光纤几何性能及光学性能

合集下载

光纤标准和技术指标

光纤标准和技术指标

按光在光纤中的传输模式划分,可分为多模和单模光纤两种。

常用多模光纤的直径为125μm,其中芯径一般在50~100μm之间。

在多模光纤中,可以有数百个光波模在传播。

多模光纤一般工作于短波长(0.8μm)区,损耗与色散都比较大,带宽较小,适用于低速短距离光通信系统中。

多模光纤的优点在于其具有较大的纤芯直径,可以用较高的耦合效率将光功率注入到多模光纤中。

常用单模光纤的直径也为125μm,芯径为8~12μm。

在单模光纤中,因只有一个模式传播,不存在模间色散,具有较大的传输带宽,并且在1 550 nm波长区的损耗非常低(约为0.2~0.25 dB/km),因而被广泛应用于高速长距离的光纤通信系统中。

使用单模光纤时,色度色散是影响信号传输的主要因素,这样单模光纤对光源的谱宽和稳定性都有较高的要求,即谱宽要窄,稳定性要好。

单模光纤一般必须使用半导体激光器激励。

按最佳传输频率窗口划分,可分为常规型单模光纤和色散位移型单模光纤。

常规型单模光纤的最佳传输频率在1 310 nm附近,而色散位移光纤的最佳传输频率在1550nm附近。

按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。

阶跃折射率光纤从芯层到包层的折射率是突变的。

多模阶跃折射率光纤的成本低,模间色散高,适用于短距离低速通信。

多模渐变折射率光纤从芯层到包层的折射率是逐渐变小,可使高阶模按正弦形式传播,这样能减少模间色散,提高光纤带宽,增加传输距离,但成本较高。

现在所使用的多模光纤多为渐变折射率光纤。

目前,国际上单模光纤的标准主要是ITU-T的系列:G.650“单模光纤相关参数的定义和试验方法”、G.652“ 单模光纤和光缆特性”、G.653“色散位移单模光纤和光缆特性”、G.654“截止波长位移型单模光纤和光缆特性”、G.655“非零色散位移单模光纤和光缆特性”及G.656“用于宽带传输的非零色散位移光纤和光缆特性”。

ITU -T对多模光纤的标准是G.651“50/125μm多模渐变折射率光纤和光缆特性”。

多模光纤的进展及其规范

多模光纤的进展及其规范

多模光纤的进展、带宽测量及其规范MMF’s Evolution, Bandwidth Measurement and Its Specification陈炳炎江苏七宝光电集团公司总工程师(摘要) 本文叙述多模光纤从以LED为光源的OM1,OM2光纤到激光优化的OM3,OM4光纤的进展; 介绍用于10Gb/s以太网,波长为850nm的VCSEL激光优化的OM3,OM4光纤带宽测量方法; 以及多模光纤的技术规范。

(一)多模光纤的进展1976年由康宁公司开发的50/125 μm渐变折射率多模光纤和1983年由朗讯Bell实验室开发的62.5/125μm渐变折射率多模光纤,是两种用量较大的多模光纤。

这两种光纤的包层直径和机械性能相同,但传输特性不同。

它们都能提供如以太网、令牌网和FDDI协议在标准规定的距离内所需的带宽,而且都能升级到Gb/s的速率。

ISO/IEC 11801所颁布的新的多模光纤标准等级中,将多模光纤分为OM1,OM2,OM3,OM4四类。

其中OM1, OM2是指传统的62.5/125μm 和50/125μm多模光纤; OM3和OM4是指新型的50/125μm万兆位多模光纤。

(1) 62.5/125μm渐变折射率多模光纤(OM1,OM2)常用的62.5/125μm渐变折射率多模光纤是指IEC-60793-2光纤产品规范中的Alb类型。

由于62.5/125μm光纤的芯径和数值孔径较大,因而具有较强的聚光能力和抗弯曲特性,特别是在20世纪90年代中期以前,局域网的速率较低,对光纤带宽的要求不高,因而使这种光纤获得了最广泛的应用,成为20世纪80年代中期至90年代中期的十年间在大多数国家中数据通信光纤市场中的主流产品。

