初中几何基本图形归纳基本图形+常考图形

合集下载

初中数学几何知识点和题型归纳总复习

初中数学几何知识点和题型归纳总复习

图 形

线段,射线,直线

角的度量
两点之间 线段最短
图 形角

角的大小比较

余角补角

线
按柱、锥、球划分 (1) (2) 是一类,是柱体 (3)(4)是锥体 (5) 是球体
圆柱
柱体
三棱柱
四棱柱 棱柱
五棱柱
六棱柱
圆锥
锥体
三棱锥
棱锥
四棱锥 五棱锥
六棱锥
认识多面体
若围成立体图形的面是平的面,这样的立体图形又称为多面体
l
l
AB
直线AB、直
线BA、直线l
延伸性 端点个数 作图叙述

2 连接AB
沿OC方向 向两方无限
延伸
延伸
1
0
以点O为端 过A、B两点 点作射线OC 作直线AB
下面的知识点你掌握了吗?
知识点1:线段 (1)线段的概念:它是直线的一部分,它的
长度是有限的,它有两个端点. (2)线段的表示方法:可用它的两个端点
▪ (2)直线的表示方法:可用这条直线上 的两个点表示,也可以用一个小写字母 表示.
▪ (3)直线的基本性质:经过两点有一条 直线,并且只有一条直线.
▪ (4)直线的特点:没有端点,向两方无限 延伸,不可度量,不能比较大小.
你能解决下列问题吗?
1、图中共有几条线段?几条射线?几 条直线?能用字母表示出来的分别用 字母表示出来。
知识点2:射线
(1)射线的概念:把线段向一方无限延伸 所形成的图形叫做射线.
(2)射线的表示方法:可用两个大写字母 表示,第一个大写字母表示它的端点; 也可用一个小写字母表示.
(3)射线的特点:只有一个端点,向一方无 限延伸,无法度量,不能比较长短.

初二几何知识点归纳总结

初二几何知识点归纳总结

初二几何知识点归纳总结几何是数学的一个重要分支,它研究空间中的点、线、面以及它们之间的关系。

在初二数学学习中,几何知识是不可或缺的部分。

以下是初二几何知识点的归纳总结:1.图形的分类:在几何中,根据图形的性质和特点,可以将图形分为不同的类别,如平面图形和空间图形。

平面图形包括:点、线、角、三角形、四边形、多边形和圆等;空间图形包括:棱柱、棱锥、圆柱、圆锥、球和立体等。

2.三角形的性质:三角形是初中几何中的重要概念,主要包括以下性质:- 三角形的内角和为180度;- 三角形的外角和等于360度;- 等边三角形的三个角均为60度;- 等腰三角形的两底角相等;- 直角三角形的两个锐角和为90度等。

3.四边形的性质:四边形是指有四条边的图形,常见的四边形有矩形、正方形、菱形、平行四边形和梯形等。

四边形的性质包括:- 矩形的对角线相等,相邻角互补;- 正方形的四条边相等,对角线相等,邻角和为90度;- 菱形的对角线互相垂直,相等;- 平行四边形的对边平行且相等;- 梯形的一对对边平行,底角和顶角互余等。

4.圆的知识:圆是平面几何中的重要概念,圆心是圆的中心点,半径是圆心到圆上任何一点的距离。

圆的基本性质如下:- 圆周上的任意弧所对应的圆心角相等;- 圆内接的四边形,对角线和相等;- 圆的切线垂直于半径;- 圆与直线相交的角,其对应的圆心角是它们的一半等。

5.坐标平面和曲线:坐标平面是指以直角坐标系为基础的平面,它由水平的x轴和垂直的y轴组成。

在坐标平面上,曲线是一组满足特定方程的点的集合。

常见的曲线有直线、抛物线、双曲线和圆等。

6.立体几何:立体几何是研究空间中的立体图形的几何学分支。

立体图形由面和体积组成。

常见的立体图形有:球体、正方体、长方体、棱柱、棱锥和圆柱等。

计算立体体积的公式是初中几何的重要内容之一。

以上是初二几何知识点的归纳总结。

通过系统的学习和掌握这些几何知识点,能够帮助同学们更好地理解和应用数学知识,为进一步学习高中数学打下坚实的基础。

初中数学几何知识点和题型归纳总复习

初中数学几何知识点和题型归纳总复习

49
一.平行线的定义: 在同一平面内,不相交的两条直线 叫做平行线。
结论:在同一平面内,两直线的位置 关系有平行与相交两种。
经过直线外一点,有且只有一条 直线与这条直线平行.(平行公理)
整理ppt
50
平行公理的推论:
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行
几何语言表达:
a//c , c//b(已知) a c b
正方体
长方体
三棱柱
四棱锥
三棱柱
整理ppt
五棱锥
8
归纳:正方体 的表面展开图 有以下11种。你能看 出有什么规律吗?











