一元一次方程的应用——方案选择(教学设计)

合集下载

一元一次方程教学设计(共3篇)

一元一次方程教学设计(共3篇)

一元一次方程教学设计(共3篇)第1篇:一元一次方程教学设计删繁就简三秋树领异标新二月花————“一元一次方程应用”教学实录及反思临沂高都中学王兴玲列方程解应用题,是整个初中阶段数学教学的重点。

因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。

在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。

具体设计如下:一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。

在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米。

”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?问题1、小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?生1:沂河大桥长为(米)(师板演)师:除了列算式外,还有别的方法吗?生2:可以列方程师:如果用列方程的方法来解,设哪个未知数为x?生2:设沂河大桥的长为x米。

师:根据怎样的相当关系来列方程?方程的解是多少?生2:根据小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,列方程1135=2x+55,解得:x=540(教师板演)师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?生3:列方程就是直来直往。

师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题……(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)二、故事的发展——怎样列方程师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。

初中数学_一元一次方程的应用教学设计学情分析教材分析课后反思

初中数学_一元一次方程的应用教学设计学情分析教材分析课后反思

4.3 一元一次方程的应用(1)教学设计课题一元一次方程的应用(1)课时1课型新授教学目标1、引导学生探索年龄问题中的条件和结论,学习寻找题目中的等量关系,列方程解决实际问题。

2、通过年龄问题,学习列方程解决实际问题的一般步骤。

重点:是探索年龄问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题难点:是找等量关系措施:启法引导教具准备黑板、彩色粉笔板书设计4.3一元一次方程的应用(1)1、快乐问答,课前准备2、合作交流,探究新知3、一题多练,灵活应变4、一题多变,再探再练5、列方程解应用题步骤总结6、随堂练习7、课堂检测教学过程(包括导引新课、依标导学、异步训练、达标测试、作业设计等)上课时间:讨论教材提供的问题情境。

通过师生交流,获得问题的初步解。

并在求解的过程中关注学生在写代数式方面的情况。

2、想一想3、做一做4、议一议二、深化训练1、讨论教材中的“做一做”:进一步丰富整式的实际背景,并且因此引出用方程解决实际问题,讨论出用方程解决实际问题的基本步骤:理解题意,寻找等量关系,设未知数列方程,解方程,作答。

2、想一想正确,小颖利用“x年后,爸爸的年龄=儿子年龄的3倍”列方程。

小明利用“x年后,爸爸的年龄—今年爸爸的年龄=x”列方程。

3、做一做列方程,求出x的值得4,说明4年前。

4、议一议11+x==45(39+x),x=101.这相当于儿子112岁,爸爸140岁。

在当今世界是难以实现的,所以这是不可能的。

随堂练习课本P135页,随堂练习1、2课堂小结通过本节课的学习,你有什么收获?简单总结列方程解应用题的一般步骤。

课堂作业课本P135页习题4.7必做题1~3 选做题P148 4学情分析“一元一次方程”,是与实际生活密切相关的内容,新教材一改以往教材的编写手法,以模型思想为主线,从实际情景出发,基于学生现有的认知准备,引入并展开有关知识,最后以实践与探索为结尾。

它让学生体验到了方程是解决实际问题的有效的数学模型,深刻认识方程与现实世界的密切关系,感受数学的价值。

用一元一次方程解决实际问题

用一元一次方程解决实际问题

用一元一次方程解决实际问题 教学设计(一) 教学设计思路本节课通过一元一次方程的广泛而具体的应用,展现“问题情境—建立模型—解释、应用与拓展”这一数学模型,体现这一数学模型的意义和重要作用。

在建立模型的同时要注意促进学生分析问题及解决问题能力的提高。

教学时,教师先提出问题,然后尽可能地让学生思考、探索、操作,然后再交流和研究,共同探讨。

教学目标知识与技能1.知道一元一次方程解简单应用问题的方法和步骤,并会列出一元一次方程解简单的应用题;2.从不同的实际问题中分析数量关系,会从各种实际问题中恰当地把握不同形式的等量关系。

