高效液相色谱法

合集下载

高效液相色谱法

高效液相色谱法

2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;

高效液相色谱法 HPLC

高效液相色谱法 HPLC
点是固定液层的耐溶剂冲刷性能差,固 定液易流失,从而导致柱效降低,被键 合相填料所取代。 3.正相色谱-固定液极性 > 流动相极性(NLLC) 极性小的组分先出柱,极性大的组分后出柱, 适于分离极性组分。 反相色谱-固定液极性 < 流动相极性(RLLC) 极性大的组分先出柱,极性小的组分后出柱适 于分离非极性组分。
1)硅胶: <>无定型硅胶 最早使用,传质慢、柱效低 <>薄壳型硅胶 直径为30~40μm的玻璃珠表面涂布一层1~2μm 厚的硅胶微粒,孔径均一、渗透性好、传质 快,但柱容量有限。 <>全多孔球型硅胶 粒度一般为5~10μm,颗粒和孔径的均一性都比 前两种好,柱容量大,为当今液固色谱固定相 的主体,也是键合固定相的主要基质。
2.进样系统 a 隔膜进样(高分子有机硅胶垫→进样室) >GC系统压力较小,可以 >HPLC系统压力太大,须停泵进样(早期) b 阀进样:不必停泵,六通阀
3.分离系统-色谱柱 >直径4~6mm,柱长10~30cm,多为不锈钢材料 >柱效评价:色谱系统适应性试验 R,n,fs(拖尾因子) >色谱柱维护 >预柱和预饱和柱
(二)反相键合相固定相
1.分离机制:疏溶剂理论 正相——流动相与溶质排斥力强, 作用时间↑, k↑,组分tR↑ 反相——流动相与溶质排斥力弱, 作用时间↓, k↓,组分tR↓

二、HPLC与GC差别
1.分析对象的区别 GC:
适于能气化、热稳定性好、且沸点较低的样品; 但对高沸点、挥发性差、热稳定性差、离子型 及高聚物的样品,尤其对大多数生化样品不可 检测。(占有机物的20%)
HPLC: 适于溶解后能制成溶液的样品(包括有机介质溶 液),不受样品挥发性和热稳定性的限制,对分 子量大、难气化、热稳定性差的生化样品及高分 子和离子型样品均可检测用途广泛。(占有机物 的80%)

高效液相色谱法简介

高效液相色谱法简介

高效液相色谱的特点
高压——压力可达150~300 kg/cm2。色谱
柱每米降压为75 kg/cm2以上。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中
同时分离成份可达100种。
高灵敏度——紫外检测器灵敏度可达0.01ng。
同时消耗样品少。
第二节
塑料块 Teflon
1 cm
工作电极 (Pt, Au, 碳糊)
e.电导检测器
电导检测器主要用于离子色谱的检测。 原理: 根据待测物在一些介质中电离后所产 生的电导(电阻的倒数)变化来测量电离物质 的含量。 电导检测器的主要部件是电导池。其响应 受温度影响较大,因此需要将电导池置于恒温 箱中。另外,当 pH>7时,该检测器不够灵敏。 电导检测器不能用于梯度洗脱。
◆恒流泵
注射型泵------输出精确,无脉动,需更换溶剂而中断工作。
往复型泵------造价低廉,溶剂更换方便,但存在脉动。 (使用较多) 对流量变化敏感的检测器会有噪声 干扰,此时可连接一脉动阻尼器。
◆恒压泵--------压力恒定,但流量不恒定(现在已经较少使用)。
输液泵操作注意事项:
防止固体微粒进入泵体 流动相不应含有腐蚀性物质 防止溶剂瓶内的流动相被用完 不超过规定的最高压力 流动相一般应该先脱气
F=2.3QKI0εCl
Q为量子产率,K为荧光效率,ε为摩尔吸光系 数,l为光径长度。
F=KC
特点:选择性好,
专属型检测器,灵敏 度比紫外检测器高 (检测限10-10 g/ml) 对多环芳烃,维 生素 B 、黄曲霉素、 卟啉类化合物、农药 、药物、氨基酸、甾 类化合物等有响应;
c. 示差折光检测器

hplc高效液相色谱法

hplc高效液相色谱法

HPLC高效液相色谱法简介高效液相色谱法(HPLC)是一种利用液体作为流动相,通过高压输液系统,将样品中的各组分在固定相和流动相之间进行分配或吸附等作用而实现分离和检测的色谱技术。