整理ppt
9
当将这个图案折起来组成一 个正方体时,数字____会3 与数字2 所在的平面相对的平面上。
12 34 56
整理ppt
10
点和线
A 点A — 用一个大写字母表示。
AB
C
整理ppt
24
探究二:画一画,数一数,再找规律
1.在平面内有n个点(n≥3),其中没有任 何三个点在一条直线上,如果过任意两点 画一条直线,这n个点可以画多少条直线?
n(n-1)/2 (n2+n+2)/2
2.一条直线将平面分成两部分,两条直 线将平面分成四部分,那么三条直线将 平面最多分成几部分?四条直线将平面 最多分成几部分?n条直线呢?
离。(垂线段) A.
.
B
l
整理ppt
47
交两 条 直 线 相
况一 般 情
对顶角:相等 邻补角:互补
特殊
情况 垂线 相交成

初二数学知识点图形总结

初二数学知识点图形总结

初二数学知识点图形总结在初中数学学习中,图形是一个非常重要的知识点。

从初中开始,学生开始学习各种图形的性质、面积、周长等相关知识。

在这篇总结中,我将对初二数学中常见的图形知识点进行总结,包括几何图形的基本概念、性质、计算以及实际应用等方面。

1. 点、线、面和图形在几何学中,点、线、面和图形是最基本的概念。

点是最基本的图形要素,它没有大小。

线是由无数个点连接起来的,它只有长度没有宽度。

面是由无数个线段围成的,它有长宽。

图形是由无数个点、线段、线和面组成的,它是我们能够看到的几何形状。

2. 角的概念与性质在图形中,角是一个基本的概念,它是由两条射线共同端点构成的几何形状。

角的大小可以用角的度数来表示,度数是角的一个重要性质。

此外,角还有直角、锐角、钝角等不同类型。

3. 直线、射线和线段这三者在图形中是常见的概念。

直线是一条没有始末的线,射线是有一个始点无穷远射出的线,线段是有始末的部分。

在初中的学习中,多会涉及到这三种概念的运用与计算。

4. 三角形的性质在初中数学中,三角形是最基本的几何图形之一,它有许多性质和定理。

比如三角形内角和为180度,三角形的边长关系等。

5. 四边形的性质四边形也是一个常见的图形,在初中数学中对它的性质也会有所涉及,比如四边形的各种类型、性质和计算等等。

6. 圆的性质圆是一个基础的几何图形,它的性质有很多,比如圆的直径、半径、圆心等。

在初中数学中,学生需要掌握圆的面积、周长等相关计算方法。

7. 直角三角形的性质直角三角形是一个特殊的三角形,在初中数学中,它有一些特殊的性质和定理,比如毕达哥拉斯定理等。

学生需要掌握直角三角形的边长关系和角度关系。

8. 多边形的性质多边形是由若干条线段组成的图形,它有不同种类,如三角形、四边形、五边形等。

在初中数学中,学生需要学习多边形的各种性质和结论,包括计算多边形的面积、周长等。

9. 对称图形对称图形是一个重要的几何概念,它在日常生活与图形学中有着广泛的应用。

初中几何知识点总结分类

初中几何知识点总结分类

初中几何知识点总结分类一、平面几何知识点总结1. 平面上的基本图形a. 点、线、线段和射线b. 三角形、矩形、正方形、平行四边形、梯形、菱形、圆2. 点、线和面的关系a. 由点确定一条直线b. 由直线确定一个平面3. 角a. 角的概念b. 角的种类和性质c. 同位角、对顶角、内错角的关系4. 相交线和平行线a. 相交线b. 平行线及判定条件二、空间几何知识点总结1. 空间几何体的基本概念a. 点、线、面和体的概念及性质2. 空间几何体的展开和折叠a. 空间几何体的展开图b. 箱体的展开图3. 空间几何体的表达和判定a. 立体图形的表达方法b. 立体图形的判定方法三、初中几何知识点详解1. 点、线和面的关系a. 由点确定一条直线:两点确定一条直线,三点不共线确定一条圆锥曲线。