过程与方法1.通过运用方程解决实际问题,体会运用方程解决实际问题的一般过程。

提高分析问题和解决问题的能力。

2.让学生独立思考、积极探究,从而发现解决问题的最佳方案。

情感态度价值观:通过学习,更加关注生活,增强用数学的意识,从而激发学习数学的热情。

教学方法采用直观分析法,引导发现法及尝试指导法充分发挥学生的主体作用重点难点及其应用重点:一元一次方程解敬爱男单应用题的方法和步骤;用列方程的方法解决各类不同的实际问题。

难点:弄清问题,合理地选择未知数,正确地列出方程。

教具准备投影仪课时安排5课时教学过程设计第一课时一、情境导入在小学和本书的第一章里,我们已经学过列方程解应用题。

由于那时的应用题都十分简单,看不出代数方法与算数方法比较起来有什么优点。

现在我们已经学会了用代数方法解一元一次方程,这就可以解决一些比起小学里稍微复杂的应用题了。

我们将逐渐体会到,设未知数列出方程来解应用题,要比不设未知数找出算式容易的多。

今问鸡兔同笼,上有35头,下有94足,问鸡兔各有多少只?此题用列方程的方法解非常简单,因为每只鸡有一个头,两只足,每只兔子有一个头、四只足。

假设次笼中有鸡x 只,则有兔(35)x -只,有鸡足2x 只,兔足4(35)x -,那么根据已知条件:鸡足+兔足=94,得24(35)94x x +-=,这样就列出了方程,解方程即可求出23x =,3512x -=。

人教版数学七年级上册3.2《一元一次方程的应用》教学设计

人教版数学七年级上册3.2《一元一次方程的应用》教学设计

人教版数学七年级上册3.2《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是人教版数学七年级上册3.2的内容。

本节内容是在学生学习了方程的解法的基础上,引导学生将实际问题转化为方程,培养学生的数学建模能力。

教材通过丰富的例题和习题,使学生掌握一元一次方程的应用,进一步体会数学与生活的紧密联系。

二. 学情分析七年级的学生已经具备了一定的数学基础,对方程的概念和解法有一定的了解。

但学生在解决实际问题时,往往不知道如何将问题转化为方程,对于如何选择合适的未知数也有所困惑。

因此,在教学本节内容时,教师需要引导学生将实际问题与方程联系起来,培养学生解决实际问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握一元一次方程的应用,能够将实际问题转化为方程,求解未知数。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生体会数学与生活的紧密联系,增强学生学习数学的兴趣。

四. 教学重难点1.教学重点:使学生掌握一元一次方程的应用,能够将实际问题转化为方程。

2.教学难点:如何引导学生选择合适的未知数,以及如何将实际问题转化为方程。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考,从而激发学生的学习兴趣;通过分析典型案例,使学生掌握一元一次方程的应用;通过小组合作学习,培养学生解决实际问题的能力。

六. 教学准备1.准备相关的例题和习题,以便进行课堂练习。

2.准备多媒体教学设备,以便进行案例展示。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生思考:“在日常生活中,我们经常会遇到一些需要求解未知数的问题,如何用数学方法来解决这些问题呢?”从而引出一元一次方程的应用。

2.呈现(10分钟)教师通过多媒体展示典型案例,使学生了解一元一次方程的应用。

例如,展示一个有关购物的问题:“小王购买了一本书,价格为x元,他还购买了一个笔记本,价格为y元。

实际问题与一元一次方程——方案选择

实际问题与一元一次方程——方案选择

§3.4实际问题与一元一次方程(3)——方案选择一、教材分析《实际问题与一元一次方程》是义务教育课程标准实验教材人教版七年级上册第三章《一元一次方程》中的第三节内容。

