理论力学课后习题答案分析

合集下载

理论力学课后题参考答案

理论力学课后题参考答案

1.1 沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为由题可知示意图如题1.1.1图: {{SSt t 题1.1.1图设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a .则有:()()⎪⎪⎩⎪⎪⎨⎧+-+=-=221210211021221t t a t t v s at t v s 由以上两式得 11021at t s v +=再由此式得 ()()2121122t t t t t t s a +-=1.26一弹性绳上端固定,下端悬有m 及m '两质点。

设a 为绳的固有长度,b 为加m 后的伸长,c 为加m '后的伸长。

今将m '任其脱离而下坠,试证质点m 在任一瞬时离上端O 的距离为解 以绳顶端为坐标原点.建立如题1.26.1图所示坐标系.题1.26.1图设绳的弹性系数为k ,则有 kb mg = ① 当 m '脱离下坠前,m 与m '系统平衡.当m '脱离下坠前,m 在拉力T 作用下上升,之后作简运.运动微分方程为 ()ym a y k mg &&=-- ② 联立①② 得 b b a g y b g y +=+&& ③ 0=+y bg y &&齐次方程通解 t b g A t b g A Y sin cos 211+= 非齐次方程③的特解 b a Y +=0 所以③的通解b a t bg A t b g A Y +++=sin cos 211代入初始条件:0=t 时,,c b a y ++=得0,21==A c A ;故有 b a t b g c y ++=cos 即为m 在任一时刻离上端O 的距离.'1.39 一质点受一与距离23次方成反比的引力作用在一直线上运动。

试证此质点自无穷远到达a 时的速率和自a 静止出发到达4a 时的速率相同。

《理论力学》课后习题解答[赫桐生,高教版]

《理论力学》课后习题解答[赫桐生,高教版]
解:取带轮与轴为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为:
习题4-6.手摇钻由支点B、钻头A和一个弯曲手柄组成,当在B处施力P并在手柄上加力F后,即可带动钻头绕轴转动而切削(支点B不动)。已知力P的垂直分量Pn=50N, F =150N,求材料对钻头的阻抗作用力及力P在轴x和y方向的分量Px、Py之值。
解:(1)研究整体,受力分析(注意1杆是二力杆),画受力图:
列平衡方程:
解方程组:
(2)研究1杆(二力杆),受力分析,画受力图:
由图得:
(3)研究铰C,受力分析,画受力图:
由力三角形得:
杆1和杆3受压,杆2受拉。
习题3-9.图示破碎机传动机构,活动颚板AB=60cm,设破碎时对颚板作用力垂直于AB方向的分力P=1kN,AH=40cm,BC=CD=60cm,OE=10cm;求图示位置时电机对杆OE作用的转矩M。
解:(1)正常工作时,m1和m2的合力偶为零。整体受力分析:
由对称性可知:
(2)非正常工作时,分别讨论m2和G作用的情况:
G单独作用时,情况同(1):
m2单独作用时,列平衡方程:
共同作用情况时:
NA的实际方向向下,NB的实际方向向上。
习题2-12.四连杆机构OABO1在图示位置平衡,已知OA=40cm,O1B=60cm,作用在曲柄OA上的力偶矩大小为m1=1N.m,不计杆重;求力偶矩m2的大小及连杆AB所受的力。
解:(1)研究锤头,受力分析,画受力图:
(2)列平衡方程:
解方程:
习题2-11.图示轧钢机工作机构,机架和轧辊共重G=650kN,为了轧制钢板,在轧辊上各作用一力偶,力偶矩大小为m1=m2=828kN,机架的支点距离l=1380mm;当发生事故时,m1=0,m2=1656kN.m;求在正常工作与发生事故两种情形下支点A、B的反力。

理论力学课后习题及答案解析

理论力学课后习题及答案解析

理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。

解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。

习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。

解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。

其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。

(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。

其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。

习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解高等教育出版社的《理论力学课后题答案》一书中,第一章包含了以下三个问题的解答:1.2 题目要求写出在铅直平面内的光滑摆线,并分方程。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后证明了质点在平衡位置附近作振动时,振动周期与振幅无关。

1.3 题目要求证明单摆运动的振动周期与摆长无关。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后通过进一步计算,得出了单摆运动的振动周期公式。

1.5 题目要求使用拉格朗日方程计算质点的运动。

解答中使用了拉格朗日方程,并通过进一步计算得出了质点的运动轨迹。

如图,在半径为R时,地球表面的重力加速度可以由万有引力公式求得:g=\frac{GM}{R^2}$$其中M为地球的质量。

根据广义相对论,地球表面的重力加速度还可以表示为:g=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)$$其中c为光速。

当半径增加到R+ΔR时,总质量仍为M,根据XXX展开,可以得到:frac{1}{(R+\Delta R)^2}=\frac{1}{R^2}-\frac{2\DeltaR}{R^3}+\mathcal{O}(\Delta R^2)$$代入上式可得:g'=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)\left(1+\frac{2\Delta R}{R}\right)$$ 化简后得:g'=g-\frac{2g\Delta R}{R}$$因此,当半径改变时,表面的重力加速度的变化为:Delta g=-\frac{2g\Delta R}{R}$$2.在平面极坐标系下,设质点的加速度的切向分量和法向分量都是常数,即$a_t=k_1$,$a_n=k_2$(其中$k_1$和$k_2$为常数)。