b. 由直线确定一个平面:两点确定一条直线,一直线和一点确定一个平面。

2. 角a. 角的概念:由两条相交的线段,所形成的交点称为顶点,两条线段分别为边,夹角为两边的非公共部分。

b. 角的种类和性质:锐角、直角、钝角,顶角为180°,对顶角相等。

c. 同位角、对顶角、内错角的关系:同位角相等、对顶角相等、内错角互补。

3. 相交线和平行线a. 相交线:两条线相交于一点;b. 平行线及判定条件:两条直线的交角等于180°,则这两条直线互相平行。

4. 三角形a. 三角形的定义和构造:三条线段构成的图形;b. 三角形的分类和性质:等边三角形、等腰三角形、直角三角形;c. 三角形边长和角度关系:勾股定理,三角形内角和为180°。

5. 四边形a. 四边形的定义和构造:四条线段构成的图形;b. 四边形的分类和性质:矩形、正方形、平行四边形、菱形、梯形;c. 四边形的性质:对角线互相平分,相对角互补。

四、初中几何实际应用1. 几何知识在建筑工程中的应用a. 地平线和垂直线的概念b. 地基深度的计算c. 地板和瓷砖的铺设2. 几何知识在工艺制作中的应用a. 切割和焊接的角度计算b. 圆形工件的切割c. 立体工件的展开和装配3. 几何知识在日常生活中的应用a. 房屋装饰和家具的摆放b. 购物时的大小尺寸判断c. 旅行中的地图导航和方向判断五、初中几何学习方法1. 强化基础知识a. 认真理解点、线、面和体的概念、性质及相互关系;b. 熟练掌握角的性质,深入理解角的分类及其所具有的性质;2. 多做几何题a. 多做几何题,注重发现规律和解题方法;b. 针对不同难度的几何题,掌握基本解题技巧;3. 多进行几何实践a. 多进行几何实践,参与建筑、制作、生活等实际活动;b. 运用几何知识分析和解决实际生活中的问题;4. 合理利用工具a. 合理使用尺规等绘图工具,加深对图形构造的理解;b. 利用计算工具进行角度计算和尺寸测量。

初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)

初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)

初中数学中考复习考点知识与题型专题讲解专题15 图形的基本认识【知识要点】考点知识一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。

常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。

⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。

常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。

平面图形是存在于一个平面上的图形。

立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。

2、性质不同。

根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。

由构成原理可知平面图形是构成立体图形的基础。

3、观察角度不同。

平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。

4、具有属性不同。

平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。

立方体图形平面展开图三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。

考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。

(2)能根据三视图描述基本几何体或实物原型。

展开图:正方体展开图(难点)。

正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。

⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

组成几何图形元素的关系:点动成线,线动成面,面动成体。

考点知识二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。

经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)初中几何常见基本图形1.基本图形及结论A、B、C、D分别为四边形的顶点,AC=BD,AD=BC,∠AOC=∠BOD,∠AOD=∠BOC。

2.直角三角形在直角三角形ABC中,∠C=90°,OA为斜边的中线,OD⊥XXX。

3.等腰三角形在等腰三角形ABC中,AB=AC,AD为角A的平分线,BD=CD。

4.三角形的面积公式在三角形ABC中,AB2=BD×BC,AC2=CD×BC。

5.三角形内角和公式在三角形ABC中,∠A+∠B+∠C=180°。

6.平行四边形在平行四边形ABCD中,∠A+∠B=∠C+∠D,AC平分∠BAD。

7.直角三角形的斜边中线在直角三角形ABC中,BD为斜边AC的中线,∠B=∠D。

8.直角三角形的高线在直角三角形ABC中,PA⊥AB,PB⊥AC,PC⊥BC,且PA=PB+PC,∠P=∠A/2.9.直角三角形的内心在直角三角形ABC中,∠P=∠A/2,PD为角A的平分线,AD=BD=AC=DC。