以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。

为此,我在教材安排的弟三个探究活动前,增加了一个课时——作为方案选择问题的过渡。

本节课一方面通过解决学生身边常见的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高;另一方面激发学生学习数学的兴趣和增强在生活中应用数学的意识。

二、教学目标分析(一)学习目标分析1.知识与技能(1)学生通过对购物中两种方案的比较,掌握用方程来解决选择方案问题的技巧.(2)能从图表中获取信息并解决问题。

(3)能利用方程的解进行简单的推理与判断。

2.过程与方法经历将实际问题转化为数学问题的过程,进一步体会并认识到方程是刻画现实世界的一个很有效的数学模型,渗透数学建模思想、分类讨论的思想与数形结合的思想。

3.情感态度与价值观(1)体会方程与现实世界的密切联系. 感受数学的应用价值,增强应用数学的意识,从而激发学习数学的热情。

(2)体会在解决问题的过程中同学之间交流合作的重要性,感受与同伴交流的乐趣。

(二)学习重、难点分析重点:能根据题意建立一元一次方程解决实际问题.难点:利用方程的解进行简单的推理与判断。

三、学习者特征分析七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。

为能更好的保持学生的求知欲与学习热情,于是我根据学生和中小学教材衔接的特点设计了这节课。

四、教学策略的选择与设计学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到“细观察、勤思考”.通过计算、猜想、探究、推理等方法完成本节知识的学习。

人教版七年级数学上册3.4实际问题与一元一次方程分段计费、方案选择问题优秀教学案例

人教版七年级数学上册3.4实际问题与一元一次方程分段计费、方案选择问题优秀教学案例
(二)问题导向
在教学过程中,我会提出一系列的问题来引导学生思考和探究。这些问题会帮助学生分析问题,找到关键信息,并运用数学知识来解决问题。
例如,我会问学生:“你能告诉我通话时间和流量是如何影响套餐费用的吗?”“你能列出方程来计算不同套餐的费用吗?”“你认为哪种套餐更划算?”等问题。
(三)小组合作
在教学过程中,我会组织学生进行小组合作,让他们共同解决问题,并分享解题过程和结果。
3.小组合作的学习方式:通过组织学生进行小组合作,让学生共同解决问题,培养了他们的团队合作意识和沟通能力。这种小组合作的学习方式不仅提高了学生的学习效果,也培养了他们的社交技能和团队协作能力。
4.反思与评价的环节:在课堂的最后,引导学生进行反思和评价,使学生能够总结自己的学习过程,发现和改正自己的错误,提高自己的解题能力。这种反思与评价的环节有助于培养学生的批判性思维能力和自我改进的能力。
在这个案例中,我设定了一个假设的电话套餐,其中通话时间和流量分别有不同的价格,而且有不同的套餐选项。学生需要根据自己和家人的通话时间和流量需求,选择最合适的套餐。这个问题既联系了学生的生活实际,又需要他们运用一元一次方程的知识来解决。
在教学过程中,我引导学生通过列出方程来计算不同套餐的费用,并比较哪种套餐更划算。这样不仅能够帮助学生理解和掌握一元一次方程的解法,还能够让他们认识到数学在生活中的实际应用,提高他们的数学素养。
(四)总结归纳
在学生小组讨论后,我会组织学生进行总结归纳。我会邀请每个小组分享他们的解题过程和结果,并引导其他学生对他们的解决方案进行评价和讨论。通过这个过程,学生可以加深对一元一次方程应用的理解,并总结解决问题的方法和技巧。
(五)作业小结
在课堂的最后,我会布置相关的作业,让学生在课后进一步巩固和应用所学的知识。我会设计一些实际问题,让学生运用一元一次方程的知识来解决。同时,我还会要求学生在作业中反思自己的学习过程,总结自己学到了什么,以及如何改进自己的解题方法。

浙教版数学七年级上册5.3《一元一次方程的应用》教学设计

浙教版数学七年级上册5.3《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是浙教版数学七年级上册第五章第三节的内容。