分属OM1和OM2的Alb类型光纤的满注入功率(OFL)带宽分别为200/500 MHz.km (850/1300 nm)和500/500 MHz.km (850/1300 nm)。

光缆总规范.000

光缆总规范.000

光缆总规范第1部分:总则1范围GB/T 7424的本部分规定了光缆的几何尺寸、传输性能、机械性能、寿命(环境暴露下)和环境适应性以及适用的电气性能等的一般要求。

本部分适用于通信设备和采用类似技术的装置中所使用的光缆,也适用于具有光纤和导电线的光缆。

2规范性引用文件下列文件中的条款通过GB/T 7424的本部分的引用而成为本部分的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本部分。

GB/T 2951.1—1997 电缆绝缘和护套材料通用试验方法第1部分:通用试验方法第1节:厚度和外形尺寸测量——机械性能试验(idt IEC 60811-1-1;1993)GB/T 7424.2 光缆总规范第2部分:光缆基本试验方法(GB/T 7424.2—2002,IEC 60794-1-2:1999,Optical fibre cables-Part 1-2:Generic specification-basic optical cable test procedures,MOD)GB/T 11327.1-1999, 聚氯乙烯绝缘聚氯乙烯护套低频通信电缆电线第1部分:一般试验和测量方法(IEC 60189-1:1986,Low-frequency cables and wires with PVC insulation and PVC sheath一Part 1:Genericl test and measuring methods,NEQ”)GB/T 15972(所有部分) 光纤总规范(GB/T 15972一1998,IEC 60793-1:1995,Optical fibres一Part 1:Ggeneera specification,eqv)GB/T 17650.1一1998 取自电缆或光缆的材料燃烧时释出气体的试验方法第1部分:卤酸气体总量的测定(idt IEC 60754-1:1994)GB/T 17650.2一1998 取自电缆或光缆的材料燃烧时释出气体的试验方法第2部分:用测量pH值和电导率来测定气体的酸度(idt IEC 60754-2:1991)GB/T 17650.1一1998 电缆或光缆在特定条件下燃烧的烟密度测定第1部分:试验装置(idt IEC 61034-1:1997)GB/T 17650.2一1998 电缆或光缆在特定条件下燃烧的密度测定第2部分:试验步骤和要求(idt IEC 61034-2:1997)GB/T 18380.1一2001 电缆在火焰条件下的燃烧试验第1部分:单根绝缘电线或电线的垂直燃烧试验方法(idt IEC60332-1:1993)GB/T18380.3-2001 电缆在火焰条件下的燃烧试验第3部分:成束电线或电缆的燃烧试验方法(idt IEC60332-3:1992)IEC60331-11:1999 电缆燃烧试验电路完整性第11部分:装置仅在不低于750℃火焰温度下的燃烧IEC60331-21:1999 电缆燃烧试验电路完整性第21部分:程序和要求额定电压不低于0.6Kv/1.0kV 的电缆IEC60793-2:1998 光纤第2部分:产品规范IEC60885-1:1987 电缆电气试验方法第1部分:电压不低于450V/750V电缆、软线和导线的电气试验3定义在考虑中。

