染料敏化太阳能电池光谱响应测量系统的设计及准确测量
染料敏化太阳能电池的性能分析与优化研究

染料敏化太阳能电池的性能分析与优化研究随着各种环保能源的发展,太阳能电池成为了人们研究的热点之一。
而其中比较新兴的一种电池则是染料敏化太阳能电池。
染料敏化太阳能电池由吸光染料、电解液和电极三部分构成,这种电池的发明打破了传统晶体硅太阳能电池制造需要昂贵的硅素棒技术,其生产成本也更低,便于普及。
今天,我们就来聊一聊染料敏化太阳能电池的性能分析与优化研究。
一、性能分析1.1 理论上的能量转化效率染料敏化太阳能电池的能量转化效率是表征其性能的重要指标。
而其理论上的能量转化效率理论上可达到44%,比起传统的硅质太阳能电池,这个数值还是相当可观的。
而这个数值的大小并不是由吸光染料的光谱范围来决定的,而是取决于吸光染料的自由能和电子结构,电解液中的电子接受者以及电极材料的选择等因素。
1.2 实际上的能量转化效率然而,在实际应用中,染料敏化太阳能电池的能量转化效率却往往相差甚远。
这是由于光电转化效率、电荷收集效率和电荷注入效率受到多种因素的影响,如对电解质和染料的选择,以及电极材料和电池结构等因素。
因此,想要提高染料敏化太阳能电池的能量转化效率,就需要在这些指标上进行优化。
二、优化研究2.1 对电解质和染料的选择电解质与染料的选择是影响染料敏化太阳能电池性能的重要因素之一。
尤其是电解质,它们不仅需要保证电荷传输,还需要提供较高的离子浓度才能满足要求。
因此,研究者需要对各种电解质进行测试,找到最适合染料敏化太阳能电池的组合。
同样的,染料也需要根据电极材料和电解液的性质进行选择。
一般来说,要选择吸光能力好、电荷转移速率快、还原和氧化能力强的染料。
2.2 提高电荷收集效率提高电荷收集效率,是提高染料敏化太阳能电池能量转化效率的重要途径之一。
为了提高电荷收集效率,研究者们试用了多种提高电子传输能力的方法。
例如,将TiO2纳米结构通过表面修饰等方法,可以大幅提高电子传输效率,从而提高电荷收集效率。
2.3 增强电荷注入效率在染料敏化太阳能电池中,光电流强度和电荷注入效率之间存在明显的关联。
太阳能电池光谱响应测量系统介绍

太阳能电池量子效率/光谱响应/IPCE 测试系统,适用于普通高校与研究所等高端实验室。
独特的直流测量模式,可以测试几乎所有类型的太阳能电池,特别适合用于测量染料敏化太阳能电池(Dye-sensitized solar cell , DSSC )和光电化学电池(Photoelectrochemical cell, PEC ),以及钙钛矿结构电池 (Perovskite)。
◆ 测量范围350 ~ 1100 nm ,满足近紫外,可见光,近红外波段的全光谱测量。
◆ 光源系统光谱平滑,无毛刺,在可见光和近红外范围比传统氙灯更准确。
◆ 高强度单色光单位光强,测量重复性高于99%。
◆ 直流测量模式 (DC Mode),比传统交流测量模式速度更快。
◆ 直流测量模式加直流偏置光测量优化。
◆ 低杂散光暗箱,提高直流测量准确性。
◆EQE 和IQE 同点原位测试。
◆量子效率/光谱响应/IPCE◆ 各种光谱短路电流密度计算Jsc◆染料敏化电池 DSSC◆ 光电化学电池 PEC , RC cell ◆ 钙钛矿电池 Perovskite ◆ 晶硅电池 c-Si, mc-Si◆ 薄膜电池 a-Si ,CdTe, CIGS, OPV图1-2 HIT 结构电池测试结果图1-1 各式薄膜电池测试结果 ◆内量子效率测量◆ 反射率,透射率测量 ◆ 光电输出衰减测量 ◆ 电解池样品测量系统其他功能 太阳能电池光谱响应测量系统介绍 (特别适用于钙钛矿与染料敏化电池测量)系统特点系统应用系统主要功能图2 XQ灯源光谱平滑,在800 ~ 1000 nm没有特征峰,比传统Xe灯更加稳定,在可见光和近红外范围比传统氙灯更准确图3-1 出色的电子电路设计和优化,滤除直流偏置光产生的噪音信号,使得样品可以在有偏置光的情况下进行直流测量。
DSSC电池在不加偏置光情况下测量结果和加偏置光的结果完全吻合。
证明偏置光对小信号的读取测量没有影响图3-2 优异的测试重复性和设备稳定性,碲化镉电池实测重复性优于99.5%图4 对于钙钛矿电池等一些多缺陷样品,需要非常强的单位面积单色光强才能测量出准确的结果。
染料敏化太阳能电池实验报告(共9篇)

染料敏化太阳能电池实验报告(共9篇) 染料敏化太阳能电池实验天然染料敏化TiO2太阳能电池的制备及光电性能测试姓名:蓝永琛班级:新能源材料与器件学号:20112500041一、实验目的1. 了解染料敏化纳米TiO2太阳能电池的工作原理及性能特点。