本节内容是在学生学习了代数式、方程的概念以及一元一次方程的解法的基础上进行的。

本节主要让学生学会运用一元一次方程解决实际问题,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们对一元一次方程的解法也已经有所了解。

但是,学生在解决实际问题时,可能会对问题分析不够清晰,找不准等量关系,因此在教学过程中,需要教师引导学生分析问题,找到问题的等量关系,从而解决问题。

三. 教学目标1.知识与技能:学生会运用一元一次方程解决实际问题,提高解决问题的能力。

2.过程与方法:学生通过解决实际问题,培养逻辑思维能力和分析问题的能力。

3.情感态度与价值观:学生体验数学与生活的联系,提高学习数学的兴趣。

四. 教学重难点1.重点:学生会运用一元一次方程解决实际问题。

2.难点:学生能准确找到实际问题的等量关系,建立方程。

五. 教学方法采用情境教学法、引导发现法、合作交流法等,教师引导学生分析问题,找到问题的等量关系,从而解决问题。

六. 教学准备1.教师准备相关的实际问题,用于引导学生解决实际问题。

2.教师准备多媒体教学设备,用于展示问题和解答过程。

七. 教学过程1.导入(5分钟)教师通过多媒体展示一些实际问题,让学生观察并思考,这些问题可以用数学方法解决吗?如何解决?2.呈现(15分钟)教师展示一个实际问题,例如“甲、乙两地相距120千米,甲地有一辆汽车以每小时60千米的速度前往乙地,问几小时后汽车离甲地90千米?”让学生尝试解决。

3.操练(20分钟)教师引导学生分析问题,找到等量关系,建立方程。

例如,汽车离甲地的距离可以表示为:汽车速度 × 时间 = 路程 - 90千米。

让学生分组讨论,尝试解方程。

4.巩固(15分钟)教师让学生回答问题,并解释解题过程。

沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1

沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1一. 教材分析《3.2 一元一次方程的应用》是沪科版数学七年级上册的一个重要章节。

本章主要通过实际问题引导学生学习一元一次方程的解法和应用。

教材内容主要包括:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。

本节课的重点是一元一次方程的应用,难点是如何将实际问题转化为方程。

二. 学情分析七年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。

但是,对于如何将实际问题转化为方程,以及如何运用方程解决实际问题,学生可能还比较陌生。

因此,在教学过程中,教师需要通过具体的例子,引导学生理解方程在实际问题中的应用。

三. 教学目标1.理解一元一次方程的定义,掌握一元一次方程的解法。

2.能够将实际问题转化为方程,运用方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:一元一次方程的应用。

2.难点:如何将实际问题转化为方程。

五. 教学方法1.讲授法:教师通过讲解,引导学生理解一元一次方程的定义和解法。

2.案例分析法:教师通过具体的例子,引导学生将实际问题转化为方程。

3.练习法:学生通过做练习题,巩固所学知识。

六. 教学准备1.教材:沪科版数学七年级上册。

2.教案:详细的教学设计。

3.课件:用于辅助教学的课件。

4.练习题:用于巩固所学知识的练习题。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考如何将问题转化为方程。

例如:小明买了一本书,价格为x元,他给了售货员10元,找回的钱为5元,请计算这本书的价格。

2.呈现(10分钟)教师引导学生分析问题,将问题转化为方程。

例如:小明买书的问题可以转化为方程 x + 5 = 10。

3.操练(15分钟)教师给出几个类似的实际问题,让学生独立解决。

例如:小红买了一支笔,价格为y元,她给了售货员15元,找回的钱为10元,请计算这支笔的价格。

4.巩固(10分钟)教师引导学生总结解题规律,巩固所学知识。

新人教版七年级数学上册 3.4 《一元一次方程的应用》教学设计3

新人教版七年级数学上册 3.4 《一元一次方程的应用》教学设计3一. 教材分析新人教版七年级数学上册3.4《一元一次方程的应用》是学生在掌握了方程的解法和基本性质的基础上进行学习的内容。