光纤的光学特性实验报告

光纤的光学特性实验报告

光纤的光学特性实验报告光纤的光学特性实验报告引言:光纤是一种用于传输光信号的细长柔软的玻璃或塑料线材。

它具有高速传输、大容量、抗干扰等优点,在通信、医学、工业等领域得到广泛应用。

本实验旨在探究光纤的光学特性,了解其传输特性、损耗和色散等参数。

一、实验原理光纤的传输原理是基于全反射的现象。

当光线从光密度较高的介质射入光密度较低的介质时,会发生全反射。

光纤由两部分组成:芯和包层。

芯是光的传输通道,包层则用于保护芯。

光纤的传输特性与芯和包层的折射率有关。

二、实验设备和材料1. 光纤:包括单模光纤和多模光纤。

2. 光源:如激光器或LED。

3. 光功率计:用于测量光纤的光功率。

4. 光纤衰减器:用于调节光纤的损耗。

5. 光纤色散分析仪:用于测量光纤的色散。

三、实验步骤1. 准备工作:将实验设备连接好,确保光源的稳定输出和光功率计的准确测量。

2. 测量光纤的损耗:将光纤连接到光源和光功率计之间,记录不同长度下的光功率值,并计算损耗。

3. 测量光纤的色散:将光纤连接到光源和光纤色散分析仪之间,调节光纤的长度,记录不同长度下的色散值。

四、实验结果与分析1. 光纤的损耗:根据测量数据,绘制光功率与光纤长度的关系曲线。

从曲线中可以观察到光纤的损耗随着长度的增加而增加,这是由于光纤材料的吸收和散射引起的。

同时,可以计算出单位长度的损耗值,评估光纤的传输质量。

2. 光纤的色散:根据测量数据,绘制色散值与光纤长度的关系曲线。

色散是指光信号在光纤中传输过程中不同波长的光速度差异引起的现象。

从曲线中可以观察到色散值随着光纤长度的增加而增加,这是由于光纤的折射率剖面引起的。

通过计算色散系数,可以评估光纤对不同波长光信号的传输性能。

五、实验结论通过本实验,我们了解到光纤的光学特性与其折射率、长度等因素密切相关。

光纤的损耗和色散是影响光纤传输质量的重要参数。

在实际应用中,需要根据具体需求选择合适的光纤类型和长度,以达到最佳的传输效果。

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响光纤是一种用于传输光信号的细长玻璃纤维或塑料纤维,它具有高传输速度、大带宽和抗干扰能力强等优点,因此在通信、医疗、军事等领域得到广泛应用。