10.直角三角形的外心在直角三角形ABC中,∠P=90°-∠A/2,以AB的中点O为圆心,AB为半径作圆,交AC于点P,则P为三角形ABC的外心。

11.等腰三角形的中线在等腰三角形ABC中,AB=CB,BD为角B的平分线,且BC∥AD。

12.等边三角形在等边三角形ABC中,AB=AC=BC。

13.等角三角形在等角三角形ABC中,∠A=∠B=∠C。

14.三角形的相似在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,则称三角形ABC与DEF相似。

15.圆的基本性质在圆O中,AB为直径,则∠C=90°,且AC=BC=OD。

16.圆的切线在圆O中,以点A为圆心,AB为半径作圆,则CD为圆O的切线。

17.圆的割线在圆O中,以点A为圆心,AC为半径作圆,则BD为圆O的割线。

18.圆的弦在圆O中,AB为圆O的弦,R为圆O的半径,则弦长公式为AB2=BD×BC,且弦AB平分∠AOB。

初中数学四十八个几何模型

初中数学四十八个几何模型

初中数学四十八个几何模型1. 直线与角直线是任意两点之间的最短路径。

角是由两条射线共享一个端点而形成的图形。

直线与角是几何学的基本概念。

线段是直线上两个点之间的部分。

线段具有长度,可以进行比较。

射线是由一个端点和延伸的直线组成的。

射线有起点,但没有终点,可以无限延伸。

4. 平面与平行线平面是一个没有边界的二维图形。

平行线是在同一个平面上,永远不会相交的直线。

三角形是由三条线段连接而成的图形。

三角形的内角和为180度。

6. 等腰三角形等腰三角形是具有两条边长度相等的三角形。

等腰三角形的底角也相等。

7. 直角三角形直角三角形是具有一个内角为90度的三角形。

直角三角形的斜边是其他两条边的平方和的开方。

8. 锐角三角形锐角三角形是所有内角都小于90度的三角形。

9. 钝角三角形钝角三角形是具有一个内角大于90度的三角形。

10. 正方形正方形是四条边相等且四个角都是直角的四边形。

11. 长方形长方形是具有两对相等且每一对内角都是直角的四边形。

12. 平行四边形平行四边形是具有两对平行边的四边形。

梯形是具有一对平行边的四边形。

梯形的非平行边也可以不等长。

菱形是具有四个边相等且对角线相等的四边形。

圆是具有相同半径的所有点的集合。

圆上任意两点与圆心构成的线段称为弦。

16. 圆心角圆心角是以圆心为顶点的角。

弧是圆上两个点之间的部分。

弦是圆上任意两点之间的线段。

切线是与圆只有一个交点的直线。

弧长是圆上一部分的长度。

扇形是以圆心为顶点的角所对应的圆上的区域。

22. 对称与相似对称是指一个图形通过某条线、点或平面进行折叠后与自身完全重合。

相似是指两个图形的形状相同但大小不同。

23. 二维几何体二维几何体包括平面图形。

24. 立体几何体立体几何体是具有实体和体积的图形。

25. 正方体正方体是六个面都是正方形的立体几何体。

26. 长方体长方体是六个面都是矩形的立体几何体。

27. 正圆柱体正圆柱体是圆和矩形结合形成的立体几何体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何常见基本图形几何基本图形1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF=a 63 ③外接圆半径AF=a 33FEDBADCA45ABC3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为a 213- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: 长为a 25; ②当BD 是角平分线时,BD 长为①当D 是AC 中点时,BDa 224-。

5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450:①△ABE ∽ECD ②设BE=x ,则CD=ax ax 22-。

6、如图AB=AC ,∠A=360,则:BC=215-AB 。

7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:21∠BAD=∠EDC 。

8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2180x -0。

9、如图,△BCA中,D是三角形内一点,①当点D 是外心时,∠BDC=21∠A ;②当点D 是内心时,∠BDC=2180A∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有()22234x x =+-; ②△BED ∽△BAC 。

11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的ABCEABCED圆的切线。

12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。

13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC :①△AOE ≌△BOF ; ②AE ⊥BF 。

14、如图,E 是正方形ABCD 对角线上一点,EF ⊥CD ,EG ⊥BC : ①AE=FG ;②AE ⊥FG 。

15、如图,将矩形ABCD 顶点B 沿某直线翻折可与D 点重合:①EF 是BD 中垂线; ②BE=DE ,若AB=3,AD=5,设DE=x ,则()22253x x =-+。