2. 掌握合成纳米TiO2溶胶的方法、染料敏化太阳能电池光阳极的制备方法以及电池的组装方法。
3. 掌握评价染料敏化太阳能电池性能的方法。
二、实验原理略三、仪器与试剂一、仪器设备可控强度调光仪、紫外-可见分光光度计、超声波清洗器、恒温水浴槽、多功能万用表、电动搅拌器、马弗炉、红外线灯、研钵、三室电解池、铂片电极、饱和甘汞电极、石英比色皿、导电玻璃、镀铂导电玻璃、锡纸、生料带、三口烧瓶(500mL)、分液漏斗、布氏漏斗、抽虑瓶、容量瓶、烧杯、镊子等。
二、试剂材料钛酸四丁酯、异丙醇、硝酸、无水乙醇、乙二醇、乙腈、碘、碘化钾、TBP、丙酮、石油醚、绿色叶片、红色花瓣、去离子水四、实验步骤一、TiO2溶胶制备目前合成纳米TiO2的方法有多种,如溶胶-凝胶法、水热法、沉淀法、电化学沉积法等。
本实验采用溶胶-凝胶法。
(1)在500mL的三口烧瓶中加入1:100(体积比)的硝酸溶液约100mL,将三口烧瓶置于60-70oC的恒温水浴中恒温。
(2)在无水环境中,将5mL钛酸丁酯加入含有2mL异丙醇的分液漏斗中,将混合液充分震荡后缓慢滴入(约1滴/秒)上述三口烧瓶中的硝酸溶液中,并不断搅拌,直至获得透明的TiO2溶胶。
二、TiO2电极制备取4片ITO导电玻璃经无水乙醇、去离子水冲洗、干燥,分别将其插入溶胶中浸泡提拉数次,直至形成均匀液膜。
取出平置、自然晾干,再红外灯下烘干。
最后在450oC下于马弗炉中煅烧30min 得到锐态矿型TiO2修饰电极。
可用XRD粉末衍射仪测定TiO2晶型结构。
三、染料敏化剂的制备和表征(1) 叶绿素的提取采集新鲜绿色幼叶,洗净晾干,去主脉,称取5g剪碎放入研钵,加入少量石油醚充分研磨,然后转入烧杯,再加入约20mL石油醚,超声提取15min后过滤,弃去滤液。
染料敏化太阳能电池实验报告(共9篇)

染料敏化太阳能电池实验报告(共9篇) 染料敏化太阳能电池实验天然染料敏化TiO2太阳能电池的制备及光电性能测试姓名:蓝永琛班级:新能源材料与器件学号:20112500041一、实验目的1. 了解染料敏化纳米TiO2太阳能电池的工作原理及性能特点。
2. 掌握合成纳米TiO2溶胶的方法、染料敏化太阳能电池光阳极的制备方法以及电池的组装方法。
3. 掌握评价染料敏化太阳能电池性能的方法。
二、实验原理略三、仪器与试剂一、仪器设备可控强度调光仪、紫外-可见分光光度计、超声波清洗器、恒温水浴槽、多功能万用表、电动搅拌器、马弗炉、红外线灯、研钵、三室电解池、铂片电极、饱和甘汞电极、石英比色皿、导电玻璃、镀铂导电玻璃、锡纸、生料带、三口烧瓶(500mL)、分液漏斗、布氏漏斗、抽虑瓶、容量瓶、烧杯、镊子等。
二、试剂材料钛酸四丁酯、异丙醇、硝酸、无水乙醇、乙二醇、乙腈、碘、碘化钾、TBP、丙酮、石油醚、绿色叶片、红色花瓣、去离子水四、实验步骤一、TiO2溶胶制备目前合成纳米TiO2的方法有多种,如溶胶-凝胶法、水热法、沉淀法、电化学沉积法等。
本实验采用溶胶-凝胶法。
(1)在500mL的三口烧瓶中加入1:100(体积比)的硝酸溶液约100mL,将三口烧瓶置于60-70oC的恒温水浴中恒温。
(2)在无水环境中,将5mL钛酸丁酯加入含有2mL异丙醇的分液漏斗中,将混合液充分震荡后缓慢滴入(约1滴/秒)上述三口烧瓶中的硝酸溶液中,并不断搅拌,直至获得透明的TiO2溶胶。
二、TiO2电极制备取4片ITO导电玻璃经无水乙醇、去离子水冲洗、干燥,分别将其插入溶胶中浸泡提拉数次,直至形成均匀液膜。
取出平置、自然晾干,再红外灯下烘干。
最后在450oC下于马弗炉中煅烧30min 得到锐态矿型TiO2修饰电极。
可用XRD粉末衍射仪测定TiO2晶型结构。
三、染料敏化剂的制备和表征(1) 叶绿素的提取采集新鲜绿色幼叶,洗净晾干,去主脉,称取5g剪碎放入研钵,加入少量石油醚充分研磨,然后转入烧杯,再加入约20mL石油醚,超声提取15min后过滤,弃去滤液。
染料敏化太阳能电池的组装与测试

染料敏化太阳能电池的组装与测试【实验目的】(1)掌握染料敏化太阳能电池的组装工艺。
(2)掌握染料敏化太阳能电池性能的测试方法和评价标准。
【实验原理】染料敏化太阳能电池性能指标:DSSC 的性能测试目前通用的是使用辐射强度为100m W/cm 2的模拟太阳光,即AM1.5太阳光标准。
评价的主要指标包括:开路电压(V oc )、短路电流密度(Isc )、填充因子(FF )、单色光转换效率(IPCE )和总光电转换效率(η)。
1、开路电压开路电压V oc :即将太阳能电池置于AM1.5光谱条件、100mW/cm 2的光源强度照射下,在两端开路时的输出电压值。