根据牛顿第二定律,可以得到质点的运动方程:r\ddot{\theta}+2\dot{r}\dot{\theta}=k_2$$ddot{r}-r\dot{\theta}^2=k_1$$其中$r$为极径,$\theta$为极角。

理论力学课后习题部分答案

理论力学课后习题部分答案

B
A FAC FBA
P
(l)
(l1)
(l2)
(l3)
图 1-1
1-2 画出下列每个标注字符的物体的受力图。题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
(a)
B
FN1
C
FN 2
P2 P1
FAy
A
FAx
(a2)
(b)
FN1
A
P1
FN
(b2)
C
FN′
P2
(a1)
B
FN1
FN 2
FN
P1
F Ay
FCy
FAx (f2)
C FC′x
FC′y F2
FBy
FBx B (f3)
FAy A FAx
FB
C B
(g)
FAy
FAx A
D FT C FCx
(g2)
FB
B
F1
FB′ B
FAy
A
FAx
(h)
(h1)
P (g1)
FC′y
FT
C
FC′x
P (g3)
D
FCy
FB
F2
C FCx
B
(h2)
A FAx
FAy
FCy
D FAy
A
FAx
(k3)
6
FB
F1
FB′
B B
FD D
(l) FD′ D
A FA
(l1) F2
C
FC (l2)
F1
D
F2
B
A
E
FE
FA
(l3) 或
F1
FB′

理论力学课后习题答案-第6章--刚体的平面运动分析

理论力学课后习题答案-第6章--刚体的平面运动分析

理论力学课后习题答案-第6章--刚体的平面运动分析为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。

试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。

解:Rv R v A A ==ωRv R v B B 22==ωBA ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。

设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。

试求该瞬时杆BC 的角速度和点C 的速度。

解:杆BC 的瞬心在点P ,滚子O 的瞬心在点DBD v B ⋅=ωBPBD BPv B BC ⋅==ωω︒︒⨯=30sin 27030cos 36012 rad/s 8=PC v BC C ⋅=ωm/s 87.130cos 27.08=︒⨯=6-5 在下列机构中,那些构件做平面运动,画出它们图示位置的速度瞬心。

hv AC v AP v ABθθω2000cos cos ===ωω习题6-5图OO 1ABCOO 1ABCD习题6-3解图习题6-3图v Av B ωωCBOϕθ ωCBO ϕθω vv B PD习题6-4图习题6-4解图ωB习题6-6图习题6-6解图l ϕυl2BO 1ωABAυB υO1O ABωω解:图(a )中平面运动的瞬心在点O ,杆BC 的瞬心在点C 。

图(b )中平面运动的杆BC 的瞬心在点P ,杆AD 做瞬时平移。

6-6 图示的四连杆机械OABO 1中,OA = O 1B =21AB ,曲柄OA 的角速度ω= 3rad/s 。

试求当示。

ϕ= 90°而曲柄O 1B 重合于OO 1的延长线上时,杆AB 和曲柄O 1B 的角速度。

解:杆AB 的瞬心在O 3===ωωOAvAABrad/s ωl v B3=2.531===ωωl v BBO rad/s6-7 绕电话线的卷轴在水平地面上作纯滚动,线上的点A 有向右的速度v A = 0.8m/s ,试求卷轴中心O 的速度与卷轴的角速度,并问此时卷轴是向左,还是向右方滚动?解:如图333.16.08.03.09.0==-=AOv ωrad/s 2.1689.09.0=⨯==OOv ωm/s 卷轴向右滚动。

《理论力学》课后习题解答(赫桐生版)

《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

理论力学课后习题答案

理论力学课后习题答案

理论力学课后习题答案1. 第一题题目:一个质点从初始点A沿着一条直线运动到达点A,在此过程中质点受到一个恒定的力A的作用。

求解质点从A 到A的位移A和速度A与时间A的关系。

解答:根据牛顿第二定律A=AA,我们可以得到质点在恒定力作用下的运动方程为 $F = m \\frac{dv}{dt}$。

即:$$F = m \\frac{dx}{dt}$$将方程变形可得:$$dx = \\frac{F}{m} dt$$对上式两边同时积分可得:$$\\int_{x_A}^{x_B} dx = \\frac{1}{m} \\int_0^t F dt$$化简后可得:$$x_B - x_A = \\frac{1}{m} \\int_0^t F dt$$即质点从初始点A移动到达点A时的位移A与时间A的关系为:$$x = x_A + \\frac{1}{m} \\int_0^t F dt$$2. 第二题题目:一个滑块在一个光滑的水平轨道上,质量为A,受到一根拉力为A的绳子的作用。