而光纤的性能受到拉丝工艺的影响,拉丝工艺对光纤性能的影响是十分重要的。

拉丝工艺是光纤制造的关键环节之一,其质量直接影响光纤的性能和品质。

光纤制造的一般工艺为:原材料预处理、预成型、拉丝、包覆、涂层、复合、割断、烤焙等。

在整个工艺中,拉丝工艺是至关重要的步骤,影响着光纤的质量和性能。

拉丝工艺对光纤的几何尺寸和光学性能有着直接的影响。

通过拉丝工艺能够控制光纤的直径、圆整度、粗糙度等几何参数。

拉丝过程中,拉力和温度的控制可以调节光纤的拉丝速度和拉丝倍数,从而控制光纤的直径。

而光纤的直径和圆整度对其的传输损耗和带宽有着直接的影响。

拉丝工艺还能影响光纤的纤芯折射率、色散等光学参数,进而影响其传输性能和光学性能。

拉丝工艺对光纤的机械性能也有着重要的影响。

光纤在使用过程中会受到一定的拉伸、弯曲和挤压等力,因此其机械强度和耐久性是十分重要的。

拉丝工艺中拉力和温度的控制可以影响光纤的拉伸性能、弯曲性能和挤压性能。

通过拉丝工艺的调节,可以实现光纤的高强度、高韧性和高抗压性,提高其在使用过程中的稳定性和可靠性。

拉丝工艺还对光纤的表面质量和包覆质量有着直接的影响。

拉丝工艺中的涂层和封闭工艺不仅能保护光纤,还能影响其的表面粗糙度、清洁度和润湿性。

通过控制涂层工艺可以实现光纤表面的附着力和耐磨性,保证光纤在使用过程中不易受到外界环境的影响。

拉丝工艺还对光纤的色散和非线性度有着一定的影响。

拉丝工艺中纤芯的抽拉过程会影响纤芯的非均匀性,进而影响其色散和非线性度。

通过拉丝工艺的调节可以改善光纤的色散特性和非线性特性,提高其在长距离和高速传输中的性能表现。

拉丝工艺对光纤的性能有着多方面的影响,包括几何尺寸、光学性能、机械性能、表面质量、色散和非线性度等方面。

通过优化拉丝工艺,可以提高光纤的质量和性能,满足不同领域对光纤的不同需求。

光纤执行标准

光纤执行标准

标题:光纤执行标准引言:光纤是一种具有广泛应用的传输介质,其高带宽和低损耗的特点使其成为现代通信和数据传输领域的重要组成部分。

为了确保光纤的质量和可靠性,制定和执行相应的标准是至关重要的。

本文将介绍光纤执行标准,包括其定义、分类、检测方法、技术要求和质量控制等方面。

一、光纤执行标准的定义光纤执行标准是针对光纤产品制定的一系列规范和要求,旨在确保产品的质量和性能达到一定的标准。

这些标准通常由国际标准组织或相关行业协会制定,以指导生产厂商的生产和消费者的选购。

二、光纤的分类1. 根据光纤结构分类:- 单模光纤:用于长距离通信,具有较小的模式色散和损耗。

- 多模光纤:用于短距离通信,具有较大的模式色散和损耗。

- 特殊光纤:如光纤光栅、偏振保持光纤等,用于特殊应用领域。

2. 根据光纤材料分类:- 玻璃光纤:主要由二氧化硅等无机物质构成。

- 塑料光纤:主要由聚苯乙烯等有机物质构成。

三、光纤的检测方法1. 光学性能检测:包括传输损耗、插入损耗、回波损耗、带宽等参数的测量。

2. 机械性能检测:包括拉伸强度、弯曲半径、耐磨性等参数的测试。

3. 环境适应性检测:包括温度变化、湿度变化、振动等环境条件下的性能测试。

四、光纤的技术要求和质量控制1. 光学性能要求:要求光纤具有低损耗、高带宽、低色散等优良的光学特性。

2. 机械性能要求:要求光纤具有一定的拉伸强度、抗弯曲能力和耐磨性等机械特性。

3. 环境适应性要求:要求光纤能在各种环境条件下稳定工作,如温度变化、湿度变化和振动等。

质量控制是确保光纤产品符合标准的关键环节,包括以下方面:1. 原材料管理:确保所使用的玻璃或塑料等原材料符合相关标准。

2. 生产过程控制:对光纤的拉伸、涂覆、包覆等生产过程进行严格控制。

3. 产品检测:通过光学性能测试、机械性能测试和环境适应性测试等手段对成品进行全面检测。

结论:光纤执行标准对于保证光纤产品的质量和性能具有重要的意义。

通过制定和执行相应的标准,可以指导生产厂商的生产过程,确保产品符合规范;同时也为消费者提供了选购的依据,增强了产品的可信度和市场竞争力。

光纤的测量

光纤的测量

(3)用一根性能和被测光纤相同的辅助光纤代替 光纤耦合长度作用。
剪断法光纤损耗测试系统图
插入法
插入法是在注入装置的输出和光检 测器的输入之间用1~2m长的短光纤直 接连接,测出光功率Pi,然后在两者 间插入被测光纤,再测出光功率Po, 据此计算损耗系数。
插入法光纤损耗测试系统图
调制 振荡器
被测光纤
பைடு நூலகம்、带宽测量
光纤带宽是色散在频域的反映, 多模光纤的带宽主要由模式色散引 起。带宽的测试方法主要有时域法 和频域法。
• 时域法——又称脉冲展宽法。利 用测量通过光纤的光脉冲产生的 脉冲宽度确定光纤的带宽。
• 频域法——又称扫频法,通过光 纤的频率响应来测量带宽,此法 多用于多模光纤的测量。
时域法测试系统框图
光纤的测量
主要内容
• 一、损耗测量 • 二、带宽测量 • 三、色散测量 • 四、截止波长测量
光纤的特性参数
• 几何特性——纤芯与包层的直径、偏 心度、非圆率
• 光学特性——折射率分布、数值孔径、 模场直径和截止波长
• 传输特性——损耗、带宽、色散
一、损耗测量
• 剪断法 • 插入法 • 后向散射法
频域法测试系统框图
频域法测试曲线
三、色散测量
• [测试方法]: 相移法是测量单模光纤的色散的方法。
• [相移法测量原理] 用角频率为ω的正弦信号调制的光波,经长度为L的
单模光纤传输后,其时延取决于光波长λo。不同时延 产生不同的相位φ,用波长为λ1和λ2的受调制光波, 分别通过被测光纤,产生的时延差为Δτ,相移为Δφ, 则长度为L的光纤总色散为
C()L
光纤色散系数为 C() (L)
相移法测量系统框图

