克服
这些挑战?
10. 您认为功能高分子材料的发展对人类社会有何影响?这些
影响会是正面的还是负面的?
- 1 -。
有机高分子材料讲课文档

增产节约,符合可持续发展的观念。
第七页,共24页。
二
一
一、线型结构、体型结构高分子材料比较
线型结构
举例
结构特点
溶解性
热塑性、
热固性
体型结构
合成纤维、塑料(如
聚乙烯)
以共价键结合成高分
子链,链与链之间以
分子间作用力结合
可溶,但溶解速率比
小分子化合物小,最
3
4
5
)
A.聚乙烯塑料的老化是因为发生了加成反应
B.煤经过气化和液化等物理变化可转化为清洁燃料
C.合成纤维、人造纤维及碳纤维都属于有机高分子材料
D.利用粮食酿酒经历了淀粉→葡萄糖→乙醇的化学变化过程
解析:A项错误,聚乙烯塑料老化是因为发生了氧化反应;B项错误,煤
的气化和液化均属于化学变化;C项错误,碳纤维不属于有机高分子材
2
3
4
5
)
A.线型结构和体型结构的有机高分子都可以溶解在适当的溶剂里
B.某些高分子化合物具有热固性,它们在受热时不会熔化
C.高分子链之间存在较强的作用力,因此高分子材料的强度都较高
D.普通高分子材料存在易被氧化、不耐高温等特点
解析:线型结构的有机高分子可以用适当的溶剂溶解,而体型结构
的有机高分子一般不易被溶解;热固性高分子化合物受热时不会熔化;强
度高是高分子材料的重要特性;含不饱和键的高分子材料易被氧化,线型
结构的高分子材料不耐高温。
答案:A
第二十页,共24页。
1
2
3
4
5
4下列材料中属于功能高分子材料的是(
)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高分子材料导论》思考题第一章材料科学概述1.试从不同角度把材料进行分类,并阐述三大材料的特性。
按化学组成分类:金属材料无机材料.有机材料(高分子材料)按状态分类:气态。
固态:单晶.多晶.非晶.复合材料.液态按材料作用分类:结构材料,功能材料按使用领域分类:电子材料。
耐火材料。
医用材料。
耐蚀材料。
建筑材料三大材料:(1)金属材料富于展性和延性,有良好的导电及导热性、较高的强度及耐冲击性。
(2)无机材料一般硬度大、性脆、强度高、抗化学腐蚀、对电和热的绝缘性好。
(3)高分子材料的一般特点是质轻、耐腐蚀、绝缘性好、易于成型加工,但强度、耐磨性及使用寿命较差。
2.说出材料、材料工艺过程的定义。
材料——具有满足指定工作条件下使用要求的形态和物理性状的物质。
由化学物质或原料转变成适用于一定用场的材料,其转变过程称为材料化过程或材料工艺过程。
3.原子之间或分子之间的结合键一般有哪些形式?试论述各种结合键的特点。
离子键:无方向性,键能较大。
由离子键构成的材料具有结构稳定、熔点高、硬度大、膨胀系数小的特点。
共价键:具有方向性和饱和性两个基本特点。
键能较大,由共价结合而形成的材料一般都是绝缘体。
金属键:无饱和性和方向性。
具有良好的延展性,并且由于自由电子的存在,金属一般都具有良好的导电、导热性能。
4.何为非晶态结构?非晶态结构材料有何共同特点?原子排列近程有序而远程无序的结构称为非晶态结构或无定形结构,非晶态结构又称玻璃态结构。
共同特点是:结构长程无序,物理性质一般是各向同性的;没有固定的熔点,而是一个依冷却速度而改变的转变温度范围;塑性形变一般较大,导热率和热膨胀性都比较小。
5.材料的特征性能主要哪些方面?热学、力学、电学、磁学、光学、化学等性能6.什么是材料的功能物性?材料的功能物性包括哪些方面?功能物性,是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一形式功能的性质。
包括:1热电转换性能2光-热转换性能3光-电转换性能4力-电转换性能5磁-光转换性能6电-光转换性能7声-光转换性能7.材料工艺与材料结构及性能有何关系?材料工艺,包括材料合成工艺及材料加工工艺,影响材料的组织结构,因而对材料的性能有显著的影响。
材料的原始组织结构及性能又常常决定着采用何种方法将材料加工成所需要的形状。
所以,材料工艺、材料结构及材料性能之间具有相互依赖、相互制约的密切关系,了解并利用这种关系是材料科学的关键问题之一。