2、短路电流短路电流Isc :就是将太阳能电池置于AM1.5光谱条件、100mW/cm 2的光源强度照射下,在输出端短路时,流过太阳能电池两端的电流值。
3、最大输出功率太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。
如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm 表示。
此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um 和Im 表示。
4、填充因子太阳能电池的另一个重要参数是填充因子FF (fill factor ),它是最大输出功率与开路电压和短路电流乘积之比。
FF 是衡量太阳能电池输出特性的重要指标, 图1 DSSC 的I-V 特性曲线及主要评价指标是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示输出功率越大。
FF 的值始终小于1。
串、并联电阻对填充因子有较大影响。
串联电阻越大,短路电流下降越多,填充因子也随之减少的越多;并联电阻越小,其分电流就越大,导致开路电压就下降的越多,填充因子随之也下降的越多。
5、转换效率η太阳能电池的转换效率指在外部回路上连接最佳负载电阻时的最大能量转换效率,等于太阳能电池的输出功率与入射到太阳能电池表面的能量之比。
染料敏化太阳能电池的设计与制备

染料敏化太阳能电池的设计与制备染料敏化太阳能电池是一种利用染料敏化的半导体材料转化太阳能到电能的装置。
其优点在于其制备简便,成本低,可在多种表面上实现太阳电池的制备。
本文将从染料敏化太阳能电池的原理、设计、制备及应用等几个方面进行论述,以期对染料敏化太阳能电池有更深入的了解。
一、染料敏化太阳能电池的原理染料敏化太阳能电池的原理是,在太阳辐射下,染料分子激发后吸收光子能量,其电子达到激发态,从而迅速注入到相邻的半导体TiO2导电带上形成电荷对,并在半导体中进行电荷传递,最终到达电极。
“染料敏化太阳电池”的光电转换过程主要包括两个步骤:光吸收步骤和载流子分离步骤。
图1:染料敏化太阳能电池的示意图二、染料敏化太阳能电池的设计在染料敏化太阳能电池的设计中,主要分为染料的选择、电解质的选择、半导体的选择以及电极的选择等几个方面。
1. 染料的选择:染料是染料敏化太阳能电池中最为关键的组件。
选择染料时,需要考虑染料的吸收光谱、光敏剂量、稳定性等因素。
2. 电解质的选择:电解质是染料敏化太阳能电池中最重要的组成部分。
它的选择会影响染料的导电性和稳定性,从而影响染料的性能表现。
3. 半导体的选择:染料敏化太阳能电池的半导体是主要的光电转换器件。
选择半导体时,需要考虑半导体的能带结构、光电转换效率、稳定性及成本等因素。
4. 电极的选择:染料敏化太阳能电池电极是连接半导体和外部电路的组成部分。
以透明的锡氧化物(TO)和金属的铂(Pt)为电极为例,TO电极的主要作用是保证半导体吸收到光线,而Pt电极的主要作用是在电荷分离后收集电荷。
染料敏化太阳能电池的制备方法主要有槽状、卷状、网状、量子点等多种结构。
1. 槽状染料敏化太阳能电池是通过在导电玻璃基板上涂覆TiO2粉末,然后通过浸泡法,向TiO2表面吸附染料,最后在半导体表面涂覆Pt电极的制备方法。
2. 卷状染料敏化太阳能电池是通过在铝箔上涂覆TiO2粉末,然后通过浸泡法,向TiO2表面吸附染料,并在TiO2表面涂覆Pt 电极后,将铝箔卷成螺旋形电极的制备方法。
染料敏化太阳能电池的设计

摘要摘要太阳能是新能源开发利用最活跃的领域。
目前市场上的太阳能电池主要是单晶硅和多晶硅两种。
但这两种太阳能电池最大的问题在于工艺条件苛刻,制造成本过高,不利于广泛应用。
而上世纪90年代出现的纳米TiO2有机半导体复合太阳能电池和有机/聚合物太阳能电池,工艺条件简单,成本较低,有可能成为21世纪太阳能电池的新贵。
染料敏化太阳能电池价格相对低廉,制作工艺简单,拥有潜在的高光电转换效率,染料敏化太阳能电池极有可能取代传统硅系太阳能电池,成为未来太阳能电池的主导。