16、将矩形ABCD 顶点A 沿BD 翻折,A 落在E 处,如图: ①BD 是AE 中垂线,AB=BE ;②△BEF ≌△DCF ;③BF=DF 。

17、如图,B 是直线DF 上一点,∠ABC=Rt ∠,过A 、C 做直线的垂线,D 、E 是垂足:①△ABD ∽△BCE ; ②当AB=BC 时,△ABD ≌△BCE 。

18、如图,以△ABC 两边向形外作正方形ABED ,ACFG ,H 是BC 中点: ①AH=21DG ;②E 、F 到BC 所在直线的距离和等于A 到直线BC 的距离;③当∠BAC=Rt ∠时,HA ⊥DG ;19、如图,E 是正方形对角线上一点,F 是BC 边上一点∠AEF=900:则EF=CE 。

20、如图,H 是矩形对角线BD 上一点E 、F 是矩形两边上的点,∠EHF=900,则过H 作HM ⊥BC ,HN ⊥AD ,就有17题基本图形。

21、如图,AD 是△ABC 角平分线,BE ⊥AD ,作出常用辅助线(延长BE 与AC 相交即可),并体会结果。

利用角平分线翻折。

22、如图,E 是AC 中点,F 是BE 中点,当AD=8时:则DF=2。

注:可作多种辅AB CDE FG助线,有利于提高转比能力。

23、如图,D 是△ABC 边上一点,BD :DC=1:2,E 是AD 中点: ①AF :FC=1:3 ②BE :EF=2:1 ③S CDEF :S ABC =7:1224、如图,D 是BC 中点,E 是AB 上一点AE :EB=3:2:①AF :FD=3:1 ②EF :CF=3:5 ③S AEF :S EFDB =9:11。

25、如图:梯形ABCD 中,AD ∥BC ,AC=BD ,则AB=CD ,可利用①平移——过D 作DM ∥AC 交BC 延长线于M ;②分割——过A 、D 作BC 垂线。

26、如图为对角线相等的四边形ABCD (例如矩形),则连结四边中点形成的四边形是菱形。

27、如图为对角线互相垂直的四边形ABCD (例如菱形),则该四边形中点围成的四边形是矩形。

28、如图,对边AB ,CD 相等的四边形中,E 、H 、F 是边对角线中点,则△EHF 是等腰三角形。

29、如图Rt △ABC 中,∠BAC=900,AD ⊥BD ,则①AB 2:AD 2=BC :CD ;②222111AD AB AC += 30、如图,F 是正方形边CD 中点,CE=41BC :则 ①AF 2=AD ·AE ;②CF 2=CE ·BC 。

31、如图,CD 、BE 是△ABC 高线:①BC 中点在DE 中垂线上;②△ADE ∽△ACB ;③当∠A=600时,DE=21。

32、如图D 是BC 中点,AC=2CD ;①△CAD ∽CBA ;②ACCDBC AC AB AD == 33、如图,D 是Rt △ABC 直角边上中点,CE ⊥AD 则:△DBE ∽△DAB 。

34、如图,梯形ABCD 中,AD ∥BC ,已知AD :BC=2:3;①S△ADE:S △BEC =4:9DC BA②S ADE :S DEC =2:3;③S ADE :S ABCD =4:25。

35、如图,梯形ABCD 中,AD ∥BC ,EF 是中位线,已知AD :BC=2:3;①EG=FH ②GH :BC=1:6; ③S △OGH :S ABCD =1:100。

36、如图,E 是平行四边形边BC 上一点,BE :CE=3:1,则S DFEC :S △ABCD =19:56。

37、如图,直角梯形ABCD 中,AB ⊥AD ,AD ∥BC ,CD=AD+BC ,E是AB 中点:①DE 、CE 是角平分线 ②∠DEC=Rt ∠。

38、如图,Rt △ABC 中,∠BCA=900,点O 在直角边AC 上,当以O 为圆心的圆与BC 、AB 相切时:①BE=BC ②AE 2=AF ·AC ③△AEO ∽ACB ;④当BC=3,AC=4时,⊙O 半径为23;⑤当∠A=300,BC=a 时。

AF=OF=OC=a 33。

39、如图,∠C=Rt ∠,O 是斜边上一点,以O 为圆心的圆与AC 、BC 相切,r 是⊙O 半径:①1=+BC r AC r ;②当AC=4,BC=3时,r=712。