HPLC具有分离效率高、灵敏度高、选择性强、分析速度快、样品适用范围广等优点,已成为化学、生物、医药、环境等领域中最重要的分析方法之一。

本文将简要介绍HPLC的基本原理、仪器组成、常用的色谱模式和应用领域,以期对HPLC感兴趣的读者有所帮助。

一、HPLC的基本原理HPLC的基本原理是利用样品中的各组分在固定相和流动相之间的不同亲和力,使其在色谱柱内以不同的速度移动,从而达到分离的目的。

固定相是填充在色谱柱内的颗粒状物质,可以是固体或涂于固体载体上的液体。

流动相是通过高压泵送入色谱柱的溶剂或溶剂混合物,可以是极性或非极性的。

样品是通过进样器注入流动相中,并随流动相进入色谱柱。

当样品中的各组分经过固定相时,会发生吸附、分配、离子交换、排阻等作用,导致它们在固定相中停留不同的时间。

这个时间称为保留时间(retention time),通常用tR表示。

保留时间是反映样品组分在色谱柱内分离程度的重要参数,不同的组分有不同的保留时间。

当样品组分从色谱柱出口流出时,会被检测器检测到,并产生一个信号。

这个信号随时间变化而变化,形成一个色谱峰(chromatographic peak)。

色谱峰的位置反映了样品组分的保留时间,色谱峰的面积或高度反映了样品组分的含量或浓度。

将检测器信号随时间变化而绘制出来,就得到了一条色谱图(chromatogram)。

色谱图上可以看到不同的色谱峰,每个峰对应一个样品组分。

通过比较保留时间和色谱峰面积或高度,就可以对样品进行定性和定量分析。

二、HPLC仪器组成HPLC仪器主要由以下几个部分组成:溶剂供给系统(solvent delivery system):负责提供恒定压力和流速的流动相,并将溶剂混合成所需比例。

高效液相色谱法

高效液相色谱法

第八章高效液相色谱法(High Performance Liquid Chromatograph)第一节概述(Generalization)以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。

HPLC是20世纪70年代初发展起来的一种新的色谱分离分析技术。

具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)的特点,适用于高沸点、热不稳定有机及生化试样的分离分析。

HPLC基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、或数据处理系统记录色谱信号再进行数据处理而得到分析结果。

高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。

目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。

将固定液的官能团键合在载体上,形成的固定相称为化学键合相,具有固定液不易流失的特点,一般认为有分配与吸附两种功能,常以分配作用为主。

C18(ODS)是最常使用的化学键合相。

根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。

《中国药典》中有50种中成药的定量分析采用HPLC法,在中药制剂分析中,大多采用反相键合相色谱法。

一、高效液相色谱法的特点目前经典LC主要用于制备,若用于分析则采用脱机或非连续检测。

经典LC填料缺陷,通常是填料粒度大、范围宽、不规则,不易填充均匀,扩散和传质阻力大,谱带展宽加大。

它存在致命弱点:速度慢、效率低和灵敏度低。

HPLC填料(高效固定相)颗粒细、直径范围窄、能承受高压。

高效液相色谱法

高效液相色谱法

高效液相色谱法高效液相色谱法(《中国药典》2010年版二部附录V D)系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。

注入的供试品,由流动相带人柱内,各组分在柱内被分离,并依次进入检测器,由积分仪或数据处理系统记录和处理色谱信号。

1 对仪器的一般要求所用的仪器为高效液相色谱仪,由输液泵、进样器、色谱柱、检测器和色谱数据处理系统组成,仪器应按现行国家技术监督局"液相色谱仪检定规程"定期检定并符合有关规定。