第二章高分子材料的制备反应1.了解均聚物、共聚物、多分散性和柔顺性的定义。
由一种单体聚合而成的聚合物称为均聚物,由两种或两种以上单体共聚而成的聚合物称为共聚物。
聚合物材料的强度与分子量密切相关。
聚合物是分子量不等的同系列物的混合物,分子量或聚合度是一平均值。
这种分子量的不均一性亦称为多分散性。
高分子化合物的分子链内,存在许多单键,每一个键都可以旋转,大部分高分子链呈曲卷状。
这种由于单键自由旋转而使分子在空间产生不同排布、有曲卷倾向的性能称为链的柔顺性。
2.试论述高聚物的结构特性及均聚物与共聚物的不同点。
3.工业上对聚合物的分类方法有哪些?按聚合物大分子链主链结构可将聚合物分为哪几种类型?试各举一例。
按大分子主链结构分类:碳链聚合物、杂链聚合物、元素有机聚合物4.何为加聚反应?何为缩聚反应?单体加成而聚合起来的反应称为加聚反应。
若在聚合反应过程中,除形成聚合物外,同时还有低分子副产品形成,则此种聚合反应称为缩聚反应5.连锁聚合反应与逐步聚合反应有何不同?连锁聚合反应,其特征是整个反应过程可划分成相继的几步基元反应。
反应无法停留在中间阶段,也无法分离出稳定的中间产物,反应是不可逆的。
逐步聚合反应其特征是在低分子单体转变成高分子的过程中,反应是逐步进行的。
反应可以停留在任何阶段,也可以分离出稳定的中间产物,反应具有可逆性。
第三章高分子材料的结构与性能1.聚合物的结构常指哪些方面?大分子链的组成和构造包括哪些方面?试加以论述。
聚合物结构:大分子本身的结构、大分子之间的排列大分子链的组成和构造:大分子链的化学组成:碳链大分子、杂链大分子、元素有机大分子等。
大分子链的化学组成不同,聚合物的性能也不相同。
结构单元的连接方式:大分子链是由许多结构单元通过共价键连接起来的链状分子。
在缩聚过程中,结构单元的连接方式比较固定。
但在加聚过程中,单体构成大分子的连接方式比较复杂,存在许多可能的连接方式,如头-尾、头-头或尾-尾连接等。
结构单元的空间排列方式:几何异构体和旋光异构体。
大分子链骨架的几何形状:线型、支链型、网状、梯形。
序列结构:交替型、嵌段及接枝型、无规型2.试论述聚合物各种不同的大分子链骨架的几何形状使材料具有那些不同性能。
3.共聚物大分子链的序列结构有哪些基本类型?序列结构:交替型、嵌段及接枝型、无规型4.聚合物分子量有何特点?试分析数均分子量和重均分子量对材料性能的影响。
两个基本特点,一是分子量大,二是分子量具有多分散性。
5.何为大分子链的构象?大分子链的形态有哪些基本类型?大分子链具有很大的柔曲性,可采取各种可能的形态,每种形态所对应原子及键的空间排列称为构象。
形态基本类型:伸直链、折叠链、螺旋形链、无规线团6.聚合物凝聚态结构有哪些不同于低分子物凝聚态的特点?一是聚合物晶态总是包含一定量的非晶相;二是聚合物凝聚态结构强烈地依赖于外界条件。
7.聚合物晶态结构与低分子晶体比较有何特点?目前解释聚合物晶态结构有何基本模型?与一般低分子晶体相比,聚合物晶体具有不完善性、无完全确定的熔点和结晶速度较慢的特点。
这些特点来源于大分子的结构特征。
一种是缨状胶束模型,是由非晶态结构的无规线团模型衍生出来的。
另一种是折叠链模型,是从局部有序的非晶态结构模型衍生出来的。
8.试论述聚合物的结晶过程,并分析结晶速率对成型产品性能的影响。
结晶过程可分为主、次两个阶段。
次期结晶是主期结晶完成后,某些残留非晶部分及结晶不完整部分继续进行的结晶和重排作用。
次期结晶速率很慢,产品在使用中常因次期结晶的继续进行而影响性能。
在生产上可通过调整成核速率和生长速率来控制晶粒的大小,从而控制产品的性能。
结晶可提高聚合物的密度、硬度及热变形温度,溶解性及透气性减少,断裂伸长率下降,拉伸强度提高但韧性减少。
9.试分析聚合物取向机理及取向对材料性能的影响。
10.试从聚合物的结构特点分析聚合物分子运动的特点。
(1)聚合物的分子运动具有多重性(2)聚合物的分子运动具有明显的松弛特性11.非晶态聚合物有哪几种力学状态?试分析这些力学状态的转变条件。