40、如图,∠C=Rt ∠,O 是斜边上一点,以O 为圆心的圆过点B ,且与AC 相切,r 是⊙O 半径:①tgA=AD OD AC BC =; ②当AC=4,BC=3时,OA=r 35,AF=r 32,AD 2=AF ·AB 。

41、如图⊙O 是Rt △ABC 内切圆,①AE=AD ,BD=BF ,CE=CF ,2cb a r -+=42、如图,⊙O 切Rt △ABC 直角边AC 与斜边AB 于C 、D ,DF ⊥BC ,CH 、EF 是AB 垂线,KE ⊥BC :①△DGE ≌△DFE ;②△DFC ≌△DHC ;③∠BDE=∠FDE ;④DF 是GE 、CH 比例中项;⑤OD 是KE 、AC 比例中项;⑥△DOK ≌△EOK ;⑦△AOD ≌△AOC …… 43、如图,以AB 为直径的⊙O 切CD 于E ,AC 、BD 是CD 垂线:①CE=DE ;②CDBF 是矩形。

ABDECEDCBA GHE DCB FAO AF BCDE44、如图,以AB 为直径的⊙O 中,AC 、BD 是弦EF 的垂线:①CE=DF ;②CDBG 是矩形;③连结AE ,GF ,∠EAG=∠GFE=∠BED ……45、如图,AB 在直径所在直线上,AB ⊥CD :①∠A=∠FCO ;②△CFO ∽△AFE ∽△ACO ∽△AOD 。

46、如图,⊙O 是△ABC 外接圆,AE ⊥BC ,CD ⊥AB ,OE ⊥BC :①AHCG 是平行四边形;②OF=21AH 。

47、如图AB 是⊙O 切线,C 是AB 中点,CED 是割线,则△ACE ∽△DCA 。

48、如图,AD ∥BC ,AC 、BD 交于O ,EF ∥AD ,则OE=OF ,OEBC AD 111=+。

49、如图,点B 在⊙O 上,以B 为圆心的圆与⊙A 的公切线是DE ,切点是D 、E ,若DE 交AB 于C ;当⊙B 半径是⊙A 的一半时;①∠C=300;50、如图,两圆内切于P ,大圆弦PC 、PD 交小圆于A 、B ,则AB ∥CD 。

51、如图,⊙O 与⊙O 1内切于P ,⊙O 的弦AB 切⊙O 1于C ,连结PC 交⊙O 于D ,则:PA •PB=PC•PD。

52、已知⊙A 的圆心在⊙O 上,⊙O 的弦BC 与⊙A 切于P ,若两圆半径为R ,r ,则AB •A C=2Rr 。

53、如图,⊙O 1与⊙O 2内切于A ,⊙O 1的弦BC 经过O 2,交⊙O 2于D 、E ,若⊙O 1的直径为6,BD :DE :CE=3:4:2,则可设BD=3k ,在利用相交弦定理求⊙O 2半径。

54、如图,半圆O 与⊙O 1内切于E ,⊙O 1与半圆直径AB 切于D ,连结DO 1交半圆于C ,若AB=32,⊙O 1直径为12,可将半圆补全,利用相交弦定理求CD 长。

55、如图,两圆相交于A 、B ,一直线分别交⊙O 1,⊙O 2于D 、E 、F 、G ,与AB 交于C ,则DE :EC=GF :FC 。

56、如图⊙O 与⊙A 交于B 、C ,过点A 作直线交⊙O 于E ,交⊙A 于D ,交BC 于F ,则:AD 2=AF •AE 。

57、如图,两圆外切于A , BC 是两圆公切线,①∠BAC=900;②∠CAO 2=∠B ,∠BAO 1=∠C 。

58、如图,两圆外切于A , BC 是两圆公切线,BD 、CE 是直径,①DAC 在同一直线上;BAE 在同一直线上;②BC 2=BD •CE;③BC 2=R •r;④若过点D 作⊙O 2的切线,则该切线长等于BD 。

59、如图,两圆外切于A , BC 是两圆公切线,BC 与O 1O 2交于P ,①△PCA ∽△PAB ;②当R :r=3:1时,∠P=300,∠B=300。

相关文档
最新文档