1.1 色谱柱最常用的色谱柱填充剂为化学键合硅胶。

反相色谱系统使用非极性填充剂,以十八烷基硅烷键合硅胶最为常用,辛基硅烷键合硅胶和其他类型的硅烷键合硅胶(如氰基键合硅烷和氨基键合硅烷等〉也有使用。

正相色谱系统使用极性填充剂,常用的填充剂有硅胶等。

离子交换色谱系统使用离子交换填充剂;分子排阻色谱系统使用凝胶或高分子多孔微球等填充剂;对映异构体的分离通常使用手性填充剂。

填充剂的性能(如载体的形状、粒径、孔径、表面积、键合基团的表面覆盖度、含碳量和键合类型等)以及色谱柱的填充,直接影响供试品的保留行为和分离效果。

孔径在15nm(lnm= lOA)以下的填料适于分析分子量小于2000的化合物,分子量大于2000的化合物则应选择孔径在30nm以上的填料。

除另有规定外,分析柱的填充剂粒径一般在3~10µm之间。

粒径更小(约2µm)的填充剂常用于填装微径柱(内径约2mm)。

使用微径柱时,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配;如有必要,色谱条件也需作适当的调整。

当对其测定结果产生争议时,应以品种正文规定的色谱条件的测定结果为准。

以硅胶为载体的键合固定相的使用温度通常不超过40°C,为改善分离效果可适当提高色谱柱的使用温度,但不宜超过60°C。

流动相的pH值应控制在2~8之间。

当pH值大于8时,可使载体硅胶溶解;当pH值小于2时,与硅胶相连的化学键合相易水解脱落。

高效液相色谱法

高效液相色谱法

(2)化学键合固定相 ) B. 极性键合相 极性键合相指键合有机分子 中含某些极性基团,与空白硅胶相比, 中含某些极性基团,与空白硅胶相比,其极性 键合相表面能量分布均匀,是一种改性的硅胶, 键合相表面能量分布均匀,是一种改性的硅胶, 常用的极性键合相有氨基、氰基等。 常用的极性键合相有氨基、氰基等。氨基键合 相是分离糖类最常用的固定相,常用乙腈-水 相是分离糖类最常用的固定相,常用乙腈 水
二、液相色谱的流动相
1. 流动相特性
(mobile phases of LC) )
(2)化学键合固定相 )
化学键合固定相是应用最广的色谱法。 化学键合固定相是应用最广的色谱法。将固定液的官能团键
合在载体上形成的固定相称为化学键合相,其特点是不流失, 合在载体上形成的固定相称为化学键合相,其特点是不流失, 一般认为有分配与吸附两种功能。 一般认为有分配与吸附两种功能。 a. 硅氧碳键型: 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 硅氧硅碳键型: 稳定,耐水、耐光、耐有机溶剂,应用最广 稳定,耐水、耐光、耐有机溶剂, c. 硅碳键型: 硅碳键型: d. 硅氮键型: 硅氮键型: ≡Si—C ≡Si—N
4.6
高效液相色谱法
高效液相色谱法(high pressure Liquid 高效液相色谱法 chromatography,HPLC)是利用物质在两 , 是利用物质在两 相之间吸附或分配的微小差异达到分离的目的。 相之间吸附或分配的微小差异达到分离的目的。 当两相作相对移动时, 当两相作相对移动时,被测物质在两相之间做 反复多次的分配, 反复多次的分配,这样使原来微小的差异产生 了很大的分离效果,达到分离、 了很大的分离效果,达到分离、分析和测定一 些理化常数的目的。 些理化常数的目的。

第五章高效液相色谱法

第五章高效液相色谱法
2019/7/25
数据处理系统
打开工作站,选择工作通道 编辑方法文件,设置方法名称、运行时间及定量方法 输入路径名、样品名、操作者等 样品分离完成后,记录谱图文件名和色谱峰峰高、峰面积和保留值等
2019/7/25
四. 液相色谱固定相
1.液-固色谱固定相
种类:硅胶、氧化铝、分子筛、聚酰胺等; 结构类型:全多孔型和薄壳型; 粒度:5~10 μm;
(3)硬质凝胶 多孔硅胶、多孔玻珠等; 化学稳定性、热稳定性好、机械强度大,流动相性质影响
小,可在较高流速下使用。 可控孔径玻璃微球,具有恒定孔径和窄粒度分布。
2019/7/25
气相色谱中的固定相原则上都可以用于液相色谱,其选 用原则与气相色谱一样。
选择合适的固定相,降低填料粒度可显著提高柱效,但 在高效液相色谱中,分离柱的制备是一项技术要求非常高的 工作,一般很少自行制备。
2019/7/25
光电二极管阵列检测器
光电二极管阵列检测器:1024个二极管阵列,各检测特 定波长,计算机快速处理,三维立体谱图,如图所示。
2019/7/25
二极管阵列检测器
样品池 D2 / W 灯
光栅
每一组分可在每一波 长处得到一吸光度值
二极管阵列
二极管阵列检测器的优点
1)采集三维谱图 2)峰纯度检验 3)光谱库检索 4)可以发现单波长检测时未测到的峰
2019/7/25
2. 液-液色谱固定相
(1)全多孔型担体 由氧化硅、氧化铝、硅藻土等制成的多孔球体;早期采
用100μm的大颗粒,表面涂渍固定液,性能不佳已不多见; 现采用10μm以下的小颗粒,化学键合制备柱填料;
(2)表面多孔型担体 (薄壳型微珠担体) 30~40μm的玻璃微球,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效液相色谱法高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。