光学产品基础知识

光学产品基础知识
纤芯直径


(50/62.5) ±3.0 µm 包层直径 125.0±1.0 µm 纤芯不圆度 6% 包层不圆度 1% 芯径/包层不圆度 6% 涂层直径 245 ±10 µm
几何特性_单模光纤
芯径不圆度 包层直径
五、常见的光学无源器件-3
光分路器(Splitter)的结构
五、常见的光学无源器件-4 (Fiber Array)
Fiber Array
五、常见的光学无源器件-5
隔离器(Isolator)
只容许光单向传播
五、常见的光学无源器件-6
波分复用器(WDM-Wavelength
Division
CH1 CH2 CH3 CH4 CH5 CH6
IL
1360nm
1460nm Wavelength
1560nm
CH7 CH8
七、基本光学参数-6
PDL是光器件或系统在所有偏振状态下的最
大传输差值。它是光设备在所有偏振状态下 最大传输和最小传输的比率。 PDL定义如下: PDL=-10log〔Tmax/Tmin〕 其中Tmax和Tmin分别表示测试器件(DUT)的 最大传输和最小传输。
七、基本光学参数-10
9、工作波段: Operating Bandwidth @0.5dB / 1dB / 3dB
七、基本光学参数-11
10、中心波长:Center
11、串扰:Crosstalk AX:Adjacent Channel XT AX-:Left Channel XT AX+:Right Channel XT NX:Non-adjacent channel XT TX:Total XT
七、基本光学参数-7 (Fiber
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤的几何及光学性能
1. 光纤概述
光纤是光波传输的介质,是由介质材料构成的圆柱体,分为芯子和包层两部分。

光波沿芯子传播。

在实际工程应用中,光纤是指由预制棒拉制出纤丝经过简单被复后的纤芯,纤芯再经过被复,加强和防护,成为能够适应各种工程应用的光缆。

光波在光纤中的传播过程是一个复杂的电磁场的边界问题,一般来说,光纤芯子的直径要比传播光的波长高几十倍以上,因此利用几何光学的方法定性分析是足够的,而且对问题的理解也很简明、直观。

当一束光纤投射到两个不同折射率的介质交界面上时,发生折射和反射现象。

对于多层介质形成的一系列界面,若折射率n1>n2>n3…>nm,则入射光线在每个界面的入射角逐渐加大,直到形成全反射。

由于折射率的变化,入射光线受到偏转的作用,传播方向改变。

光纤由芯子、包层和套层组成。

套层的作用是保护光纤,对光的传播没有什么作用。

芯子和包层的折射率不同,其折射率的分布主要有两种形式:连续分布型(又称梯度分布型)和间断分布型(又称阶跃分布型)。

当入射光经过光纤端面的折射后进入光纤,除了与轴向方向一致的光沿直线传播外,其余的光线则投射到芯子和包层的交界面:一种在界面形成全反射,这些光线将与光轴保持不变的夹角,呈锯齿状无损耗地在光纤芯子内向前传播,称之为传播光;另外一种在界面处只有一部分形成反射,还有一部分折射进入包层,最后被套层吸收,反射的光线再次到达界面时又会有一部分损耗,因而不能传播,称为非传播光。

因此,光纤芯子和包层的折射率及折射率的分布与光纤的转播特性有密切关系。

2. 光纤几何尺寸参数
光纤的尺寸参数是光纤的最基本的标准化参数。

尺寸参数除了对光纤的光传输、机械等性能有影响外,它们还对光纤的连接损耗的大小起着至关重要的作用。

例如,单纤接续则要求被接光纤纤芯尺寸参数相同,但是光纤带的接续则要用光
纤外径作为纤芯对准的参数,故要求光纤的外径应均匀一致。

光纤的尺寸参数标准既是光纤制造的几何尺寸依据,又是光纤制造中严格控制的指标,还是判别光纤产品合格与否的质量标准。

众所周知,光纤玻璃几何尺寸规定为圆对称结构。

因此,2000年10月国际电信联盟电信标准化部(ITU-T)最新推荐的用来表征光纤尺寸的特征参数是:包层、包层中心、包层直径、包层直径偏差、包层容差范围、包层不圆度、芯中心、预涂覆层直径、缓冲层直径和光纤长度变化等。