求解滑块的加速度A。

解答:根据牛顿第二定律A=AA,可以得到滑块的加速度A与拉力A的关系为 $a = \\frac{F}{m}$。

3. 第三题题目:一个质点在一个弹簧的作用下振动,弹簧的劲度系数为A,质量为A。

求解质点的振动周期A。

解答:质点在弹簧的作用下振动,其运动方程为 $m\\frac{d^2x}{dt^2} = -kx$,其中A为质点的位移。

对上式进行变形可得:$$\\frac{d^2x}{dt^2} = -\\frac{k}{m}x$$该微分方程的通解为 $x = A \\sin(\\sqrt{\\frac{k}{m}} t + \\phi)$,其中A为振幅,$\\phi$ 为相位角。

振动周期A可以通过求解动能和势能的平衡关系来得到。

在振动过程中,动能 $K = \\frac{1}{2} m v^2$ 和势能 $U =\\frac{1}{2} k x^2$ 之和保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章
Lt
习题5-2.重为G的物体放在倾角为a的斜面上,摩擦系数为
所需拉力T的最小值是多少,这时的角9多大?
解:(1)研究重物,受力分析(支承面约束用全反力R表
示),
(2)由力三角形得
sin(a +甲」gin[(90J - a + (a + 6)]
千曲")&
皿0 -<pj
⑶ 当T与R垂直时,T取得最小值,此时有
:
;问要拉动物体
画受力图
:
・・0=甲聽=arctgf T=Gsin(tt +(pJ
习题5-6.欲转动一放在V形槽中的钢棒料,需作用一矩M=15N.m勺力偶,已知棒料重400N,直径为25cm;求棒料与槽间的摩擦系数f。

解:(1)研究钢棒料,受力分析(支承面约束用全反力R表示),画受力图:
(2)由力三角形得:
R广护血(4亍-趴)& =0co昭5—忙)
(3)列平衡方程:
Vm
o
(F) = 0: - M+K血礼x/*+&$in化xr = O
由⑵、(3)得:
M=FT[sin(45tf -(p H) + cos(45J -(p fl)]xrx sin(p w
=JP>sin(p… x2sin45L,cos(p
K
化35°
(4)求摩擦系数:
Wr
=04243
习题5-7.
尖劈顶重装置如图所示,尖劈
A
的顶角为a
,在B块上受重物Q的作用,
A、B块间的摩擦系数为f (其他有滚珠处表示光滑);求:(1)顶起重
物所需力P之值;(2)取支力P后能保证自锁的顶角a之值。

解:(1)研究整体,受力分析,画受力图:
列平衡方程
审":-S+JV X=O
■^ = Q
由力三角形得
P 二JV 勰(a+w)二伽(d +v)^®r(ff+<F>)
1
(2)研究尖

(2)由图示几何关系:
d
& = d + 2x—(1- cosp) <a+ d(l- cos(p
ffl )
由图知
习题5-8.
图示为轧机的两个轧辊,其直径为d=500mm辊面间开度为

辊的转向相反,已知烧红的钢板与轧辊间的摩擦系数为问能轧制的钢板厚度b是多少?a=5mm两f=0.1 ;试
解:(1)研究钢块,处于临界平衡时,画受力图:
+d(L- cos(p
) = 7,5iM/n
rt
习题5-10.攀登电线杆用的脚套钩如图所示,设电线杆的直径d=30cm A、B间的垂直距离b=10cm若套钩与电线杆间的摩擦系数f=0.5 ;试问
踏脚处至电线杆间的距离I为多少才能保证安全操作?
4
A 、
解:(1)研究脚套钩,受力分析(A、B处用全反力表示),画受力图:
(2)由图示几何关系:
a a
b=(i + ?)帥+ a_ ?伽=2 伽
--- 2------ =——=Went
2數2尿叭If
习题5-12.梯子重G长为I,上端靠在光滑的墙上,底端与水平面间的摩擦系数为f;
求:(1)已知梯子倾角a,为使梯子保持静止,问重为P 的人的活动范
围多大?(2)倾角a多大时,不论人在什么位置梯子都保持静止。

解:(1)研究AB杆,受力分析(A处约束用全反力表示),画受力图:
(2)由力三角形得:
(3) 列平衡方程:
V =
- Np x I sintt + Gx^cosa + Px?lDcostt = 0
由⑵、(3)得:
丽=2伽(P+G)鞅-G % t < 2仇(P+®如-G * t
IP

2P
_2/(P +^«-G yf
IP
(4)
取AD=I ,表示无论人在何处,都能保持平衡;则得:
2P
"(P+G)
习题5-13.圆柱滚子重3kN ,半径为30cm,放在水平面上;或滚动摩擦系数 S =0.5cm ,求a =0及a =30°两种情况下,拉动滚子所需的力 值。

B
P
解:(1)研究滚子,
受力分析,画受力
图:
(2)列平衡方程:
为X=0: Pcosat- F=0
2;r = 0:Psin«-G + 2V = 0
出(F>0: M-Fr = 0
(3)滚动摩擦关系是:
由⑵、(3)得:
5G
rcoai +3 sina
⑷取a =0得:
P<^ = 50N
(5)取a =300得:
所以拉动滚子至少需50N 力;
p< 8G
=57.2JV
rcos30"+8siii30"
所以拉动滚子至少需 57.2N力;。

相关文档
最新文档