关键词:太阳能电池、染料敏化、二氧化钛、纳米TiO2Ⅰ目录目录摘要 (I)目录 (II)第一章概述 (1)1.1染料敏化太阳能电池概述 (1)1.1.1 染料敏化太阳能电池概念 (1)1.1.2 染料敏化太阳能电池的发展状况 (1)1.1.3染料敏化太阳能电池的前景和困难 (2)第二章染料敏化太阳能电池的工作机理 (5)2.1染料敏化太阳电池的结构与原理 (5)2.1.1 染料敏化太阳能电池结构 (5)2.1.2染料敏化太阳电池的原理 (6)2.2染料敏化太阳能电池各组成部分的进展 (6)2.2.1 光阳极材料 (6)2.2.2 光阴极材料 (8)2.2.3 电解质 (8)2.2.4 敏化剂 (9)2.3染料敏化太阳能电池有潜力的几类 (9)2.3.1 染料敏化纳米晶太阳能电池 (9)2.3.2 纤维状无TCO染料敏化太阳能电池 (9)2.3.3 利用有机物来提高转换效率 (10)第三章染料敏化太阳能电池的制作过程 (11)3.1染料敏化太阳能电池的制作步骤 (11)3.1.1二氧化钛膜的制备 (11)3.1.2利用天然染料把二氧化钛膜着色 (13)3.1.3制作反电极 (13)3.1.4 组装电池 (14)3.1.5 注入电解质 (14)第四章染料敏化纳米晶太阳能电池 (17)4.1光电化学性质的测试装置及几个重要参数 (17)4.1.1 两电极光化学电池 (17)4.1.2 电流-电压特性 (17)4.1.3 半导体的导带及价带电位的测试 (18)第五章总结与展望 (21)总结 (21)展望 (21)致谢 (22)参考文献 (23)II目录III概述第一章概述1.1 染料敏化太阳能电池概述1.1.1 染料敏化太阳能电池概念染料敏化太阳电池(dye—sensitized solar cell,DSSC)主要是模仿光合作用原理,研制出来的一种新型太阳电池,其主要优势是:原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。
染料敏化太阳能电池中有机染料的设计与合成

染料敏化太阳能电池中有机染料的设计与合成染料敏化太阳能电池(DSSC)是一种新型的太阳能电池,它利用了染料吸收太阳光的特性来转换为电能。
相比于传统的硅基太阳能电池,DSSC具有轻便、低成本、可弯曲等优点,被认为是太阳能电池领域中的一种重要发展方向。
有机染料是DSSC中最重要的组成部分之一,它们的设计和合成对于DSSC的性能有着决定性的影响。
本文将从有机染料的作用、设计和合成等多个方面来探讨有机染料在DSSC中的应用。
1. 有机染料在DSSC中的作用有机染料是DSSC中的光敏剂,它们的主要作用是将光转换为电子,从而促进DSSC中的电荷传输过程。
一般而言,有机染料的吸收光谱应该与太阳光谱相吻合,这可以最大化地利用太阳能来产生电能。
除此之外,有机染料还需要具备一定的光稳定性和电子传输性能。
光稳定性是指有机染料对光的长时间暴露下仍保持稳定的能力,而电子传输性能则是指有机染料在吸收太阳光后,能够快速、有效地将电子注入到DSSC中,从而产生电流。
2. 有机染料的设计与合成设计和合成是有机染料在DSSC中应用的关键。
目前,有机染料的设计和合成主要采用分子设计的方法。
该方法的原理是通过理论计算和仿真模拟等手段,将分子的化学结构和电子结构对应起来,从而实现有针对性的分子设计和合成。
在设计和合成有机染料时,需要考虑以下几个因素:(1)光谱特性:有机染料的吸收光谱应该与太阳光谱相吻合,以最大化地利用太阳能来产生电能。
(2)电子传输性:有机染料在吸收太阳光后,应该能够快速、有效地将电子注入到DSSC中,从而产生电流。
(3)空穴传输性:有机染料还应该具备一定的空穴传输性能,以促进贯穿DSSC的电荷传输过程。
(4)耐光性:有机染料需要具备一定的光稳定性,以保证DSSC的长期稳定性。
在实际的合成中,可以采用多种有机合成方法和技术来制备有机染料,例如传统的分子合成方法、化学修饰法、金属有机化学方法、绿色合成方法等。
3. 有机染料在DSSC中的应用目前,有机染料在DSSC中的应用呈现出越来越广泛的趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染料敏化太阳能电池光谱响应测量系统的设计及准确测量
李春辉,郭晓枝,罗艳红,李冬梅,孟庆波*
中国科学院物理研究所,北京中关村南三街8号,100190
*Email: qbmeng@
光谱响应(IPCE)是表征太阳能电池性能的一个重要参数,IPCE的准确测量有助于理解电池内部电流的产生、收集和复合机理等。
但是由于一些新型太阳能电池的响应时间比较慢,传统的用于p-n结太阳能电池IPCE测量的方法和条件不再适用[1-3]。
我们研究室自主设计并搭建了集成直流法(DC)、准交流法(AC-a)及交流法(AC-b)三种方法的IPCE测量系统,整个测量过程可以自动控制、实时显示,普遍适用于包括硅基太阳能电池、染料敏化太阳能电池(DSCs)、有机太阳能电池等在内的各种太阳能电池的IPCE及光电流时间响应的测量。