光纤尺寸参数的测量方法有:近场图像法、折射近场法、俯视法、传输近场法等。

借助这些几何尺寸参数测量方法,可对光纤玻璃的几何尺寸参数进行单个几何尺寸参数测量,也可进行多个几何参数测量。

工程应用中通常只测量其中几项主要参数。

3. 光纤传输特性和光学特性
光纤的传输特性和光学特性对光纤通信系统的工作波长、传输速率、传输距离和信息质量等都有着至关重要的作用。

光纤的传输特性和光学特性具体涉及到的适用特性有:衰减、色散、截止波长、模场直径、基带响应、数值孔径、有效面积、光学连续性和微弯敏感性等等。

其中主要特性包括:
1)衰减特性
衰减是光纤中光功率减少量的一种度量,它取决于光纤的工作(波长)类型和长度,并受测量条件的影响。

通常,对于均匀光纤来说,可用单位长度的衰减,既衰减系数反映光纤的衰减性能的好坏。

在鉴别光纤性能和系统设计等实际应用中,人们最感兴趣的是光纤在工作波长下的衰减系数,如在工作波长λ=850nm、1310nm和1550nm等处的衰减系数。

衰减系数随波长变化的曲线被称为衰减谱,其能直观且形象地反映出在一定波长范围内整个光纤长度上的衰减信息。

2)色散
光纤中色散主要是指集中的光能,例如光脉冲经过光纤传输后在光纤输出端发生能量分散,导致传输信号畸变。

在光纤数字通信系统中,由于信号的各频率
成分或各模式成分的传输速率不同,信号在光纤中传输一段距离后,将互相散开,脉冲展宽。

严重时,前后脉冲将互相重叠,形成码间干扰,增加误码率,影响了光纤的带宽,限制了光纤的传输容量和传输距离。

色散是单模光纤的重要参数之一。

研究光纤的色散特性,对合理地设计光纤折射率剖面结构,改善光纤的传输特性是极为重要的。

值得指出的是:G.653、G.655单模光纤都是由优化光纤工作波长处的材料色散和波导色散的方法,即通过改变光纤波导结构研制出来的新型光纤。

单模光纤的色散决定着光纤所能传输的速率、距离、容量,对于超常距离、超大容量、超高速率的通信系统有着极为重要的意义。

色散和衰减是系统设计的光中继段受限距离的两个重要参数。

3)偏振模色散
偏振模色散(PMD,Polarization Mode Dispersion)是指单模光纤中的两个正交偏振模之间的差分群时延,它在数字系统中使脉冲展宽产生误码。

4)截止波长
当光纤的结构参数(折射率与芯径)确定后,光纤是否工作于单模状态完全
决定于其中传播光的波长。

由于最临近其模LP
01的高阶模是LP
11。

因此我们定义
使LP
11
模截止(完全不能传输)的波长为单模光纤的截止波长λc。

λc定义为总功率,包括注入的高阶模与基模光功率之比减小到小于0.1dB时所对应的更长
波长。

按照这个定义,当各次模基本上受到均匀激励时,二阶模LP
11比基模Lp
10
衰减大的波长就是截止波长。

通常,人们所指的截止波长是实际测得的截止波长。

实际测量研究表明,光纤的截止波长与光纤的长度和光纤所处的状态,如弯曲和受到的应力作用等有关。

为了使实际测得的截止波长更具工程实用价值,国际电信联盟标准化部门在ITU-T G.650(2000)中将实际测量的截止波长分为三类:光缆截止波长、光纤截止波长和跳线光缆截止波长。

5)模场直径
模场直径是单模光纤所特有的一个重要参数。

它的标称值和容差大小与光纤的连接损耗和抗弯性有着密切的关系,而且可以从模场直径随波长的变化谱估算单模光纤的色散值、单模光纤连接损耗、弯曲损耗和单模光纤有效面积等。

因此,
在单模光纤生产光缆、施工接续和实际使用中,人们非常重视模场直径这一参数。

相关文档
最新文档