注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由记录仪、积分仪或数据处理系统记录色谱信号。

1.对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。

色谱柱的内径一般为3.9~4.6mm,填充剂粒径为3~10um。

超高效液相色谱仪是适应小粒径(约2um)填充剂的耐超高压、小进样器、低死体积、高灵敏度检测的高效液相色谱仪。

(1)色谱柱反相色谱柱:以键合非极性基团的载体为填充剂而成的色谱柱。

常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。

正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。

常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。

氨基键合硅胶和氰基键合硅胶也可用作反向色谱。

手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径与长度,填充剂的性状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。

温度影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。

为改善分离效果可适当提高色谱柱的温度,但一般不超过60℃。

残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。

残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值得流动相,适合于pH值小于2或大于8的流动相。

(2)检测器最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。

紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。

紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定范围内呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经过对数转换。

不同的检测器,对流动相的要求不同。

如采用紫外检测器,所用流动相应至少符合紫外-可见分光光度法(附录5)对溶剂的要求;采用低波长检测时,还应考虑有机相中有机溶剂的截止使用波长,并选用色谱级有机溶剂。

蒸发光散射检测器和质谱检测器通常不允许使用含不挥发盐组分的流动相。

(3)流动相反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。

流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。

用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。

正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。

品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。

调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变范围为0.7X~1.3X ;当X大于33%时,允许改变范围为(X-10%)~(X + 1 0%)。

若需使用小粒径(约2um)填充剂,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配;如有必要,色谱条件也应作适当的调整。

当对其测定结果产生争议时,应以品种项下规定的色谱条件的测定结果为准。

当必须使用特定牌号的色谱柱方能满足分离要求时,可在该品种正文项下注明。

2.系统适用性试验色谱系统的适用性试验通常包括理论板数、分离度、灵敏度、拖尾因子和重复性等五个参数。

按各品种正文项下要求对色谱系统进行适用性试验,即用规定的对照品溶液或系统适用性试验溶液在规定的色谱系统进行试验,必要时,可对色谱系统进行适当调整,以符合要求。

(1)色谱柱的理论板数(n)用于评价色谱柱的分离效能。

由于不同物质同一色谱柱上的色谱行为不同,采用理论板数作为衡量柱效能的指标时,应指明测定物质,一般为待测组分或内标物质的理论板数。

在规定的色谱条件下,注人供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分色谱峰或内标物质色谱峰的保留时间t R和峰宽(W ) 或半高峰宽(W h/2) , 按n=16(t R/W)2或n=5.54(t R/W h/2)2计算色谱柱的理论板数。

t R、W 、W h/2可用时间或长度计(下同),但应取相同单位。

(2)分离度(R)用于评价待测物质与被分离物质之间的分离程度,是衡量色谱系统分离效能的关键指标。

可以通过测定待测物质与已知杂质的分离度,也可以通过测定待测物质与某一指标性成分(内标物质或其他难分离物质)的分离度,或将供试、品或对照品用适当的方法降解,通过测定待测物质与某一降解产物的分离度,对色谱系统分离效能进行评价与调整。

无论是定性鉴别还是定量测定,均要求待测物质色谱峰与内标物质色谱峰或特定的杂质对照色谱峰及其他色谱峰之间有较好的分离度。

除另有规定外,待测物质色谱峰与相邻色谱峰之间的分离度应大于1 .5。

分离度的计算公 式为:R= 或R=式中 t R2为相邻两峰中后一峰的保留时间;t R1为相邻两峰中前一峰的保留时间;W 1、W 2及W1.h/2、W2.h/2为此相邻两峰的峰宽及半高峰宽(如图)。

当都测定结果有异议时,色谱柱的理论板数(n )和分离度(R )均以峰宽(W )的计算结果为准。

(3)灵敏度 用于评价色谱系统检测微量物质的能力,通常以信噪比(S /N )来表示。

通过测定一系列不同浓度的供试品或对照品溶液来测定信噪比。

定量测定时,信噪比应不小于1 0 ;定性测定时,信噪比应不小于3。

系统适用性试验中可以设置灵敏度实验溶液来评价色谱系统的检测能力。

(4)拖尾因子(T ) 用于评价色谱峰的对称性。

拖尾因子计算公式为: 2×(t R2-t R1) W 1+W 2 2×(t R2-t R1)1.70×(W 1,h/2+W 2,h/2)W0.05hT=───2d1式中W0.05h为5%峰高处的峰宽;d1为峰顶点至峰前沿之间的距离。