通过不同测量方法和光照条件对DSCs-IPCE测量结果的影响进行了系统研究,我们发现调制频率和背景光对交流法(使用锁相放大器)IPCE的测量的准确性有很大影响。
响应时间和短路电流的测量结果表明,这种影响的根本原因在于DSCs对光的响应速度比较慢。
通过系统的测量、比较,进一步详细地分析了影响IPCE测量准确性的因素,以及如何才能得到准确、可靠的IPCE测量结果[4,5]。
关键词:光谱响应;染料敏化太阳能电池;仪器搭建;响应时间;短路光电流密度
参考文献
[1] ASTM, 2007 Nuclear Energy (II), Solar and Geothermal Energy, ASTM Vol. 12.02, E1021-06.
[2] ASTM, 2007 Nuclear Energy (II), Solar and Geothermal Energy, ASTM Vol. 12.02, E1328-05.
[3] Emery, K. in Handbook of Photovoltaic Science and Engineering, edited by Luque A. and Hegedus S. (Wiley, Chichester, 2003), Chap. 16.
[4] Guo, X.; Luo, Y.; Zhang, Y.; Huang, X.; Li, D.; Meng, Q. B., Rev. Sci. Instrum. 2010, 81 (10), 103106
[5] Guo, X.; Luo, Y.; Li, C.; Qin, D.; Li, D,; Meng, Q. B.; Current Appl. Phys. doi:10.1016/j.cap.2011.03.060
Study on the accurate measurement of the incident photon-to-electron conversion efficiency for dye-sensitized solar cells by home-made setup
Chunhui Li, Xiaozhi Guo, Yanhong Luo, Dongmei Li, Qingbo Meng* Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese
Academy of Sciences, 100190, Beijing, P. R. China
An experimental setup is built for the measurement of monochromatic incident photon-to-electron conversion efficiency (IPCE) of solar cells. With this setup, three kinds of IPCE measuring methods as well as the convenient switching between them are achieved. Using this setup, IPCE results of dye-sensitized solar cells (DSCs) are determined and compared under different illumination conditions with each method. It is found that the IPCE values measured by AC method involving the lock-in technique are sincerely influenced by modulation frequency and bias illumination. Measurements of the response time and waveform of short-circuit current have revealed that this effect can be explained by the slow response of DSCs. We analysed in detail the factors that affect the IPCE measurement and how to get accurate IPCE results by elaborate comparison.。