玻璃态聚合物受热时,经高弹态最后转变为粘流态,开始转变为粘流态的温度称为流动温度或粘流温度Tf。
液体冷却时,分子来不及作规则排列,体系的粘度已变大,冻结成无定型状态的固体。
这种状态又称为玻璃态。
玻璃态--玻璃化温度—高弹态—粘流温度—粘流态12.牛顿型流体有什么特点?试写出牛顿型流体的流动方程,并画出其流动曲线图。
特征是:切应力与切变速率成正比。
牛顿型流体的粘度在一定温度下为常数,它与流体的性质有关,其流动曲线是一条通过原点的直线。
13.非牛顿型流体有何特点?通常可将非牛顿型流体分为哪几类?分为:纯粘性流体、粘弹性流体、有时间依赖性的流体14.什么是假塑性流体?试画出其流动曲线。
15.聚合物熔体流动有哪些特点?①粘度大,流动性差。
②聚合物熔体是假塑性流体,粘度随剪切速率的增加而下降③聚合物熔体流动时伴有高弹形变,即表现为弹性行为。
16.什么是聚合物的牛顿粘度、表观粘度、零切粘度和极限粘度?17.了解材料受力的三种基本类型及相应的弹性模量。
(1)简单拉伸(2)简单剪切(3)均匀压缩18.了解硬度、强度的含义,了解高弹性的特点。
特点:①弹性模量小,形变大。
②弹性模量与绝对温度成正比。
③形变时有热效应。
④高弹形变表现明显的松弛现象。
19.什么是蠕变和应力松弛?蠕变:在一定的温度、一定的应力作用下,材料的形变随时间的延长而增加的现象。
应力松弛:在温度、应变恒定的条件下,材料的内应力随时间延长而逐渐减小的现象。
松弛现象是热运动对聚合物分子取向的影响。
20.了解屈服强度、拉伸强度、断裂伸长率、抗张强度、抗冲击强度、疲劳强度等概念。
21.高分子材料通常会出现哪些老化的现象?有哪些预防措施?现象:⑴塑料制品外观发生变化:例如表面变暗、变形、有裂纹或发霉等;⑵物理与化学性能发生变化,例如溶解度、Tg、熔体指数等;⑶力学性能发生变化:例如拉伸强度、冲击强度、断裂伸长率等;⑷电性能发生变化:例如绝缘电阻、介电常数、击穿电压等。
措施:为延缓或防止聚合物的光氧化过程,需加入光稳定剂。
为了获得对热、氧稳定的高分子材料制品,常需加入抗氧剂和热稳定剂。
第四章通用高分子材料1.掌握塑料的定义和分类。
塑料是以聚合物为主要成分,在一定条件(温度、压力等)下可塑造成一定形状,并在常温下能保持其形状不变的高分子有机材料。
(1)按塑料的物理化学性能分:热塑性塑料、热固性塑料(2)按塑料用途分:通用塑料、工程塑料、特种塑料(3)按塑料成型方法分:注射、挤出和吹塑塑料、模压塑料、层压塑料2.塑料有什么特点?(1)质轻、比强度高(2)优异的电绝缘性能(3)优良的化学稳定性能(4)减摩、耐磨性能好(5)透光及防护性能(6)减震、消音性能优良。
不足:耐热性差、易老化、易燃3.了解塑料的组分及其作用。
4.塑料常用的成型方法有哪些?挤出成型、注射成型、压延成型、模压成型、吹塑成型、滚塑成型5.掌握常用热塑性塑料的缩写代号、分子式以及基本性能。
(1)聚乙烯PE —(CH2-CH2)n—化学性能:聚乙烯在室温下耐酸、碱和盐类的水溶液,常温下不溶于任何已知溶剂中,有优异的化学稳定性。
电性能:聚乙烯是碳氢聚合物,分子结构没有极性基团,具有优异的电性能,体积电阻率高。
力学性能:聚乙烯具有优异的力学性能,有很高的强度、柔性和弹性。
卫生性能:PE分子链主要碳、氢构成,本身毒性极低,被认为是卫生性最好的塑料品种。
成型加工性能:聚乙烯粘度低,流动性好,无需加入增塑剂就有很好的成型加工性能。
(2)聚丙烯PP —(CH2-CH)n—CH3力学性能:PP在室温以上有较好的抗冲击性能,且低温冲击强度较PE低。
热性能:PP分子链上甲基的存在及甲基在空间规整的排列,使大分子链柔性下降,因而其耐热性比PE好得多.化学性能:PP具有优良的化学稳定性。
对于大多数极性有机溶剂,PP是稳定的。
电性能:具有优良的电绝缘性,电绝缘性不受环境湿度的影响,可在较高温度和频率下使用。
卫成型加工性能:PP有较好的流动性,可采用挤出、注射、吹塑等成型加工方法,具有优良的成型加工性能。
(3)聚苯乙烯PS 力学性能:刚性较大、抗弯能力较强的塑料品种。
但它的冲击强度较低,常温下脆性大. 热性能:PS的导热系数不随温度而改变,是良好的绝热材料。