以峰髙作定量参数时,除另有规定外,T值应在0. 95~1. 05之间。

峰面积法测定时,若拖尾严重,将影响峰面积的准确测量。

必要时,应对各品种项下对拖尾因子作出规定。

以峰面积作定量参数时,一般的峰拖尾或前伸不会影响峰面积积分,但严重拖尾会影响基线和色谱峰起止的判断和峰面积积分的准确性,此时应在品种正文项下对拖尾因子作出规定。

(5)重复性用于评价色谱系统连续进样时响应值的重复性能。

采用外标法时,通常取各品种项下的对照品溶液,连续进样5次,除另有规定外,其峰面积测量值的相对标准偏差应不大于 2.0 % ;采用内标法时,通常配制相当于80%、100%和120%的对照品溶液,加人规定量的内标溶液,配成3种不同浓度的溶液,分别至少进样2次,计算平均校正因子,其相对标准偏差应不大于2.0%3.测定法(1)内标法按各品种项下的规定,精密称(量)取对照品和内标物质,分别配成溶液,精密量取各溶液,配成校正因子测定用的对照溶液。

取一定量注入仪器,记录色谱图。

测量对照品和内标物质的峰面积或峰高,按下式计算校正因子:AS/cS校正因子(f)=────AR/cR式中AS为内标物质的峰面积或峰高;AR为对照品的峰面积或峰高;cS为内标物质溶液的浓度;cR为对照品溶液的浓度。

再取各品种项下含有内标物质的供试品溶液,注入仪器,记录色谱图,测量供试品中待测成分(或其杂质)和内标物质的峰面积或峰高,按下式计算含量:AX含量(cX)=f×────A’S/c’S式中AX为供试品(或其杂质)峰面积或峰高;cX为供试品(或其杂质)溶液的浓度;A’S为内标物质的峰面积或峰高;c’S为内标物质的浓度;f为较正因子。

采用内标法,可避免应样品前处理及进样体积误差对测定结果的影响。

(2)外标法按各品种项下的规定,精密称(量)取对照品和供试品,配制成溶液,分别精密取一定量,注入仪器,记录色谱图,测量对照品和供试品溶液中待测成分的峰面积(或峰高),按下式计算含量:AX含量(cX)=cR──AR式中各符号意义同上。

由于微量注射器不易精确控制进样量,当采用外标法测定供试品中某杂质或主成分含量时,以定量环或自动进样器进样为好。

(3)加校正因子的主成分自身对照法测定杂质含量时,可采用加校正因子的主成分自身对照法。

在建立方法时,按各品种项下的规定,精密称(量)取杂质对照品和待测成分对照品各适量,配制测定杂质校正因子的溶液,进样,记录色谱图,按下式计算待测物的校正因子。

校正因子=式中 cA 为待测物的浓度;AA 为待测物的峰面积或逢高;cB 为参比物质的浓度;AB 为参比物质的峰面积或峰高。

也可精密称(量)取主成分对照品和杂质对照品各适量,分别配制成不同浓度的溶液,进样,记录色谱图,绘制主成分浓度和杂质浓度对其峰面积的回归曲线,以主成分回归直线斜率与杂质回归直线斜率的比计算校正因子。

校正因子可直接载人各品种项下,用于校正杂质的实测峰面积。

需作校正计算的杂质,通常以主成分为参比,采用相对保留时间定位,其数值一并载人各品种项下。

测定杂质含量时,按各品种项下规定的杂质限度,将供试品溶液稀释成与杂质限度相当的溶液,作为对照溶液;进样,记录色谱图,必要时,调节纵坐标范围(以噪声水平可接受为限)使对照溶液的主成分色谱峰的峰高约达满量程的10%~25% 。

除另有规定外,通常含量低于0 .5% 的杂质,峰面积的相对标准偏差(RSD)应小于10% ;含量在0. 5%~2%的杂质,峰面积的RSD 应小于5 % ;含量大于2%的杂质,峰面积的RSD 应小于2%。

然后,取供试品溶液和对照溶液适量,分别进样,除另有规定外,供试品溶液的记录时间,应为主成分色谱峰保留时间的2倍,测量供试品溶液色谱图上各杂质的峰面积,分别乘以相应的校正因子后与对照溶液主成分的峰面积比较,计算各杂质含量。

(4)不加校正因子的主成分自身对照法测定杂质含量时,若无法获得待测杂质的校正因子,或校正因子可以忽 略,也可采用不加校正因子的主成分自身对照法。

同上述(3 )法配制对照溶液、进样调节纵坐标范围和计算峰面积的相对标准偏差后,取供试品溶液和对照品溶液适量,分别进样。

除另有规定外,供试品溶液的记录时间应为主成分色谱峰保留时间的2 倍,测量供试品溶液色谱图上各杂质的峰面积并与对照溶液主成分的峰面积比较,依法计算杂质含量。

相关文档
最新文档