这一节内容主要让学生学会如何运用一元一次方程解决实际问题,培养学生的数学应用能力。

教材通过实例引入方程,使学生了解方程在实际生活中的重要性,进而引导学生掌握一元一次方程的解法和应用。

二. 学情分析学生在学习本节内容前,已经掌握了方程的基本概念和性质,对解一元一次方程也有一定的了解。

但部分学生可能对实际问题转化为方程的能力较弱,对生活中的实际问题缺乏敏感度。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

三. 教学目标1.让学生掌握一元一次方程的应用,能够将实际问题转化为方程,并求解。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生对数学的兴趣,培养学生的逻辑思维能力。

四. 教学重难点1.重点:让学生学会将实际问题转化为方程,并求解。

2.难点:如何引导学生将实际问题转化为方程,培养学生解决实际问题的能力。

五. 教学方法1.采用问题驱动法,让学生在解决实际问题的过程中,自然而然地引入方程。

2.使用实例讲解,让学生直观地了解方程在实际生活中的应用。

3.采用分组讨论法,让学生在小组内共同探讨实际问题的解决方法,培养学生的团队协作能力。

4.运用引导发现法,引导学生发现实际问题与方程之间的联系,培养学生自主学习的能力。

六. 教学准备1.准备相关的实际问题,用于引导学生学习一元一次方程的应用。

2.准备多媒体教学设备,用于展示实例和讲解。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如购物问题、速度问题等,引导学生发现这些问题都可以用方程来表示。

让学生认识到方程在实际生活中的重要性。

2.呈现(10分钟)教师通过讲解实例,向学生展示如何将实际问题转化为方程,并求解。

小学数学《一元一次方程的应用》教案

小学数学《一元一次方程的应用》教案元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。

2.使学生掌握含有字母系数的一元一次方程的解法。

3.使学生会进行简单的公式变形。

4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。

5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。

教学重点:(1)含有字母系数的一元一次方程的解法。

(2)公式变形。

教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。

(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。

教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。

(2)移项——未知项移到等号一边常数项移到等号另一边。

注意:移项要变号。

(3)合并同类项——提未知数。

(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。

(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。

引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。

)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。

(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。

2.含有字母系数的一元一次方程的解法教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:ax=b(a≠0).由学生讨论这个解法的思路对不对,解的过程对不对?在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用——方案选择问题
教学目标:
1.知识与技能:通过寻找具体问题中的等量关系,建立方程解决问题;进一步经历运用方程解决实际问题的过程,体会数学的应用价值,发展学生的数学建模思维。

2.过程与方法:通过小组合作,寻找和设计最优方案解决实际问题,发展学生分析问题、解决问题的能力。

3.情感态度与价值观:通过对方案优劣的判断,引导学生做事多思考、多动脑,寻找最佳方案解决问题,引导学生在今后的学习生活中更好、更快地解决问题。

教学重点:
1.引导学生学会审题、寻找等量关系、建立方程解决问题;
2.引导学生学会通过对比选择最佳方案选择问题;
3.引导学生根据已知条件设计方案解决问题。

教学难点:
1.在较复杂的问题中寻找等量关系建立方程;
2.根据已知条件设计合理的最优方案。

教学过程:
1.复习引入:
列方程解应用题的一般步骤:
(1)认真审题,弄清题意;(2)寻找等量关系;(3)设出未知数,列出方程;(4)解方程;(5)检验答案的合理性并作答。

2.新课讲授
问题一:车票优惠方案选择问题
学校准备组织10位老师和部分学生(学生人数大于10人)外出考察,经与客运公司联系后发现,车票的售价为25元每张,但客运公司给出了两种车票优惠方案:
方案一:所有的师生均按票价的88%优惠购票
方案二:前20人购买全票,从第21个人开始,每个人按票价的80%优惠购票。

(1)若有30名学生参加考察,请你通过计算为学校选择一个优惠方案;
(2)请你运用所学知识解答:参加考察的学生为多少人时,两种方案所付车费一样多?
解:(1)方案一费用:25x88%x(10+30)=880(元)
方案二费用:20x25+(40-20)x25x80%=900(元)
因为880<900
所以选择方案一更划算。

(3)设参加考察的学生为x人时,两种方案所付车费一样多。

方案一费用:25x88%x(10+x)=22x+220(元)
方案二费用:20x25+(x+10-20)x25x80%=20x+300(元)
22x+220=20x+300,解得x=40
所以参加考察的学生为40人时,两种方案所付车费一样多。

问题二:通讯方案选择问题
第五代移动通信技术(简称5G)是最新一代蜂窝移动通信技术。

5G网络的理论下载速度为1.25G/s,在实际使用过程中下载峰值也能达到0.8G/s,这就意味着下载一部高清电影只需要几秒钟即可完成。

随着速度的变快,手机流量也成为了广大手机用户关注的热点问题。

中国移动通信集团现有两种流量套餐:
套餐一:每月交纳88元月租,包含20G免费流量,超出20G的流量按2元/G收费;
套餐二:不交纳月租费,所有流量均按4元/G收费。

如果你是中国移动通信集团的5G用户,你将如何选择套餐?
解:设我一个月需要流量 x G,则
套餐一:当x≤20时,流量费用为:88元
当x>20时,流量费用为:88+2(x-20)=2x+48(元)
套餐二:流量费用为:4x(元)
当2x+48=4x,即x=24时,套餐一与套餐二的费用一样多,两者均可选择;
当0<x<24时,套餐二的费用比套餐一费用少,选择套餐二更划算;
当x>24时,套餐一的费用比套餐二的费用少,选择套餐一更划算。

问题三:销售方案问题
某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨的利润为1000元,经粗加工后销售,每吨的利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力为:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种方式不能同时进行。

受季节等条件影响,公司必须在15天内将这批蔬菜全部销售或加工完毕,现公司有两种方案销售这批蔬菜:
方案一:将蔬菜全部进行粗加工后进行销售;
方案二:将蔬菜尽可能进行精加工销售,来不及加工的蔬菜在市场上直接销售。

(1)在不考虑其他情况的条件下,请通过计算说明哪种方案获利更多。

(2)在不考虑其他情况的条件下,你能否设计一个获利更多的方案?
解:(1)方案一:因为粗加工每天可加工16吨,
所以140吨可以在15天内完全进行粗加工,
所以方案一的利润为:140x4500=630000(元)
方案二:因为精加工每天只可加工6吨,
所以15天只能加工90吨,其余50吨只能直接销售,
所以方案二的利润为:90x7500+50x1000=725000(元)
因为725000>630000
所以方案二的利润更多。

(2)方案设想:将一部分蔬菜进行精加工,其余的蔬菜进行粗加工,恰好在15天完成。

设15天内精加工蔬菜x天,则粗加工蔬菜(15-x)天,则
6x+16(15-x)=140,解得x=10
所以,精加工10 x 6=60(吨),粗加工5 x 16=80(吨)
获得利润为:60 x 7500+80 x 4500=810000(元)
所以,方案为:先将蔬菜进行精加工10天,剩下5天进行粗加工,
此时获利达到810000元,比方案一和方案二的获利都多。

课堂小结:
1.知识技能层面:
(1)在实际问题中寻找等量关系,建立方程,解决问题;
(2)根据已知条件设计合理的最优方案。

2.数学思想层面:数学建模思想
3.人生态度方面:人生的路很长,但关键时刻就那么几步,我们一定要在关键时刻作出最佳选择。

在该奋斗的年纪,千万不要选择安逸!
作业布置:
1. 陪爸爸妈妈逛一次商场,运用我们所学的知识帮爸爸妈妈挑选一件商品。

2. 根据你在商场的的所见所闻,设计一道应用一元一次方程解决的应用题。

相关文档
最新文档